// SPDX-License-Identifier: GPL-2.0-or-later
/*
* adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Based on lm75.c and lm85.c
* Supports adm1030 / adm1031
* Copyright (C) 2004 Alexandre d'Alton <[email protected]>
* Reworked by Jean Delvare <[email protected]>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Following macros takes channel parameter starting from 0 to 2 */
#define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
#define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
#define ADM1031_REG_PWM (0x22)
#define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
#define ADM1031_REG_FAN_FILTER (0x23)
#define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
#define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
#define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
#define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
#define ADM1031_REG_TEMP(nr) (0x0a + (nr))
#define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
#define ADM1031_REG_STATUS(nr) (0x2 + (nr))
#define ADM1031_REG_CONF1 0x00
#define ADM1031_REG_CONF2 0x01
#define ADM1031_REG_EXT_TEMP 0x06
#define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
#define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
#define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
#define ADM1031_CONF2_PWM1_ENABLE 0x01
#define ADM1031_CONF2_PWM2_ENABLE 0x02
#define ADM1031_CONF2_TACH1_ENABLE 0x04
#define ADM1031_CONF2_TACH2_ENABLE 0x08
#define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
#define ADM1031_UPDATE_RATE_MASK 0x1c
#define ADM1031_UPDATE_RATE_SHIFT 2
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
enum chips { adm1030, adm1031 };
typedef u8 auto_chan_table_t[8][2];
/* Each client has this additional data */
struct adm1031_data {
struct i2c_client *client;
const struct attribute_group *groups[3];
struct mutex update_lock;
int chip_type;
bool valid; /* true if following fields are valid */
unsigned long last_updated; /* In jiffies */
unsigned int update_interval; /* In milliseconds */
/*
* The chan_select_table contains the possible configurations for
* auto fan control.
*/
const auto_chan_table_t *chan_select_table;
u16 alarm;
u8 conf1;
u8 conf2;
u8 fan[2];
u8 fan_div[2];
u8 fan_min[2];
u8 pwm[2];
u8 old_pwm[2];
s8 temp[3];
u8 ext_temp[3];
u8 auto_temp[3];
u8 auto_temp_min[3];
u8 auto_temp_off[3];
u8 auto_temp_max[3];
s8 temp_offset[3];
s8 temp_min[3];
s8 temp_max[3];
s8 temp_crit[3];
};
static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static inline int
adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
static struct adm1031_data *adm1031_update_device(struct device *dev)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long next_update;
int chan;
mutex_lock(&data->update_lock);
next_update = data->last_updated
+ msecs_to_jiffies(data->update_interval);
if (time_after(jiffies, next_update) || !data->valid) {
dev_dbg(&client->dev, "Starting adm1031 update\n");
for (chan = 0;
chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
u8 oldh, newh;
oldh =
adm1031_read_value(client, ADM1031_REG_TEMP(chan));
data->ext_temp[chan] =
adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
newh =
adm1031_read_value(client, ADM1031_REG_TEMP(chan));
if (newh != oldh) {
data->ext_temp[chan] =
adm1031_read_value(client,
ADM1031_REG_EXT_TEMP);
#ifdef DEBUG
oldh =
adm1031_read_value(client,
ADM1031_REG_TEMP(chan));
/* oldh is actually newer */
if (newh != oldh)
dev_warn(&client->dev,
"Remote temperature may be wrong.\n");
#endif
}
data->temp[chan] = newh;
data->temp_offset[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_OFFSET(chan));
data->temp_min[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_MIN(chan));
data->temp_max[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_MAX(chan));
data->temp_crit[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_CRIT(chan));
data->auto_temp[chan] =
adm1031_read_value(client,
ADM1031_REG_AUTO_TEMP(chan));
}
data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
| (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
if (data->chip_type == adm1030)
data->alarm &= 0xc0ff;
for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
chan++) {
data->fan_div[chan] =
adm1031_read_value(client,
ADM1031_REG_FAN_DIV(chan));
data->fan_min[chan] =
adm1031_read_value(client,
ADM1031_REG_FAN_MIN(chan));
data->fan[chan] =
adm1031_read_value(client,
ADM1031_REG_FAN_SPEED(chan));
data->pwm[chan] =
(adm1031_read_value(client,
ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
}
data->last_updated = jiffies;
data->valid = true;
}
mutex_unlock(&data->update_lock);
return data;
}
#define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
((val + 500) / 1000)))
#define TEMP_FROM_REG(val) ((val) * 1000)
#define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
#define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
#define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
(val) | 0x70 : (val))
#define FAN_FROM_REG(reg, div) ((reg) ? \
(11250 * 60) / ((reg) * (div)) : 0)
static int FAN_TO_REG(int reg, int div)
{
int tmp;
tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
return tmp > 255 ? 255 : tmp;
}
#define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
#define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4)
#define PWM_FROM_REG(val) ((val) << 4)
#define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
#define FAN_CHAN_TO_REG(val, reg) \
(((reg) & 0x1F) | (((val) << 5) & 0xe0))
#define AUTO_TEMP_MIN_TO_REG(val, reg) \
((((val) / 500) & 0xf8) | ((reg) & 0x7))
#define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7)))
#define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
#define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
#define AUTO_TEMP_OFF_FROM_REG(reg) \
(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
#define AUTO_TEMP_MAX_FROM_REG(reg) \
(AUTO_TEMP_RANGE_FROM_REG(reg) + \
AUTO_TEMP_MIN_FROM_REG(reg))
static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
{
int ret;
int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
ret = ((reg & 0xf8) |
(range < 10000 ? 0 :
range < 20000 ? 1 :
range < 40000 ? 2 : range < 80000 ? 3 : 4));
return ret;
}
/* FAN auto control */
#define GET_FAN_AUTO_BITFIELD(data, idx) \
(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
/*
* The tables below contains the possible values for the auto fan
* control bitfields. the index in the table is the register value.
