// SPDX-License-Identifier: GPL-2.0-only
/*
* TI Camera Access Layer (CAL) - CAMERARX
*
* Copyright (c) 2015-2020 Texas Instruments Inc.
*
* Authors:
* Benoit Parrot <[email protected]>
* Laurent Pinchart <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#include "cal.h"
#include "cal_regs.h"
/* ------------------------------------------------------------------
* I/O Register Accessors
* ------------------------------------------------------------------
*/
static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
{
return ioread32(phy->base + offset);
}
static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
{
iowrite32(val, phy->base + offset);
}
/* ------------------------------------------------------------------
* CAMERARX Management
* ------------------------------------------------------------------
*/
static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy)
{
struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2;
u32 num_lanes = mipi_csi2->num_data_lanes;
const struct cal_format_info *fmtinfo;
struct v4l2_subdev_state *state;
struct v4l2_mbus_framefmt *fmt;
u32 bpp;
s64 freq;
state = v4l2_subdev_get_locked_active_state(&phy->subdev);
fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK);
fmtinfo = cal_format_by_code(fmt->code);
if (!fmtinfo)
return -EINVAL;
bpp = fmtinfo->bpp;
freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes);
if (freq < 0) {
phy_err(phy, "failed to get link freq for subdev '%s'\n",
phy->source->name);
return freq;
}
phy_dbg(3, phy, "Source Link Freq: %llu\n", freq);
return freq;
}
static void cal_camerarx_lane_config(struct cal_camerarx *phy)
{
u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 =
&phy->endpoint.bus.mipi_csi2;
int lane;
cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
/*
* Every lane are one nibble apart starting with the
* clock followed by the data lanes so shift masks by 4.
*/
lane_mask <<= 4;
polarity_mask <<= 4;
cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
polarity_mask);
}
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
phy->instance, val);
}
static void cal_camerarx_enable(struct cal_camerarx *phy)
{
u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
regmap_field_write(phy->fields[F_CAMMODE], 0);
/* Always enable all lanes at the phy control level */
regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
/* F_CSI_MODE is not present on every architecture */
if (phy->fields[F_CSI_MODE])
regmap_field_write(phy->fields[F_CSI_MODE], 1);
regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
}
void cal_camerarx_disable(struct cal_camerarx *phy)
{
regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
}
/*
* TCLK values are OK at their reset values
*/
#define TCLK_TERM 0
#define TCLK_MISS 1
#define TCLK_SETTLE 14
static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq)
{
unsigned int reg0, reg1;
unsigned int ths_term, ths_settle;
/* DPHY timing configuration */
/* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000);
phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
/* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4;
phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
cal_set_field(®1, TCLK_MISS,
CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
}
static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
{
u32 target_state;
unsigned int i;
target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
for (i = 0; i < 10; i++) {
u32 current_state;
current_state = cal_read_field(phy->cal,
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
if (current_state == target_state)
break;
usleep_range(1000, 1100);
}
if (i == 10)
phy_err(phy, "Failed to power %s complexio\n",
enable ? "up" : "down");
}
static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(750);
while (time_before(jiffies, timeout)) {
if (cal_read_field(phy->cal,
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
break;
usleep_range(500, 5000);
}
if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
phy_err(phy, "Timeout waiting for Complex IO reset done\n");
}
static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(750);
while (time_before(jiffies, timeout)) {
if (cal_read_field(phy->cal,
CAL_CSI2_TIMING(phy->instance),
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
break;
usleep_range(500, 5000);
}
if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
phy_err(phy, "Timeout waiting for stop state\n");
}
static void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
{
const u32 cio_err_mask =
CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
const u32 vc_err_mask =
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) |
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) |
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) |
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3);
/* Enable CIO & VC error IRQs. */
cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
CAL_HL_IRQ_CIO_MASK(phy->instance) |
CAL_HL_IRQ_VC_MASK(phy->instance));
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
cio_err_mask);
cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance),
vc_err_mask);
}
static void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
{
/* Disable CIO error irqs */
cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
CAL_HL_IRQ_CIO_MASK(phy->instance) |
CAL_HL_IRQ_VC_MASK(phy->instance));
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0);
}
static void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
{
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK);
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
{
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static int cal_camerarx_start(struct cal_camerarx *phy)
{
s64 link_freq;
u32 sscounter;
u32 val;
int ret;
if (phy->enable_count > 0) {
phy->enable_count++;
return 0;
}
link_freq = cal_camerarx_get_ext_link_freq(phy);
if (link_freq < 0)
return link_freq;
ret = v4l2_subdev_call(phy->source, core, s_power, 1);
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
phy_err(phy, "power on failed in subdev\n");
return ret;
}
cal_camerarx_enable_irqs(phy);
/*
* CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
* DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
* DRA80xM TRMs have a slightly simplified sequence.
