// SPDX-License-Identifier: GPL-2.0-or-later
/* DVB USB compliant Linux driver for the Afatech 9005
* USB1.1 DVB-T receiver.
*
* Copyright (C) 2007 Luca Olivetti ([email protected])
*
* Thanks to Afatech who kindly provided information.
*
* see Documentation/driver-api/media/drivers/dvb-usb.rst for more information
*/
#include "af9005.h"
/* debug */
int dvb_usb_af9005_debug;
module_param_named(debug, dvb_usb_af9005_debug, int, 0644);
MODULE_PARM_DESC(debug,
"set debugging level (1=info,xfer=2,rc=4,reg=8,i2c=16,fw=32 (or-able))."
DVB_USB_DEBUG_STATUS);
/* enable obnoxious led */
bool dvb_usb_af9005_led = true;
module_param_named(led, dvb_usb_af9005_led, bool, 0644);
MODULE_PARM_DESC(led, "enable led (default: 1).");
/* eeprom dump */
static int dvb_usb_af9005_dump_eeprom;
module_param_named(dump_eeprom, dvb_usb_af9005_dump_eeprom, int, 0);
MODULE_PARM_DESC(dump_eeprom, "dump contents of the eeprom.");
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
/* remote control decoder */
static int (*rc_decode) (struct dvb_usb_device *d, u8 *data, int len,
u32 *event, int *state);
static void *rc_keys;
static int *rc_keys_size;
u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
struct af9005_device_state {
u8 sequence;
int led_state;
unsigned char data[256];
};
static int af9005_generic_read_write(struct dvb_usb_device *d, u16 reg,
int readwrite, int type, u8 * values, int len)
{
struct af9005_device_state *st = d->priv;
u8 command, seq;
int i, ret;
if (len < 1) {
err("generic read/write, less than 1 byte. Makes no sense.");
return -EINVAL;
}
if (len > 8) {
err("generic read/write, more than 8 bytes. Not supported.");
return -EINVAL;
}
mutex_lock(&d->data_mutex);
st->data[0] = 14; /* rest of buffer length low */
st->data[1] = 0; /* rest of buffer length high */
st->data[2] = AF9005_REGISTER_RW; /* register operation */
st->data[3] = 12; /* rest of buffer length */
st->data[4] = seq = st->sequence++; /* sequence number */
st->data[5] = (u8) (reg >> 8); /* register address */
st->data[6] = (u8) (reg & 0xff);
if (type == AF9005_OFDM_REG) {
command = AF9005_CMD_OFDM_REG;
} else {
command = AF9005_CMD_TUNER;
}
if (len > 1)
command |=
AF9005_CMD_BURST | AF9005_CMD_AUTOINC | (len - 1) << 3;
command |= readwrite;
if (readwrite == AF9005_CMD_WRITE)
for (i = 0; i < len; i++)
st->data[8 + i] = values[i];
else if (type == AF9005_TUNER_REG)
/* read command for tuner, the first byte contains the i2c address */
st->data[8] = values[0];
st->data[7] = command;
ret = dvb_usb_generic_rw(d, st->data, 16, st->data, 17, 0);
if (ret)
goto ret;
/* sanity check */
if (st->data[2] != AF9005_REGISTER_RW_ACK) {
err("generic read/write, wrong reply code.");
ret = -EIO;
goto ret;
}
if (st->data[3] != 0x0d) {
err("generic read/write, wrong length in reply.");
ret = -EIO;
goto ret;
}
if (st->data[4] != seq) {
err("generic read/write, wrong sequence in reply.");
ret = -EIO;
goto ret;
}
/*
* In thesis, both input and output buffers should have
* identical values for st->data[5] to st->data[8].
