// SPDX-License-Identifier: GPL-2.0-only
/*
* vivid-cec.c - A Virtual Video Test Driver, cec emulation
*
* Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*/
#include <linux/delay.h>
#include <media/cec.h>
#include "vivid-core.h"
#include "vivid-cec.h"
#define CEC_START_BIT_US 4500
#define CEC_DATA_BIT_US 2400
#define CEC_MARGIN_US 350
struct xfer_on_bus {
struct cec_adapter *adap;
u8 status;
};
static bool find_dest_adap(struct vivid_dev *dev,
struct cec_adapter *adap, u8 dest)
{
unsigned int i, j;
if (dest >= 0xf)
return false;
if (adap != dev->cec_rx_adap && dev->cec_rx_adap &&
dev->cec_rx_adap->is_configured &&
cec_has_log_addr(dev->cec_rx_adap, dest))
return true;
for (i = 0, j = 0; i < dev->num_inputs; i++) {
unsigned int menu_idx =
dev->input_is_connected_to_output[i];
if (dev->input_type[i] != HDMI)
continue;
j++;
if (menu_idx < FIXED_MENU_ITEMS)
continue;
struct vivid_dev *dev_tx = vivid_ctrl_hdmi_to_output_instance[menu_idx];
unsigned int output = vivid_ctrl_hdmi_to_output_index[menu_idx];
if (!dev_tx)
continue;
unsigned int hdmi_output = dev_tx->output_to_iface_index[output];
if (adap == dev_tx->cec_tx_adap[hdmi_output])
continue;
if (!dev_tx->cec_tx_adap[hdmi_output]->is_configured)
continue;
if (cec_has_log_addr(dev_tx->cec_tx_adap[hdmi_output], dest))
return true;
}
return false;
}
static bool xfer_ready(struct vivid_dev *dev)
{
unsigned int i;
bool ready = false;
spin_lock(&dev->cec_xfers_slock);
for (i = 0; i < ARRAY_SIZE(dev->xfers); i++) {
if (dev->xfers[i].sft &&
dev->xfers[i].sft <= dev->cec_sft) {
ready = true;
break;
}
}
spin_unlock(&dev->cec_xfers_slock);
return ready;
}
/*
* If an adapter tries to send successive messages, it must wait for the
* longest signal-free time between its transmissions. But, if another
* adapter sends a message in the interim, then the wait can be reduced
* because the messages are no longer successive. Make these adjustments
* if necessary. Should be called holding cec_xfers_slock.
*/
static void adjust_sfts(struct vivid_dev *dev)
{
unsigned int i;
u8 initiator;
for (i = 0; i < ARRAY_SIZE(dev->xfers); i++) {
if (dev->xfers[i].sft <= CEC_SIGNAL_FREE_TIME_RETRY)
continue;
initiator = dev->xfers[i].msg[0] >> 4;
if (initiator == dev->last_initiator)
dev->xfers[i].sft = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
else
dev->xfers[i].sft = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
}
}
/*
* The main emulation of the bus on which CEC adapters attempt to send
* messages to each other. The bus keeps track of how long it has been
* signal-free and accepts a pending transmission only if the state of
* the bus matches the transmission's signal-free requirements. It calls
* cec_transmit_attempt_done() for all transmits that enter the bus and
* cec_received_msg() for successful transmits.
*/
int vivid_cec_bus_thread(void *_dev)
{
u32 last_sft;
unsigned int i, j;
unsigned int dest;
ktime_t start, end;
s64 delta_us, retry_us;
struct vivid_dev *dev = _dev;
dev->cec_sft = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
for (;;) {
bool first = true;
int wait_xfer_us = 0;
bool valid_dest = false;
int wait_arb_lost_us = 0;
unsigned int first_idx = 0;
unsigned int first_status = 0;
struct cec_msg first_msg = {};
struct xfer_on_bus xfers_on_bus[MAX_OUTPUTS] = {};
wait_event_interruptible(dev->kthread_waitq_cec, xfer_ready(dev) ||
kthread_should_stop());
if (kthread_should_stop())
break;
last_sft = dev->cec_sft;
dev->cec_sft = 0;
/*
* Move the messages that are ready onto the bus. The adapter with
* the most leading zeros will win control of the bus and any other
* adapters will lose arbitration.
*/
spin_lock(&dev->cec_xfers_slock);
for (i = 0; i < ARRAY_SIZE(dev->xfers); i++) {
if (!dev->xfers[i].sft || dev->xfers[i].sft > last_sft)
continue;
if (first) {
first = false;
first_idx = i;
xfers_on_bus[first_idx].adap = dev->xfers[i].adap;
memcpy(first_msg.msg, dev->xfers[i].msg, dev->xfers[i].len);
first_msg.len = dev->xfers[i].len;
} else {
xfers_on_bus[i].adap = dev->xfers[i].adap;
xfers_on_bus[i].status = CEC_TX_STATUS_ARB_LOST;
/*
* For simplicity wait for all 4 bits of the initiator's
* address even though HDMI specification uses bit-level
* precision.