*/
/*
* 1. Configure all CSI-2 low level protocol registers to be ready to
* receive signals/data from the CSI-2 PHY.
*
* i.-v. Configure the lanes position and polarity.
*/
cal_camerarx_lane_config(phy);
/*
* vi.-vii. Configure D-PHY mode, enable the required lanes and
* enable the CAMERARX clock.
*/
cal_camerarx_enable(phy);
/*
* 2. CSI PHY and link initialization sequence.
*
* a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
* at this point, as it requires the external source to send the
* CSI-2 HS clock.
*/
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
/* Dummy read to allow SCP reset to complete. */
camerarx_read(phy, CAL_CSI2_PHY_REG0);
/* Program the PHY timing parameters. */
cal_camerarx_config(phy, link_freq);
/*
* b. Assert the FORCERXMODE signal.
*
* The stop-state-counter is based on fclk cycles, and we always use
* the x16 and x4 settings, so stop-state-timeout =
* fclk-cycle * 16 * 4 * counter.
*
* Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
* calculate a timeout that's 100us (rounding up).
*/
sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4);
val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
cal_set_field(&val, sscounter,
CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
/* Assert the FORCERXMODE signal. */
cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
/*
* c. Connect pull-down on CSI-2 PHY link (using pad control).
*
* This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
* implemented.
*/
/*
* d. Power up the CSI-2 PHY.
* e. Check whether the state status reaches the ON state.
*/
cal_camerarx_power(phy, true);
/*
* Start the source to enable the CSI-2 HS clock. We can now wait for
* CSI-2 PHY reset to complete.
*/
ret = v4l2_subdev_call(phy->source, video, s_stream, 1);
if (ret) {
v4l2_subdev_call(phy->source, core, s_power, 0);
cal_camerarx_disable_irqs(phy);
phy_err(phy, "stream on failed in subdev\n");
return ret;
}
cal_camerarx_wait_reset(phy);
/* f. Wait for STOPSTATE=1 for all enabled lane modules. */
cal_camerarx_wait_stop_state(phy);
phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
/*
* g. Disable pull-down on CSI-2 PHY link (using pad control).
*
* This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
* implemented.
*/
/* Finally, enable the PHY Protocol Interface (PPI). */
cal_camerarx_ppi_enable(phy);
phy->enable_count++;
return 0;
}
static void cal_camerarx_stop(struct cal_camerarx *phy)
{
int ret;
if (--phy->enable_count > 0)
return;
cal_camerarx_ppi_disable(phy);
cal_camerarx_disable_irqs(phy);
cal_camerarx_power(phy, false);
/* Assert Complex IO Reset */
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
/* Disable the phy */
cal_camerarx_disable(phy);
if (v4l2_subdev_call(phy->source, video, s_stream, 0))
phy_err(phy, "stream off failed in subdev\n");
ret = v4l2_subdev_call(phy->source, core, s_power, 0);
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
phy_err(phy, "power off failed in subdev\n");
}
/*
* Errata i913: CSI2 LDO Needs to be disabled when module is powered on
*
* Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
* LDOs on the device are disabled if CSI-2 module is powered on
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
* | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
* current draw on the module supply in active mode.
*
* Errata does not apply when CSI-2 module is powered off
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
*
* SW Workaround:
* Set the following register bits to disable the LDO,
* which is essentially CSI2 REG10 bit 6:
*
* Core 0: 0x4845 B828 = 0x0000 0040
* Core 1: 0x4845 B928 = 0x0000 0040
*/
void cal_camerarx_i913_errata(struct cal_camerarx *phy)
{
u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
}
static int cal_camerarx_regmap_init(struct cal_dev *cal,
struct cal_camerarx *phy)
{
const struct cal_camerarx_data *phy_data;
unsigned int i;
if (!cal->data)
return -EINVAL;
phy_data = &cal->data->camerarx[phy->instance];
for (i = 0; i < F_MAX_FIELDS; i++) {
struct reg_field field = {
.reg = cal->syscon_camerrx_offset,
.lsb = phy_data->fields[i].lsb,
.msb = phy_data->fields[i].msb,
};
/*
* Here we update the reg offset with the
* value found in DT
*/
phy->fields[i] = devm_regmap_field_alloc(cal->dev,
cal->syscon_camerrx,
field);
if (IS_ERR(phy->fields[i])) {
cal_err(cal, "Unable to allocate regmap fields\n");
return PTR_ERR(phy->fields[i]);
}
}
return 0;
}
static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
{
struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
char data_lanes[V4L2_MBUS_CSI2_MAX_DATA_LANES * 2];
struct device_node *ep_node;
unsigned int i;
int ret;
/*
* Find the endpoint node for the port corresponding to the PHY
* instance, and parse its CSI-2-related properties.
