// SPDX-License-Identifier: GPL-2.0-or-later
/*
* asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
* Copyright (c) 2007, 2010 George Joseph <[email protected]>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = {
0x2c, 0x2d, 0x2e, I2C_CLIENT_END
};
enum asc7621_type {
asc7621,
asc7621a
};
#define INTERVAL_HIGH (HZ + HZ / 2)
#define INTERVAL_LOW (1 * 60 * HZ)
#define PRI_NONE 0
#define PRI_LOW 1
#define PRI_HIGH 2
#define FIRST_CHIP asc7621
#define LAST_CHIP asc7621a
struct asc7621_chip {
char *name;
enum asc7621_type chip_type;
u8 company_reg;
u8 company_id;
u8 verstep_reg;
u8 verstep_id;
const unsigned short *addresses;
};
static struct asc7621_chip asc7621_chips[] = {
{
.name = "asc7621",
.chip_type = asc7621,
.company_reg = 0x3e,
.company_id = 0x61,
.verstep_reg = 0x3f,
.verstep_id = 0x6c,
.addresses = normal_i2c,
},
{
.name = "asc7621a",
.chip_type = asc7621a,
.company_reg = 0x3e,
.company_id = 0x61,
.verstep_reg = 0x3f,
.verstep_id = 0x6d,
.addresses = normal_i2c,
},
};
/*
* Defines the highest register to be used, not the count.
* The actual count will probably be smaller because of gaps
* in the implementation (unused register locations).
* This define will safely set the array size of both the parameter
* and data arrays.
* This comes from the data sheet register description table.
*/
#define LAST_REGISTER 0xff
struct asc7621_data {
struct i2c_client client;
struct device *class_dev;
struct mutex update_lock;
bool valid; /* true if following fields are valid */
unsigned long last_high_reading; /* In jiffies */
unsigned long last_low_reading; /* In jiffies */
/*
* Registers we care about occupy the corresponding index
* in the array. Registers we don't care about are left
* at 0.
*/
u8 reg[LAST_REGISTER + 1];
};
/*
* Macro to get the parent asc7621_param structure
* from a sensor_device_attribute passed into the
* show/store functions.
*/
#define to_asc7621_param(_sda) \
container_of(_sda, struct asc7621_param, sda)
/*
* Each parameter to be retrieved needs an asc7621_param structure
* allocated. It contains the sensor_device_attribute structure
* and the control info needed to retrieve the value from the register map.
*/
struct asc7621_param {
struct sensor_device_attribute sda;
u8 priority;
u8 msb[3];
u8 lsb[3];
u8 mask[3];
u8 shift[3];
};
/*
* This is the map that ultimately indicates whether we'll be
* retrieving a register value or not, and at what frequency.
*/
static u8 asc7621_register_priorities[255];
static struct asc7621_data *asc7621_update_device(struct device *dev);
static inline u8 read_byte(struct i2c_client *client, u8 reg)
{
int res = i2c_smbus_read_byte_data(client, reg);
if (res < 0) {
dev_err(&client->dev,
"Unable to read from register 0x%02x.\n", reg);
return 0;
}
return res & 0xff;
}
static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
{
int res = i2c_smbus_write_byte_data(client, reg, data);
if (res < 0) {
dev_err(&client->dev,
"Unable to write value 0x%02x to register 0x%02x.\n",
data, reg);
}
return res;
}
/*
* Data Handlers
* Each function handles the formatting, storage
* and retrieval of like parameters.
*/
#define SETUP_SHOW_DATA_PARAM(d, a) \
struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
struct asc7621_data *data = asc7621_update_device(d); \
struct asc7621_param *param = to_asc7621_param(sda)
#define SETUP_STORE_DATA_PARAM(d, a) \
struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
struct i2c_client *client = to_i2c_client(d); \
struct asc7621_data *data = i2c_get_clientdata(client); \
struct asc7621_param *param = to_asc7621_param(sda)
/*
* u8 is just what it sounds like...an unsigned byte with no
* special formatting.
*/
static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
}
static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
reqval = clamp_val(reqval, 0, 255);
mutex_lock(&data->update_lock);
data->reg[param->msb[0]] = reqval;
write_byte(client, param->msb[0], reqval);
mutex_unlock(&data->update_lock);
return count;
}
/*
* Many of the config values occupy only a few bits of a register.