*/
wait_arb_lost_us = 4 * CEC_DATA_BIT_US + CEC_START_BIT_US;
}
dev->xfers[i].sft = 0;
}
dev->last_initiator = cec_msg_initiator(&first_msg);
adjust_sfts(dev);
spin_unlock(&dev->cec_xfers_slock);
dest = cec_msg_destination(&first_msg);
valid_dest = cec_msg_is_broadcast(&first_msg);
if (!valid_dest)
valid_dest = find_dest_adap(dev, xfers_on_bus[first_idx].adap, dest);
if (valid_dest) {
first_status = CEC_TX_STATUS_OK;
/*
* Message length is in bytes, but each byte is transmitted in
* a block of 10 bits.
*/
wait_xfer_us = first_msg.len * 10 * CEC_DATA_BIT_US;
} else {
first_status = CEC_TX_STATUS_NACK;
/*
* A message that is not acknowledged stops transmitting after
* the header block of 10 bits.
*/
wait_xfer_us = 10 * CEC_DATA_BIT_US;
}
wait_xfer_us += CEC_START_BIT_US;
xfers_on_bus[first_idx].status = first_status;
/* Sleep as if sending messages on a real hardware bus. */
start = ktime_get();
if (wait_arb_lost_us) {
usleep_range(wait_arb_lost_us - CEC_MARGIN_US, wait_arb_lost_us);
for (i = 0; i < ARRAY_SIZE(xfers_on_bus); i++) {
if (xfers_on_bus[i].status != CEC_TX_STATUS_ARB_LOST)
continue;
cec_transmit_attempt_done(xfers_on_bus[i].adap,
CEC_TX_STATUS_ARB_LOST);
}
if (kthread_should_stop())
break;
}
wait_xfer_us -= wait_arb_lost_us;
usleep_range(wait_xfer_us - CEC_MARGIN_US, wait_xfer_us);
cec_transmit_attempt_done(xfers_on_bus[first_idx].adap, first_status);
if (kthread_should_stop())
break;
if (first_status == CEC_TX_STATUS_OK) {
if (xfers_on_bus[first_idx].adap != dev->cec_rx_adap)
cec_received_msg(dev->cec_rx_adap, &first_msg);
for (i = 0, j = 0; i < dev->num_inputs; i++) {
unsigned int menu_idx =
dev->input_is_connected_to_output[i];
if (dev->input_type[i] != HDMI)
continue;
j++;
if (menu_idx < FIXED_MENU_ITEMS)
continue;
struct vivid_dev *dev_tx = vivid_ctrl_hdmi_to_output_instance[menu_idx];
unsigned int output = vivid_ctrl_hdmi_to_output_index[menu_idx];
if (!dev_tx)
continue;
unsigned int hdmi_output = dev_tx->output_to_iface_index[output];
if (xfers_on_bus[first_idx].adap != dev_tx->cec_tx_adap[hdmi_output])
cec_received_msg(dev_tx->cec_tx_adap[hdmi_output], &first_msg);
}
}
end = ktime_get();
/*
* If the emulated transfer took more or less time than it should
* have, then compensate by adjusting the wait time needed for the
* bus to be signal-free for 3 bit periods (the retry time).
*/
delta_us = div_s64(end - start, 1000);
delta_us -= wait_xfer_us + wait_arb_lost_us;
retry_us = CEC_SIGNAL_FREE_TIME_RETRY * CEC_DATA_BIT_US - delta_us;
if (retry_us > CEC_MARGIN_US)
usleep_range(retry_us - CEC_MARGIN_US, retry_us);
dev->cec_sft = CEC_SIGNAL_FREE_TIME_RETRY;
/*
* If there are no messages that need to be retried, check if any
* adapters that did not just transmit a message are ready to
* transmit. If none of these adapters are ready, then increase
* the signal-free time so that the bus is available to all
* adapters and go back to waiting for a transmission.