*/
ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
phy->instance, 0);
if (!ep_node) {
/*
* The endpoint is not mandatory, not all PHY instances need to
* be connected in DT.
*/
phy_dbg(3, phy, "Port has no endpoint\n");
return 0;
}
endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
if (ret < 0) {
phy_err(phy, "Failed to parse endpoint\n");
goto done;
}
for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
if (lane > 4) {
phy_err(phy, "Invalid position %u for data lane %u\n",
lane, i);
ret = -EINVAL;
goto done;
}
data_lanes[i*2] = '0' + lane;
data_lanes[i*2+1] = ' ';
}
data_lanes[i*2-1] = '\0';
phy_dbg(3, phy,
"CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
endpoint->bus.mipi_csi2.clock_lane, data_lanes,
endpoint->bus.mipi_csi2.flags);
/* Retrieve the connected device and store it for later use. */
phy->source_ep_node = of_graph_get_remote_endpoint(ep_node);
phy->source_node = of_graph_get_port_parent(phy->source_ep_node);
if (!phy->source_node) {
phy_dbg(3, phy, "Can't get remote parent\n");
of_node_put(phy->source_ep_node);
ret = -EINVAL;
goto done;
}
phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node);
done:
of_node_put(ep_node);
return ret;
}
/* ------------------------------------------------------------------
* V4L2 Subdev Operations
* ------------------------------------------------------------------
*/
static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd)
{
return container_of(sd, struct cal_camerarx, subdev);
}
static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable)
{
struct cal_camerarx *phy = to_cal_camerarx(sd);
struct v4l2_subdev_state *state;
int ret = 0;
state = v4l2_subdev_lock_and_get_active_state(sd);
if (enable)
ret = cal_camerarx_start(phy);
else
cal_camerarx_stop(phy);
v4l2_subdev_unlock_state(state);
return ret;
}
static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
/* No transcoding, source and sink codes must match. */
if (cal_rx_pad_is_source(code->pad)) {
struct v4l2_mbus_framefmt *fmt;
if (code->index > 0)
return -EINVAL;
fmt = v4l2_subdev_state_get_format(state,
CAL_CAMERARX_PAD_SINK);
code->code = fmt->code;
} else {
if (code->index >= cal_num_formats)
return -EINVAL;
code->code = cal_formats[code->index].code;
}
return 0;
}
static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_size_enum *fse)
{
const struct cal_format_info *fmtinfo;
if (fse->index > 0)
return -EINVAL;
/* No transcoding, source and sink formats must match. */
if (cal_rx_pad_is_source(fse->pad)) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_state_get_format(state,
CAL_CAMERARX_PAD_SINK);
if (fse->code != fmt->code)
return -EINVAL;
fse->min_width = fmt->width;
fse->max_width = fmt->width;
fse->min_height = fmt->height;
fse->max_height = fmt->height;
} else {
fmtinfo = cal_format_by_code(fse->code);
if (!fmtinfo)
return -EINVAL;
fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
fse->min_height = CAL_MIN_HEIGHT_LINES;
fse->max_height = CAL_MAX_HEIGHT_LINES;
}
return 0;
}
static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
const struct cal_format_info *fmtinfo;
struct v4l2_mbus_framefmt *fmt;
unsigned int bpp;
/* No transcoding, source and sink formats must match. */
if (cal_rx_pad_is_source(format->pad))
return v4l2_subdev_get_fmt(sd, state, format);
/*
* Default to the first format if the requested media bus code isn't
* supported.