* However, windows driver doesn't check these fields, in fact
* sometimes the register in the reply is different that what
* has been sent
*/
if (st->data[16] != 0x01) {
err("generic read/write wrong status code in reply.");
ret = -EIO;
goto ret;
}
if (readwrite == AF9005_CMD_READ)
for (i = 0; i < len; i++)
values[i] = st->data[8 + i];
ret:
mutex_unlock(&d->data_mutex);
return ret;
}
int af9005_read_ofdm_register(struct dvb_usb_device *d, u16 reg, u8 * value)
{
int ret;
deb_reg("read register %x ", reg);
ret = af9005_generic_read_write(d, reg,
AF9005_CMD_READ, AF9005_OFDM_REG,
value, 1);
if (ret)
deb_reg("failed\n");
else
deb_reg("value %x\n", *value);
return ret;
}
int af9005_read_ofdm_registers(struct dvb_usb_device *d, u16 reg,
u8 * values, int len)
{
int ret;
deb_reg("read %d registers %x ", len, reg);
ret = af9005_generic_read_write(d, reg,
AF9005_CMD_READ, AF9005_OFDM_REG,
values, len);
if (ret)
deb_reg("failed\n");
else
debug_dump(values, len, deb_reg);
return ret;
}
int af9005_write_ofdm_register(struct dvb_usb_device *d, u16 reg, u8 value)
{
int ret;
u8 temp = value;
deb_reg("write register %x value %x ", reg, value);
ret = af9005_generic_read_write(d, reg,
AF9005_CMD_WRITE, AF9005_OFDM_REG,
&temp, 1);
if (ret)
deb_reg("failed\n");
else
deb_reg("ok\n");
return ret;
}
int af9005_write_ofdm_registers(struct dvb_usb_device *d, u16 reg,
u8 * values, int len)
{
int ret;
deb_reg("write %d registers %x values ", len, reg);
debug_dump(values, len, deb_reg);
ret = af9005_generic_read_write(d, reg,
AF9005_CMD_WRITE, AF9005_OFDM_REG,
values, len);
if (ret)
deb_reg("failed\n");
else
deb_reg("ok\n");
return ret;
}
int af9005_read_register_bits(struct dvb_usb_device *d, u16 reg, u8 pos,
u8 len, u8 * value)
{
u8 temp;
int ret;
deb_reg("read bits %x %x %x", reg, pos, len);
ret = af9005_read_ofdm_register(d, reg, &temp);
if (ret) {
deb_reg(" failed\n");
return ret;
}
*value = (temp >> pos) & regmask[len - 1];
deb_reg(" value %x\n", *value);
return 0;
}
int af9005_write_register_bits(struct dvb_usb_device *d, u16 reg, u8 pos,
u8 len, u8 value)
{
u8 temp, mask;
int ret;
deb_reg("write bits %x %x %x value %x\n", reg, pos, len, value);
if (pos == 0 && len == 8)
return af9005_write_ofdm_register(d, reg, value);
ret = af9005_read_ofdm_register(d, reg, &temp);
if (ret)
return ret;
mask = regmask[len - 1] << pos;
temp = (temp & ~mask) | ((value << pos) & mask);
return af9005_write_ofdm_register(d, reg, temp);
}
static int af9005_usb_read_tuner_registers(struct dvb_usb_device *d,
u16 reg, u8 * values, int len)
{
return af9005_generic_read_write(d, reg,
AF9005_CMD_READ, AF9005_TUNER_REG,
values, len);
}
static int af9005_usb_write_tuner_registers(struct dvb_usb_device *d,
u16 reg, u8 * values, int len)
{
return af9005_generic_read_write(d, reg,
AF9005_CMD_WRITE,
AF9005_TUNER_REG, values, len);
}
int af9005_write_tuner_registers(struct dvb_usb_device *d, u16 reg,
u8 * values, int len)
{
/* don't let the name of this function mislead you: it's just used
as an interface from the firmware to the i2c bus. The actual
i2c addresses are contained in the data */
int ret, i, done = 0, fail = 0;
u8 temp;
ret = af9005_usb_write_tuner_registers(d, reg, values, len);
if (ret)
return ret;