*/
while (dev->cec_sft >= CEC_SIGNAL_FREE_TIME_RETRY &&
dev->cec_sft < CEC_SIGNAL_FREE_TIME_NEXT_XFER &&
!xfer_ready(dev) && !kthread_should_stop()) {
usleep_range(2 * CEC_DATA_BIT_US - CEC_MARGIN_US,
2 * CEC_DATA_BIT_US);
dev->cec_sft += 2;
}
}
return 0;
}
static int vivid_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
adap->cec_pin_is_high = true;
return 0;
}
static int vivid_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
{
return 0;
}
static int vivid_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct vivid_dev *dev = cec_get_drvdata(adap);
struct vivid_dev *dev_rx = dev;
u8 idx = cec_msg_initiator(msg);
u8 output = 0;
if (dev->cec_rx_adap != adap) {
int i;
for (i = 0; i < dev->num_hdmi_outputs; i++)
if (dev->cec_tx_adap[i] == adap)
break;
if (i == dev->num_hdmi_outputs)
return -ENONET;
output = dev->hdmi_index_to_output_index[i];
dev_rx = dev->output_to_input_instance[output];
if (!dev_rx)
return -ENONET;
}
spin_lock(&dev_rx->cec_xfers_slock);
dev_rx->xfers[idx].adap = adap;
memcpy(dev_rx->xfers[idx].msg, msg->msg, CEC_MAX_MSG_SIZE);
dev_rx->xfers[idx].len = msg->len;
dev_rx->xfers[idx].sft = CEC_SIGNAL_FREE_TIME_RETRY;
if (signal_free_time > CEC_SIGNAL_FREE_TIME_RETRY) {
if (idx == dev_rx->last_initiator)
dev_rx->xfers[idx].sft = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
else
dev_rx->xfers[idx].sft = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
}
spin_unlock(&dev_rx->cec_xfers_slock);
wake_up_interruptible(&dev_rx->kthread_waitq_cec);
return 0;
}
static int vivid_received(struct cec_adapter *adap, struct cec_msg *msg)
{
struct vivid_dev *dev = cec_get_drvdata(adap);
struct cec_msg reply;
u8 dest = cec_msg_destination(msg);
if (cec_msg_is_broadcast(msg))
dest = adap->log_addrs.log_addr[0];
cec_msg_init(&reply, dest, cec_msg_initiator(msg));
switch (cec_msg_opcode(msg)) {
case CEC_MSG_SET_OSD_STRING: {
u8 disp_ctl;
char osd[14];
if (!cec_is_sink(adap))
return -ENOMSG;
cec_ops_set_osd_string(msg, &disp_ctl, osd);
switch (disp_ctl) {
case CEC_OP_DISP_CTL_DEFAULT:
strscpy(dev->osd, osd, sizeof(dev->osd));
dev->osd_jiffies = jiffies;
break;
case CEC_OP_DISP_CTL_UNTIL_CLEARED:
strscpy(dev->osd, osd, sizeof(dev->osd));
dev->osd_jiffies = 0;
break;
case CEC_OP_DISP_CTL_CLEAR:
dev->osd[0] = 0;
dev->osd_jiffies = 0;
break;
default:
cec_msg_feature_abort(&reply, cec_msg_opcode(msg),
CEC_OP_ABORT_INVALID_OP);
cec_transmit_msg(adap, &reply, false);
break;
}
break;
}
case CEC_MSG_VENDOR_COMMAND_WITH_ID: {
u32 vendor_id;
u8 size;
const u8 *vendor_cmd;
/*
* If we receive <Vendor Command With ID> with our vendor ID
* and with a payload of size 1, and the payload value is odd,
* then we reply with the same message, but with the payload
* byte incremented by 1.
*
* If the size is 1 and the payload value is even, then we
* ignore the message.
*
* The reason we reply to odd instead of even payload values
* is that it allows for testing of the corner case where the
* reply value is 0 (0xff + 1 % 256).
*
* For other sizes we Feature Abort.
*
* This is added for the specific purpose of testing the
* CEC_MSG_FL_REPLY_VENDOR_ID flag using vivid.
*/
cec_ops_vendor_command_with_id(msg, &vendor_id, &size, &vendor_cmd);
if (vendor_id != adap->log_addrs.vendor_id)
break;
if (size == 1) {
// Ignore even op values
if (!(vendor_cmd[0] & 1))
break;
reply.len = msg->len;
memcpy(reply.msg + 1, msg->msg + 1, msg->len - 1);
reply.msg[msg->len - 1]++;
} else {
cec_msg_feature_abort(&reply, cec_msg_opcode(msg),
CEC_OP_ABORT_INVALID_OP);
}
cec_transmit_msg(adap, &reply, false);
break;
}
default:
return -ENOMSG;
}
return 0;
}
static const struct cec_adap_ops vivid_cec_adap_ops = {
.adap_enable = vivid_cec_adap_enable,
.adap_log_addr = vivid_cec_adap_log_addr,
.adap_transmit = vivid_cec_adap_transmit,
.received = vivid_received,
};
struct cec_adapter *vivid_cec_alloc_adap(struct vivid_dev *dev,
unsigned int idx,
bool is_source)
{
u32 caps = CEC_CAP_DEFAULTS | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN;
char name[32];
snprintf(name, sizeof(name), "vivid-%03d-vid-%s%d",
dev->inst, is_source ? "out" : "cap", idx);
return cec_allocate_adapter(&vivid_cec_adap_ops, dev,
name, caps, CEC_MAX_LOG_ADDRS);
}