*/
fmtinfo = cal_format_by_code(format->format.code);
if (!fmtinfo)
fmtinfo = &cal_formats[0];
/* Clamp the size, update the code. The colorspace is accepted as-is. */
bpp = ALIGN(fmtinfo->bpp, 8);
format->format.width = clamp_t(unsigned int, format->format.width,
CAL_MIN_WIDTH_BYTES * 8 / bpp,
CAL_MAX_WIDTH_BYTES * 8 / bpp);
format->format.height = clamp_t(unsigned int, format->format.height,
CAL_MIN_HEIGHT_LINES,
CAL_MAX_HEIGHT_LINES);
format->format.code = fmtinfo->code;
format->format.field = V4L2_FIELD_NONE;
/* Store the format and propagate it to the source pad. */
fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK);
*fmt = format->format;
fmt = v4l2_subdev_state_get_format(state,
CAL_CAMERARX_PAD_FIRST_SOURCE);
*fmt = format->format;
return 0;
}
static int cal_camerarx_sd_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_subdev_format format = {
.which = state ? V4L2_SUBDEV_FORMAT_TRY
: V4L2_SUBDEV_FORMAT_ACTIVE,
.pad = CAL_CAMERARX_PAD_SINK,
.format = {
.width = 640,
.height = 480,
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.field = V4L2_FIELD_NONE,
.colorspace = V4L2_COLORSPACE_SRGB,
.ycbcr_enc = V4L2_YCBCR_ENC_601,
.quantization = V4L2_QUANTIZATION_LIM_RANGE,
.xfer_func = V4L2_XFER_FUNC_SRGB,
},
};
return cal_camerarx_sd_set_fmt(sd, state, &format);
}
static int cal_camerarx_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
struct v4l2_mbus_frame_desc *fd)
{
struct cal_camerarx *phy = to_cal_camerarx(sd);
struct v4l2_mbus_frame_desc remote_desc;
const struct media_pad *remote_pad;
int ret;
remote_pad = media_pad_remote_pad_first(&phy->pads[CAL_CAMERARX_PAD_SINK]);
if (!remote_pad)
return -EPIPE;
ret = v4l2_subdev_call(phy->source, pad, get_frame_desc,
remote_pad->index, &remote_desc);
if (ret)
return ret;
if (remote_desc.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) {
cal_err(phy->cal,
"Frame descriptor does not describe CSI-2 link");
return -EINVAL;
}
if (remote_desc.num_entries > 1)
cal_err(phy->cal,
"Multiple streams not supported in remote frame descriptor, using the first one\n");
fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2;
fd->num_entries = 1;
fd->entry[0] = remote_desc.entry[0];
return 0;
}
static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = {
.s_stream = cal_camerarx_sd_s_stream,
};
static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = {
.enum_mbus_code = cal_camerarx_sd_enum_mbus_code,
.enum_frame_size = cal_camerarx_sd_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = cal_camerarx_sd_set_fmt,
.get_frame_desc = cal_camerarx_get_frame_desc,
};
static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = {
.video = &cal_camerarx_video_ops,
.pad = &cal_camerarx_pad_ops,
};
static const struct v4l2_subdev_internal_ops cal_camerarx_internal_ops = {
.init_state = cal_camerarx_sd_init_state,
};
static const struct media_entity_operations cal_camerarx_media_ops = {
.link_validate = v4l2_subdev_link_validate,
};
/* ------------------------------------------------------------------
* Create and Destroy
* ------------------------------------------------------------------
*/
struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
unsigned int instance)
{
struct platform_device *pdev = to_platform_device(cal->dev);
struct cal_camerarx *phy;
struct v4l2_subdev *sd;
unsigned int i;
int ret;
phy = devm_kzalloc(cal->dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return ERR_PTR(-ENOMEM);
phy->cal = cal;
phy->instance = instance;
spin_lock_init(&phy->vc_lock);
phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
(instance == 0) ?
"cal_rx_core0" :
"cal_rx_core1");
phy->base = devm_ioremap_resource(cal->dev, phy->res);
if (IS_ERR(phy->base)) {
cal_err(cal, "failed to ioremap\n");
return ERR_CAST(phy->base);
}
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
phy->res->name, &phy->res->start, &phy->res->end);
ret = cal_camerarx_regmap_init(cal, phy);
if (ret)
return ERR_PTR(ret);
ret = cal_camerarx_parse_dt(phy);
if (ret)
return ERR_PTR(ret);
/* Initialize the V4L2 subdev and media entity. */
sd = &phy->subdev;
v4l2_subdev_init(sd, &cal_camerarx_subdev_ops);
sd->internal_ops = &cal_camerarx_internal_ops;
sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance);
sd->dev = cal->dev;
phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i)
phy->pads[i].flags = MEDIA_PAD_FL_SOURCE;
sd->entity.ops = &cal_camerarx_media_ops;
ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads),
phy->pads);
if (ret)
goto err_node_put;
ret = v4l2_subdev_init_finalize(sd);
if (ret)
goto err_entity_cleanup;
ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd);
if (ret)
goto err_free_state;
return phy;
err_free_state:
v4l2_subdev_cleanup(sd);
err_entity_cleanup:
media_entity_cleanup(&phy->subdev.entity);
err_node_put:
of_node_put(phy->source_ep_node);
of_node_put(phy->source_node);
return ERR_PTR(ret);
}
void cal_camerarx_destroy(struct cal_camerarx *phy)
{
if (!phy)
return;
v4l2_device_unregister_subdev(&phy->subdev);
v4l2_subdev_cleanup(&phy->subdev);
media_entity_cleanup(&phy->subdev.entity);
of_node_put(phy->source_ep_node);
of_node_put(phy->source_node);
}