if (reg != 0xffff) {
/* check if write done (0xa40d bit 1) or fail (0xa40d bit 2) */
for (i = 0; i < 200; i++) {
ret =
af9005_read_ofdm_register(d,
xd_I2C_i2c_m_status_wdat_done,
&temp);
if (ret)
return ret;
done = temp & (regmask[i2c_m_status_wdat_done_len - 1]
<< i2c_m_status_wdat_done_pos);
if (done)
break;
fail = temp & (regmask[i2c_m_status_wdat_fail_len - 1]
<< i2c_m_status_wdat_fail_pos);
if (fail)
break;
msleep(50);
}
if (i == 200)
return -ETIMEDOUT;
if (fail) {
/* clear write fail bit */
af9005_write_register_bits(d,
xd_I2C_i2c_m_status_wdat_fail,
i2c_m_status_wdat_fail_pos,
i2c_m_status_wdat_fail_len,
1);
return -EIO;
}
/* clear write done bit */
ret =
af9005_write_register_bits(d,
xd_I2C_i2c_m_status_wdat_fail,
i2c_m_status_wdat_done_pos,
i2c_m_status_wdat_done_len, 1);
if (ret)
return ret;
}
return 0;
}
int af9005_read_tuner_registers(struct dvb_usb_device *d, u16 reg, u8 addr,
u8 * values, int len)
{
/* don't let the name of this function mislead you: it's just used
as an interface from the firmware to the i2c bus. The actual
i2c addresses are contained in the data */
int ret, i;
u8 temp, buf[2];
buf[0] = addr; /* tuner i2c address */
buf[1] = values[0]; /* tuner register */
values[0] = addr + 0x01; /* i2c read address */
if (reg == APO_REG_I2C_RW_SILICON_TUNER) {
/* write tuner i2c address to tuner, 0c00c0 undocumented, found by sniffing */
ret = af9005_write_tuner_registers(d, 0x00c0, buf, 2);
if (ret)
return ret;
}
/* send read command to ofsm */
ret = af9005_usb_read_tuner_registers(d, reg, values, 1);
if (ret)
return ret;
/* check if read done */
for (i = 0; i < 200; i++) {
ret = af9005_read_ofdm_register(d, 0xa408, &temp);
if (ret)
return ret;
if (temp & 0x01)
break;
msleep(50);
}
if (i == 200)
return -ETIMEDOUT;
/* clear read done bit (by writing 1) */
ret = af9005_write_ofdm_register(d, xd_I2C_i2c_m_data8, 1);
if (ret)
return ret;
/* get read data (available from 0xa400) */
for (i = 0; i < len; i++) {
ret = af9005_read_ofdm_register(d, 0xa400 + i, &temp);
if (ret)
return ret;
values[i] = temp;
}
return 0;
}
static int af9005_i2c_write(struct dvb_usb_device *d, u8 i2caddr, u8 reg,
u8 * data, int len)
{
int ret, i;
u8 buf[3];
deb_i2c("i2c_write i2caddr %x, reg %x, len %d data ", i2caddr,
reg, len);
debug_dump(data, len, deb_i2c);
for (i = 0; i < len; i++) {
buf[0] = i2caddr;
buf[1] = reg + (u8) i;
buf[2] = data[i];
ret =
af9005_write_tuner_registers(d,
APO_REG_I2C_RW_SILICON_TUNER,
buf, 3);
if (ret) {
deb_i2c("i2c_write failed\n");
return ret;
}
}
deb_i2c("i2c_write ok\n");
return 0;
}
static int af9005_i2c_read(struct dvb_usb_device *d, u8 i2caddr, u8 reg,
u8 * data, int len)
{
int ret, i;
u8 temp;
deb_i2c("i2c_read i2caddr %x, reg %x, len %d\n ", i2caddr, reg, len);
for (i = 0; i < len; i++) {
temp = reg + i;
ret =
af9005_read_tuner_registers(d,
APO_REG_I2C_RW_SILICON_TUNER,
i2caddr, &temp, 1);
if (ret) {
deb_i2c("i2c_read failed\n");
return ret;
}
data[i] = temp;
}
deb_i2c("i2c data read: ");
debug_dump(data, len, deb_i2c);
return 0;
}
static int af9005_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msg[],
int num)
{
/* only implements what the mt2060 module does, don't know how
to make it really generic */
struct dvb_usb_device *d = i2c_get_adapdata(adap);