*/
static ssize_t show_bitmask(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
return sprintf(buf, "%u\n",
(data->reg[param->msb[0]] >> param->
shift[0]) & param->mask[0]);
}
static ssize_t store_bitmask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
u8 currval;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
reqval = clamp_val(reqval, 0, param->mask[0]);
reqval = (reqval & param->mask[0]) << param->shift[0];
mutex_lock(&data->update_lock);
currval = read_byte(client, param->msb[0]);
reqval |= (currval & ~(param->mask[0] << param->shift[0]));
data->reg[param->msb[0]] = reqval;
write_byte(client, param->msb[0], reqval);
mutex_unlock(&data->update_lock);
return count;
}
/*
* 16 bit fan rpm values
* reported by the device as the number of 11.111us periods (90khz)
* between full fan rotations. Therefore...
* RPM = (90000 * 60) / register value
*/
static ssize_t show_fan16(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u16 regval;
mutex_lock(&data->update_lock);
regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
mutex_unlock(&data->update_lock);
return sprintf(buf, "%u\n",
(regval == 0 ? -1 : (regval) ==
0xffff ? 0 : 5400000 / regval));
}
static ssize_t store_fan16(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
/*
* If a minimum RPM of zero is requested, then we set the register to
* 0xffff. This value allows the fan to be stopped completely without
* generating an alarm.
*/
reqval =
(reqval <= 0 ? 0xffff : clamp_val(5400000 / reqval, 0, 0xfffe));
mutex_lock(&data->update_lock);
data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
data->reg[param->lsb[0]] = reqval & 0xff;
write_byte(client, param->msb[0], data->reg[param->msb[0]]);
write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
mutex_unlock(&data->update_lock);
return count;
}
/*
* Voltages are scaled in the device so that the nominal voltage
* is 3/4ths of the 0-255 range (i.e. 192).
* If all voltages are 'normal' then all voltage registers will
* read 0xC0.
*
* The data sheet provides us with the 3/4 scale value for each voltage
* which is stored in in_scaling. The sda->index parameter value provides
* the index into in_scaling.
*
* NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
* respectively. That doesn't mean that's what the motherboard provides. :)
*/
static const int asc7621_in_scaling[] = {
2500, 2250, 3300, 5000, 12000
};
static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u16 regval;
u8 nr = sda->index;
mutex_lock(&data->update_lock);
regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]);
mutex_unlock(&data->update_lock);
/* The LSB value is a 2-bit scaling of the MSB's LSbit value. */
regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2);
return sprintf(buf, "%u\n", regval);
}
/* 8 bit voltage values (the mins and maxs) */
static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 nr = sda->index;
return sprintf(buf, "%u\n",
((data->reg[param->msb[0]] *
asc7621_in_scaling[nr]) / 0xc0));
}
static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
u8 nr = sda->index;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
reqval = clamp_val(reqval, 0, 0xffff);
reqval = reqval * 0xc0 / asc7621_in_scaling[nr];
reqval = clamp_val(reqval, 0, 0xff);
mutex_lock(&data->update_lock);
data->reg[param->msb[0]] = reqval;
write_byte(client, param->msb[0], reqval);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp8(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
}
static ssize_t store_temp8(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
s8 temp;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
reqval = clamp_val(reqval, -127000, 127000);
temp = reqval / 1000;
mutex_lock(&data->update_lock);
data->reg[param->msb[0]] = temp;
write_byte(client, param->msb[0], temp);
mutex_unlock(&data->update_lock);
return count;
}
/*
* Temperatures that occupy 2 bytes always have the whole
* number of degrees in the MSB with some part of the LSB
* indicating fractional degrees.
*/
/* mmmmmmmm.llxxxxxx */
static ssize_t show_temp10(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 msb, lsb;
int temp;
mutex_lock(&data->update_lock);
msb = data->reg[param->msb[0]];
lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
temp = (((s8) msb) * 1000) + (lsb * 250);
mutex_unlock(&data->update_lock);
return sprintf(buf, "%d\n", temp);
}
/* mmmmmm.ll */
static ssize_t show_temp62(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 regval = data->reg[param->msb[0]];
int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
return sprintf(buf, "%d\n", temp);
}
static ssize_t store_temp62(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval, i, f;
s8 temp;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
reqval = clamp_val(reqval, -32000, 31750);
i = reqval / 1000;
f = reqval - (i * 1000);
temp = i << 2;
temp |= f / 250;
mutex_lock(&data->update_lock);
data->reg[param->msb[0]] = temp;
write_byte(client, param->msb[0], temp);
mutex_unlock(&data->update_lock);
return count;
}
/*
* The aSC7621 doesn't provide an "auto_point2". Instead, you
* specify the auto_point1 and a range. To keep with the sysfs
* hwmon specs, we synthesize the auto_point_2 from them.