* MSb is the auto fan control enable bit, so the four first entries
* in the table disables auto fan control when both bitfields are zero.
*/
static const auto_chan_table_t auto_channel_select_table_adm1031 = {
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 2 /* 0b010 */ , 4 /* 0b100 */ },
{ 2 /* 0b010 */ , 2 /* 0b010 */ },
{ 4 /* 0b100 */ , 4 /* 0b100 */ },
{ 7 /* 0b111 */ , 7 /* 0b111 */ },
};
static const auto_chan_table_t auto_channel_select_table_adm1030 = {
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 2 /* 0b10 */ , 0 },
{ 0xff /* invalid */ , 0 },
{ 0xff /* invalid */ , 0 },
{ 3 /* 0b11 */ , 0 },
};
/*
* That function checks if a bitfield is valid and returns the other bitfield
* nearest match if no exact match where found.
*/
static int
get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
{
int i;
int first_match = -1, exact_match = -1;
u8 other_reg_val =
(*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
if (val == 0)
return 0;
for (i = 0; i < 8; i++) {
if ((val == (*data->chan_select_table)[i][chan]) &&
((*data->chan_select_table)[i][chan ? 0 : 1] ==
other_reg_val)) {
/* We found an exact match */
exact_match = i;
break;
} else if (val == (*data->chan_select_table)[i][chan] &&
first_match == -1) {
/*
* Save the first match in case of an exact match has
* not been found
*/
first_match = i;
}
}
if (exact_match >= 0)
return exact_match;
else if (first_match >= 0)
return first_match;
return -EINVAL;
}
static ssize_t fan_auto_channel_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
}
static ssize_t
fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
u8 reg;
int ret;
u8 old_fan_mode;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
old_fan_mode = data->conf1;
mutex_lock(&data->update_lock);
ret = get_fan_auto_nearest(data, nr, val, data->conf1);
if (ret < 0) {
mutex_unlock(&data->update_lock);
return ret;
}
reg = ret;
data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
(old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
/*
* Switch to Auto Fan Mode
* Save PWM registers
* Set PWM registers to 33% Both
*/
data->old_pwm[0] = data->pwm[0];
data->old_pwm[1] = data->pwm[1];
adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
} else {
/* Switch to Manual Mode */
data->pwm[0] = data->old_pwm[0];
data->pwm[1] = data->old_pwm[1];
/* Restore PWM registers */
adm1031_write_value(client, ADM1031_REG_PWM,
data->pwm[0] | (data->pwm[1] << 4));
}
}
data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
/* Auto Temps */
static ssize_t auto_temp_off_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
}
static ssize_t auto_temp_min_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
auto_temp_min_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, 0, 127000);
mutex_lock(&data->update_lock);
data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
data->auto_temp[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t auto_temp_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
auto_temp_max_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, 0, 127000);
mutex_lock(&data->update_lock);
data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
data->pwm[nr]);
adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
/* pwm */
static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret, reg;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&data->update_lock);
if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
(((val>>4) & 0xf) != 5)) {
/* In automatic mode, the only PWM accepted is 33% */
mutex_unlock(&data->update_lock);
return -EINVAL;
}
data->pwm[nr] = PWM_TO_REG(val);
reg = adm1031_read_value(client, ADM1031_REG_PWM);
adm1031_write_value(client, ADM1031_REG_PWM,
nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
: (data->pwm[nr] & 0xf) | (reg & 0xf0));
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
/* Fans */
/*
* That function checks the cases where the fan reading is not
* relevant. It is used to provide 0 as fan reading when the fan is
* not supposed to run
*/
static int trust_fan_readings(struct adm1031_data *data, int chan)
{
int res = 0;
if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
switch (data->conf1 & 0x60) {
case 0x00:
/*
* remote temp1 controls fan1,
* remote temp2 controls fan2
*/
res = data->temp[chan+1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
break;
case 0x20: /* remote temp1 controls both fans */
res =
data->temp[1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
break;
case 0x40: /* remote temp2 controls both fans */
res =
data->temp[2] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
break;
case 0x60: /* max controls both fans */
res =
data->temp[0] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
|| data->temp[1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
|| (data->chip_type == adm1031
&& data->temp[2] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
break;
}
} else {
res = data->pwm[chan] > 0;
}
return res;
}
static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
int value;
value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
return sprintf(buf, "%d\n", value);
}
static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
FAN_FROM_REG(data->fan_min[nr],
FAN_DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&data->update_lock);
if (val) {
data->fan_min[nr] =
FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
} else {
data->fan_min[nr] = 0xff;
}
adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t fan_div_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
u8 tmp;
int old_div;
int new_min;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
tmp = val == 8 ? 0xc0 :
val == 4 ? 0x80 :
val == 2 ? 0x40 :
val == 1 ? 0x00 :
0xff;
if (tmp == 0xff)
return -EINVAL;
mutex_lock(&data->update_lock);
/* Get fresh readings */
data->fan_div[nr] = adm1031_read_value(client,
ADM1031_REG_FAN_DIV(nr));
data->fan_min[nr] = adm1031_read_value(client,
ADM1031_REG_FAN_MIN(nr));
/* Write the new clock divider and fan min */
old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
new_min = data->fan_min[nr] * old_div / val;
data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
data->fan_div[nr]);
adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
data->fan_min[nr]);
/* Invalidate the cache: fan speed is no longer valid */
data->valid = false;
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
/* Temps */
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
int ext;
ext = nr == 0 ?