int ret;
u8 reg, addr;
u8 *value;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
if (num > 2)
warn("more than 2 i2c messages at a time is not handled yet. TODO.");
if (num == 2) {
/* reads a single register */
reg = *msg[0].buf;
addr = msg[0].addr;
value = msg[1].buf;
ret = af9005_i2c_read(d, addr, reg, value, 1);
if (ret == 0)
ret = 2;
} else {
if (msg[0].len < 2) {
ret = -EOPNOTSUPP;
goto unlock;
}
/* write one or more registers */
reg = msg[0].buf[0];
addr = msg[0].addr;
value = &msg[0].buf[1];
ret = af9005_i2c_write(d, addr, reg, value, msg[0].len - 1);
if (ret == 0)
ret = 1;
}
unlock:
mutex_unlock(&d->i2c_mutex);
return ret;
}
static u32 af9005_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm af9005_i2c_algo = {
.master_xfer = af9005_i2c_xfer,
.functionality = af9005_i2c_func,
};
int af9005_send_command(struct dvb_usb_device *d, u8 command, u8 * wbuf,
int wlen, u8 * rbuf, int rlen)
{
struct af9005_device_state *st = d->priv;
int ret, i, packet_len;
u8 seq;
if (wlen < 0) {
err("send command, wlen less than 0 bytes. Makes no sense.");
return -EINVAL;
}
if (wlen > 54) {
err("send command, wlen more than 54 bytes. Not supported.");
return -EINVAL;
}
if (rlen > 54) {
err("send command, rlen more than 54 bytes. Not supported.");
return -EINVAL;
}
packet_len = wlen + 5;
mutex_lock(&d->data_mutex);
st->data[0] = (u8) (packet_len & 0xff);
st->data[1] = (u8) ((packet_len & 0xff00) >> 8);
st->data[2] = 0x26; /* packet type */
st->data[3] = wlen + 3;
st->data[4] = seq = st->sequence++;
st->data[5] = command;
st->data[6] = wlen;
for (i = 0; i < wlen; i++)
st->data[7 + i] = wbuf[i];
ret = dvb_usb_generic_rw(d, st->data, wlen + 7, st->data, rlen + 7, 0);
if (st->data[2] != 0x27) {
err("send command, wrong reply code.");
ret = -EIO;
} else if (st->data[4] != seq) {
err("send command, wrong sequence in reply.");
ret = -EIO;
} else if (st->data[5] != 0x01) {
err("send command, wrong status code in reply.");
ret = -EIO;
} else if (st->data[6] != rlen) {
err("send command, invalid data length in reply.");
ret = -EIO;
}
if (!ret) {
for (i = 0; i < rlen; i++)
rbuf[i] = st->data[i + 7];
}
mutex_unlock(&d->data_mutex);
return ret;
}
int af9005_read_eeprom(struct dvb_usb_device *d, u8 address, u8 * values,
int len)
{
struct af9005_device_state *st = d->priv;
u8 seq;
int ret, i;
mutex_lock(&d->data_mutex);
memset(st->data, 0, sizeof(st->data));
st->data[0] = 14; /* length of rest of packet low */
st->data[1] = 0; /* length of rest of packer high */
st->data[2] = 0x2a; /* read/write eeprom */
st->data[3] = 12; /* size */
st->data[4] = seq = st->sequence++;
st->data[5] = 0; /* read */
st->data[6] = len;
st->data[7] = address;
ret = dvb_usb_generic_rw(d, st->data, 16, st->data, 14, 0);
if (st->data[2] != 0x2b) {
err("Read eeprom, invalid reply code");
ret = -EIO;
} else if (st->data[3] != 10) {
err("Read eeprom, invalid reply length");
ret = -EIO;
} else if (st->data[4] != seq) {
err("Read eeprom, wrong sequence in reply ");
ret = -EIO;
} else if (st->data[5] != 1) {
err("Read eeprom, wrong status in reply ");
ret = -EIO;
}
if (!ret) {
for (i = 0; i < len; i++)
values[i] = st->data[6 + i];
}
mutex_unlock(&d->data_mutex);
return ret;
}
static int af9005_boot_packet(struct usb_device *udev, int type, u8 *reply,
u8 *buf, int size)
{
u16 checksum;
int act_len = 0, i, ret;
memset(buf, 0, size);
buf[0] = (u8) (FW_BULKOUT_SIZE & 0xff);
buf[1] = (u8) ((FW_BULKOUT_SIZE >> 8) & 0xff);
switch (type) {
case FW_CONFIG:
buf[2] = 0x11;
buf[3] = 0x04;
buf[4] = 0x00; /* sequence number, original driver doesn't increment it here */
buf[5] = 0x03;
checksum = buf[4] + buf[5];
buf[6] = (u8) ((checksum >> 8) & 0xff);
buf[7] = (u8) (checksum & 0xff);
break;
case FW_CONFIRM:
buf[2] = 0x11;
buf[3] = 0x04;
buf[4] = 0x00; /* sequence number, original driver doesn't increment it here */
buf[5] = 0x01;
checksum = buf[4] + buf[5];
buf[6] = (u8) ((checksum >> 8) & 0xff);
buf[7] = (u8) (checksum & 0xff);
break;
case FW_BOOT:
buf[2] = 0x10;
buf[3] = 0x08;
buf[4] = 0x00; /* sequence number, original driver doesn't increment it here */
buf[5] = 0x97;
buf[6] = 0xaa;
buf[7] = 0x55;
buf[8] = 0xa5;
buf[9] = 0x5a;
checksum = 0;
for (i = 4; i <= 9; i++)
checksum += buf[i];
buf[10] = (u8) ((checksum >> 8) & 0xff);
buf[11] = (u8) (checksum & 0xff);
break;
default:
err("boot packet invalid boot packet type");
return -EINVAL;
}
deb_fw(">>> ");
debug_dump(buf, FW_BULKOUT_SIZE + 2, deb_fw);
ret = usb_bulk_msg(udev,
usb_sndbulkpipe(udev, 0x02),
buf, FW_BULKOUT_SIZE + 2, &act_len, 2000);
if (ret)
err("boot packet bulk message failed: %d (%d/%d)", ret,
FW_BULKOUT_SIZE + 2, act_len);
else
ret = act_len != FW_BULKOUT_SIZE + 2 ? -1 : 0;
if (ret)
return ret;
memset(buf, 0, 9);
ret = usb_bulk_msg(udev,
usb_rcvbulkpipe(udev, 0x01), buf, 9, &act_len, 2000);
if (ret) {
err("boot packet recv bulk message failed: %d", ret);
return ret;
}
deb_fw("<<< ");
debug_dump(buf, act_len, deb_fw);
checksum = 0;
switch (type) {
case FW_CONFIG:
if (buf[2] != 0x11) {
err("boot bad config header.");
return -EIO;
}
if (buf[3] != 0x05) {
err("boot bad config size.");
return -EIO;
}
if (buf[4] != 0x00) {
err("boot bad config sequence.");
return -EIO;
}
if (buf[5] != 0x04) {
err("boot bad config subtype.");
return -EIO;
}
for (i = 4; i <= 6; i++)
checksum += buf[i];
if (buf[7] * 256 + buf[8] != checksum) {
err("boot bad config checksum.");
return -EIO;
}
*reply = buf[6];
break;
case FW_CONFIRM:
if (buf[2] != 0x11) {
err("boot bad confirm header.");
return -EIO;
}
if (buf[3] != 0x05) {
err("boot bad confirm size.");
return -EIO;
}
if (buf[4] != 0x00) {
err("boot bad confirm sequence.");
return -EIO;
}
if (buf[5] != 0x02) {
err("boot bad confirm subtype.");
return -EIO;
}
for (i = 4; i <= 6; i++)
checksum += buf[i];
if (buf[7] * 256 + buf[8] != checksum) {
err("boot bad confirm checksum.");
return -EIO;
}
*reply = buf[6];
break;
case FW_BOOT:
if (buf[2] != 0x10) {
err("boot bad boot header.");
return -EIO;
}
if (buf[3] != 0x05) {
err("boot bad boot size.");
return -EIO;
}
if (buf[4] != 0x00) {
err("boot bad boot sequence.");
return -EIO;
}
if (buf[5] != 0x01) {
err("boot bad boot pattern 01.");
return -EIO;
}
if (buf[6] != 0x10) {
err("boot bad boot pattern 10.");
return -EIO;
}
for (i = 4; i <= 6; i++)
checksum += buf[i];
if (buf[7] * 256 + buf[8] != checksum) {
err("boot bad boot checksum.");
return -EIO;
}
break;
}
return 0;
}
static int af9005_download_firmware(struct usb_device *udev, const struct firmware *fw)