((data->ext_temp[nr] >> 6) & 0x3) * 2 :
(((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
}
static ssize_t temp_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
}
static ssize_t temp_min_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t temp_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t temp_crit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t temp_offset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -15000, 15000);
mutex_lock(&data->update_lock);
data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
data->temp_offset[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -55000, 127000);
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_max_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -55000, 127000);
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_crit_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -55000, 127000);
mutex_lock(&data->update_lock);
data->temp_crit[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
data->temp_crit[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
/* Alarms */
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", data->alarm);
}
static DEVICE_ATTR_RO(alarms);
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
/* Update Interval */
static const unsigned int update_intervals[] = {
16000, 8000, 4000, 2000, 1000, 500, 250, 125,
};
static ssize_t update_interval_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm1031_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", data->update_interval);
}
static ssize_t update_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int i, err;
u8 reg;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
/*
* Find the nearest update interval from the table.
* Use it to determine the matching update rate.
*/
for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
if (val >= update_intervals[i])
break;
}
/* if not found, we point to the last entry (lowest update interval) */
/* set the new update rate while preserving other settings */
reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
reg &= ~ADM1031_UPDATE_RATE_MASK;
reg |= i << ADM1031_UPDATE_RATE_SHIFT;
adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
mutex_lock(&data->update_lock);
data->update_interval = update_intervals[i];
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR_RW(update_interval);
static struct attribute *adm1031_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_fault.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_offset.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
&dev_attr_update_interval.attr,
&dev_attr_alarms.attr,
NULL
};
static const struct attribute_group adm1031_group = {
.attrs = adm1031_attributes,
};
static struct attribute *adm1031_attributes_opt[] = {
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_fault.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_offset.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
NULL
};
static const struct attribute_group adm1031_group_opt = {
.attrs = adm1031_attributes_opt,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm1031_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
const char *name;
int id, co;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
id = i2c_smbus_read_byte_data(client, 0x3d);
co = i2c_smbus_read_byte_data(client, 0x3e);
if (!((id == 0x31 || id == 0x30) && co == 0x41))
return -ENODEV;
name = (id == 0x30) ? "adm1030" : "adm1031";
strscpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static void adm1031_init_client(struct i2c_client *client)
{
unsigned int read_val;
unsigned int mask;
int i;
struct adm1031_data *data = i2c_get_clientdata(client);
mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
if (data->chip_type == adm1031) {
mask |= (ADM1031_CONF2_PWM2_ENABLE |
ADM1031_CONF2_TACH2_ENABLE);
}
/* Initialize the ADM1031 chip (enables fan speed reading ) */
read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
if ((read_val | mask) != read_val)
adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
adm1031_write_value(client, ADM1031_REG_CONF1,
read_val | ADM1031_CONF1_MONITOR_ENABLE);
}
/* Read the chip's update rate */
mask = ADM1031_UPDATE_RATE_MASK;
read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
/* Save it as update interval */
data->update_interval = update_intervals[i];
}
static int adm1031_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct adm1031_data *data;
data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
data->client = client;
data->chip_type = (uintptr_t)i2c_get_match_data(client);
mutex_init(&data->update_lock);
if (data->chip_type == adm1030)
data->chan_select_table = &auto_channel_select_table_adm1030;
else
data->chan_select_table = &auto_channel_select_table_adm1031;
/* Initialize the ADM1031 chip */
adm1031_init_client(client);
/* sysfs hooks */
data->groups[0] = &adm1031_group;
if (data->chip_type == adm1031)
data->groups[1] = &adm1031_group_opt;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id adm1031_id[] = {
{ "adm1030", adm1030 },
{ "adm1031", adm1031 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adm1031_id);
static struct i2c_driver adm1031_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adm1031",
},
.probe = adm1031_probe,
.id_table = adm1031_id,
.detect = adm1031_detect,
.address_list = normal_i2c,
};
module_i2c_driver(adm1031_driver);
MODULE_AUTHOR("Alexandre d'Alton <[email protected]>");
MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
MODULE_LICENSE("GPL");