{
int i, packets, ret, act_len;
u8 *buf;
u8 reply;
buf = kmalloc(FW_BULKOUT_SIZE + 2, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = af9005_boot_packet(udev, FW_CONFIG, &reply, buf,
FW_BULKOUT_SIZE + 2);
if (ret)
goto err;
if (reply != 0x01) {
err("before downloading firmware, FW_CONFIG expected 0x01, received 0x%x", reply);
ret = -EIO;
goto err;
}
packets = fw->size / FW_BULKOUT_SIZE;
buf[0] = (u8) (FW_BULKOUT_SIZE & 0xff);
buf[1] = (u8) ((FW_BULKOUT_SIZE >> 8) & 0xff);
for (i = 0; i < packets; i++) {
memcpy(&buf[2], fw->data + i * FW_BULKOUT_SIZE,
FW_BULKOUT_SIZE);
deb_fw(">>> ");
debug_dump(buf, FW_BULKOUT_SIZE + 2, deb_fw);
ret = usb_bulk_msg(udev,
usb_sndbulkpipe(udev, 0x02),
buf, FW_BULKOUT_SIZE + 2, &act_len, 1000);
if (ret) {
err("firmware download failed at packet %d with code %d", i, ret);
goto err;
}
}
ret = af9005_boot_packet(udev, FW_CONFIRM, &reply,
buf, FW_BULKOUT_SIZE + 2);
if (ret)
goto err;
if (reply != (u8) (packets & 0xff)) {
err("after downloading firmware, FW_CONFIRM expected 0x%x, received 0x%x", packets & 0xff, reply);
ret = -EIO;
goto err;
}
ret = af9005_boot_packet(udev, FW_BOOT, &reply, buf,
FW_BULKOUT_SIZE + 2);
if (ret)
goto err;
ret = af9005_boot_packet(udev, FW_CONFIG, &reply, buf,
FW_BULKOUT_SIZE + 2);
if (ret)
goto err;
if (reply != 0x02) {
err("after downloading firmware, FW_CONFIG expected 0x02, received 0x%x", reply);
ret = -EIO;
goto err;
}
err:
kfree(buf);
return ret;
}
int af9005_led_control(struct dvb_usb_device *d, int onoff)
{
struct af9005_device_state *st = d->priv;
int temp, ret;
if (onoff && dvb_usb_af9005_led)
temp = 1;
else
temp = 0;
if (st->led_state != temp) {
ret =
af9005_write_register_bits(d, xd_p_reg_top_locken1,
reg_top_locken1_pos,
reg_top_locken1_len, temp);
if (ret)
return ret;
ret =
af9005_write_register_bits(d, xd_p_reg_top_lock1,
reg_top_lock1_pos,
reg_top_lock1_len, temp);
if (ret)
return ret;
st->led_state = temp;
}
return 0;
}
static int af9005_frontend_attach(struct dvb_usb_adapter *adap)
{
u8 buf[8];
int i;
/* without these calls the first commands after downloading
the firmware fail. I put these calls here to simulate
what it is done in dvb-usb-init.c.
*/
struct usb_device *udev = adap->dev->udev;
usb_clear_halt(udev, usb_sndbulkpipe(udev, 2));
usb_clear_halt(udev, usb_rcvbulkpipe(udev, 1));
if (dvb_usb_af9005_dump_eeprom) {
printk("EEPROM DUMP\n");
for (i = 0; i < 255; i += 8) {
af9005_read_eeprom(adap->dev, i, buf, 8);
debug_dump(buf, 8, printk);
}
}
adap->fe_adap[0].fe = af9005_fe_attach(adap->dev);
return 0;
}
static int af9005_rc_query(struct dvb_usb_device *d, u32 * event, int *state)
{
struct af9005_device_state *st = d->priv;
int ret, len;
u8 seq;
*state = REMOTE_NO_KEY_PRESSED;
if (rc_decode == NULL) {
/* it shouldn't never come here */
return 0;
}
mutex_lock(&d->data_mutex);
/* deb_info("rc_query\n"); */
st->data[0] = 3; /* rest of packet length low */
st->data[1] = 0; /* rest of packet length high */
st->data[2] = 0x40; /* read remote */
st->data[3] = 1; /* rest of packet length */
st->data[4] = seq = st->sequence++; /* sequence number */
ret = dvb_usb_generic_rw(d, st->data, 5, st->data, 256, 0);
if (ret) {
err("rc query failed");
goto ret;
}
if (st->data[2] != 0x41) {
err("rc query bad header.");
ret = -EIO;
goto ret;
} else if (st->data[4] != seq) {
err("rc query bad sequence.");
ret = -EIO;
goto ret;
}
len = st->data[5];
if (len > 246) {
err("rc query invalid length");
ret = -EIO;
goto ret;
}
if (len > 0) {
deb_rc("rc data (%d) ", len);
debug_dump((st->data + 6), len, deb_rc);
ret = rc_decode(d, &st->data[6], len, event, state);
if (ret) {
err("rc_decode failed");
goto ret;
} else {
deb_rc("rc_decode state %x event %x\n", *state, *event);
if (*state == REMOTE_KEY_REPEAT)
*event = d->last_event;
}
}
ret:
mutex_unlock(&d->data_mutex);
return ret;
}
static int af9005_power_ctrl(struct dvb_usb_device *d, int onoff)
{
return 0;
}
static int af9005_pid_filter_control(struct dvb_usb_adapter *adap, int onoff)
{
int ret;
deb_info("pid filter control onoff %d\n", onoff);
if (onoff) {
ret =
af9005_write_ofdm_register(adap->dev, XD_MP2IF_DMX_CTRL, 1);
if (ret)
return ret;
ret =
af9005_write_register_bits(adap->dev,
XD_MP2IF_DMX_CTRL, 1, 1, 1);
if (ret)
return ret;
ret =
af9005_write_ofdm_register(adap->dev, XD_MP2IF_DMX_CTRL, 1);
} else
ret =
af9005_write_ofdm_register(adap->dev, XD_MP2IF_DMX_CTRL, 0);
if (ret)
return ret;
deb_info("pid filter control ok\n");
return 0;
}
static int af9005_pid_filter(struct dvb_usb_adapter *adap, int index,
u16 pid, int onoff)
{
u8 cmd = index & 0x1f;
int ret;
deb_info("set pid filter, index %d, pid %x, onoff %d\n", index,
pid, onoff);
if (onoff) {
/* cannot use it as pid_filter_ctrl since it has to be done
before setting the first pid */
if (adap->feedcount == 1) {
deb_info("first pid set, enable pid table\n");
ret = af9005_pid_filter_control(adap, onoff);
if (ret)
return ret;
}
ret =
af9005_write_ofdm_register(adap->dev,
XD_MP2IF_PID_DATA_L,
(u8) (pid & 0xff));
if (ret)
return ret;
ret =
af9005_write_ofdm_register(adap->dev,
XD_MP2IF_PID_DATA_H,
(u8) (pid >> 8));
if (ret)
return ret;
cmd |= 0x20 | 0x40;
} else {
if (adap->feedcount == 0) {
deb_info("last pid unset, disable pid table\n");
ret = af9005_pid_filter_control(adap, onoff);
if (ret)
return ret;
}
}
ret = af9005_write_ofdm_register(adap->dev, XD_MP2IF_PID_IDX, cmd);
if (ret)
return ret;
deb_info("set pid ok\n");
return 0;
}
static int af9005_identify_state(struct usb_device *udev,
const struct dvb_usb_device_properties *props,
const struct dvb_usb_device_description **desc,
int *cold)
{
int ret;
u8 reply, *buf;
buf = kmalloc(FW_BULKOUT_SIZE + 2, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = af9005_boot_packet(udev, FW_CONFIG, &reply,
buf, FW_BULKOUT_SIZE + 2);
if (ret)
goto err;
deb_info("result of FW_CONFIG in identify state %d\n", reply);
if (reply == 0x01)
*cold = 1;
else if (reply == 0x02)
*cold = 0;
else
ret = -EIO;
if (!ret)
deb_info("Identify state cold = %d\n", *cold);
err:
kfree(buf);
return ret;
}
static struct dvb_usb_device_properties af9005_properties;
static int af9005_usb_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
return dvb_usb_device_init(intf, &af9005_properties,
THIS_MODULE, NULL, adapter_nr);
}
enum {
AFATECH_AF9005,
TERRATEC_CINERGY_T_USB_XE,
ANSONIC_DVBT_USB,
};
static struct usb_device_id af9005_usb_table[] = {
DVB_USB_DEV(AFATECH, AFATECH_AF9005),
DVB_USB_DEV(TERRATEC, TERRATEC_CINERGY_T_USB_XE),
DVB_USB_DEV(ANSONIC, ANSONIC_DVBT_USB),
{ }
};
MODULE_DEVICE_TABLE(usb, af9005_usb_table);
static struct dvb_usb_device_properties af9005_properties = {
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.firmware = "af9005.fw",
.download_firmware = af9005_download_firmware,
.no_reconnect = 1,
.size_of_priv = sizeof(struct af9005_device_state),
.num_adapters = 1,
.adapter = {
{
.num_frontends = 1,
.fe = {{
.caps =
DVB_USB_ADAP_HAS_PID_FILTER |
DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF,
.pid_filter_count = 32,
.pid_filter = af9005_pid_filter,
/* .pid_filter_ctrl = af9005_pid_filter_control, */
.frontend_attach = af9005_frontend_attach,
/* .tuner_attach = af9005_tuner_attach, */
/* parameter for the MPEG2-data transfer */
.stream = {
.type = USB_BULK,
.count = 10,
.endpoint = 0x04,
.u = {
.bulk = {
.buffersize = 4096, /* actual size seen is 3948 */
}
}
},
}},
}
},
.power_ctrl = af9005_power_ctrl,
.identify_state = af9005_identify_state,
.i2c_algo = &af9005_i2c_algo,
.rc.legacy = {
.rc_interval = 200,
.rc_map_table = NULL,
.rc_map_size = 0,
.rc_query = af9005_rc_query,
},
.generic_bulk_ctrl_endpoint = 2,
.generic_bulk_ctrl_endpoint_response = 1,
.num_device_descs = 3,
.devices = {
{.name = "Afatech DVB-T USB1.1 stick",
.cold_ids = {&af9005_usb_table[AFATECH_AF9005], NULL},
.warm_ids = {NULL},
},
{.name = "TerraTec Cinergy T USB XE",
.cold_ids = {&af9005_usb_table[TERRATEC_CINERGY_T_USB_XE], NULL},
.warm_ids = {NULL},
},
{.name = "Ansonic DVB-T USB1.1 stick",
.cold_ids = {&af9005_usb_table[ANSONIC_DVBT_USB], NULL},
.warm_ids = {NULL},
},
{NULL},
}
};
/* usb specific object needed to register this driver with the usb subsystem */
static struct usb_driver af9005_usb_driver = {
.name = "dvb_usb_af9005",
.probe = af9005_usb_probe,
.disconnect = dvb_usb_device_exit,
.id_table = af9005_usb_table,
};
/* module stuff */
static int __init af9005_usb_module_init(void)
{
int result;
if ((result = usb_register(&af9005_usb_driver))) {
err("usb_register failed. (%d)", result);
return result;
}
#if IS_MODULE(CONFIG_DVB_USB_AF9005) || defined(CONFIG_DVB_USB_AF9005_REMOTE)
/* FIXME: convert to todays kernel IR infrastructure */
rc_decode = symbol_request(af9005_rc_decode);
rc_keys = symbol_request(rc_map_af9005_table);
rc_keys_size = symbol_request(rc_map_af9005_table_size);
#endif
if (rc_decode == NULL || rc_keys == NULL || rc_keys_size == NULL) {
err("af9005_rc_decode function not found, disabling remote");
af9005_properties.rc.legacy.rc_query = NULL;
} else {
af9005_properties.rc.legacy.rc_map_table = rc_keys;
af9005_properties.rc.legacy.rc_map_size = *rc_keys_size;
}
return 0;
}
static void __exit af9005_usb_module_exit(void)
{
/* release rc decode symbols */
if (rc_decode != NULL)
symbol_put(af9005_rc_decode);
if (rc_keys != NULL)
symbol_put(rc_map_af9005_table);
if (rc_keys_size != NULL)
symbol_put(rc_map_af9005_table_size);
/* deregister this driver from the USB subsystem */
usb_deregister(&af9005_usb_driver);
}
module_init(af9005_usb_module_init);
module_exit(af9005_usb_module_exit);
MODULE_AUTHOR("Luca Olivetti <[email protected]>");
MODULE_DESCRIPTION("Driver for Afatech 9005 DVB-T USB1.1 stick");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");