*/
static const u32 asc7621_range_map[] = {
2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
};
static ssize_t show_ap2_temp(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
long auto_point1;
u8 regval;
int temp;
mutex_lock(&data->update_lock);
auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
regval =
((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
temp = auto_point1 + asc7621_range_map[clamp_val(regval, 0, 15)];
mutex_unlock(&data->update_lock);
return sprintf(buf, "%d\n", temp);
}
static ssize_t store_ap2_temp(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval, auto_point1;
int i;
u8 currval, newval = 0;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
mutex_lock(&data->update_lock);
auto_point1 = data->reg[param->msb[1]] * 1000;
reqval = clamp_val(reqval, auto_point1 + 2000, auto_point1 + 80000);
for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
if (reqval >= auto_point1 + asc7621_range_map[i]) {
newval = i;
break;
}
}
newval = (newval & param->mask[0]) << param->shift[0];
currval = read_byte(client, param->msb[0]);
newval |= (currval & ~(param->mask[0] << param->shift[0]));
data->reg[param->msb[0]] = newval;
write_byte(client, param->msb[0], newval);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_ac(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 config, altbit, regval;
static const u8 map[] = {
0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
};
mutex_lock(&data->update_lock);
config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
regval = config | (altbit << 3);
mutex_unlock(&data->update_lock);
return sprintf(buf, "%u\n", map[clamp_val(regval, 0, 15)]);
}
static ssize_t store_pwm_ac(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
unsigned long reqval;
u8 currval, config, altbit, newval;
static const u16 map[] = {
0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
};
if (kstrtoul(buf, 10, &reqval))
return -EINVAL;
if (reqval > 31)
return -EINVAL;
reqval = map[reqval];
if (reqval == 0xff)
return -EINVAL;
config = reqval & 0x07;
altbit = (reqval >> 3) & 0x01;
config = (config & param->mask[0]) << param->shift[0];
altbit = (altbit & param->mask[1]) << param->shift[1];
mutex_lock(&data->update_lock);
currval = read_byte(client, param->msb[0]);
newval = config | (currval & ~(param->mask[0] << param->shift[0]));
newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
data->reg[param->msb[0]] = newval;
write_byte(client, param->msb[0], newval);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 config, altbit, minoff, val, newval;
mutex_lock(&data->update_lock);
config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
mutex_unlock(&data->update_lock);
val = config | (altbit << 3);
if (val == 3 || val >= 10)
newval = 255;
else if (val == 4)
newval = 0;
else if (val == 7)
newval = 1;
else if (minoff == 1)
newval = 2;
else
newval = 3;
return sprintf(buf, "%u\n", newval);
}
static ssize_t store_pwm_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
u8 currval, config, altbit, newval, minoff = 255;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
switch (reqval) {
case 0:
newval = 0x04;
break;
case 1:
newval = 0x07;
break;
case 2:
newval = 0x00;
minoff = 1;
break;
case 3:
newval = 0x00;
minoff = 0;
break;
case 255:
newval = 0x03;
break;
default:
return -EINVAL;
}
config = newval & 0x07;
altbit = (newval >> 3) & 0x01;
mutex_lock(&data->update_lock);
config = (config & param->mask[0]) << param->shift[0];
altbit = (altbit & param->mask[1]) << param->shift[1];
currval = read_byte(client, param->msb[0]);
newval = config | (currval & ~(param->mask[0] << param->shift[0]));
newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
data->reg[param->msb[0]] = newval;
write_byte(client, param->msb[0], newval);
if (minoff < 255) {
minoff = (minoff & param->mask[2]) << param->shift[2];
currval = read_byte(client, param->msb[2]);
newval =
minoff | (currval & ~(param->mask[2] << param->shift[2]));
data->reg[param->msb[2]] = newval;
write_byte(client, param->msb[2], newval);
}
mutex_unlock(&data->update_lock);
return count;
}
static const u32 asc7621_pwm_freq_map[] = {
10, 15, 23, 30, 38, 47, 62, 94,
23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
};
static ssize_t show_pwm_freq(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 regval =
(data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
regval = clamp_val(regval, 0, 15);
return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
}
static ssize_t store_pwm_freq(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
unsigned long reqval;
u8 currval, newval = 255;
int i;
if (kstrtoul(buf, 10, &reqval))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
if (reqval == asc7621_pwm_freq_map[i]) {
newval = i;
break;
}
}
if (newval == 255)
return -EINVAL;
newval = (newval & param->mask[0]) << param->shift[0];
mutex_lock(&data->update_lock);
currval = read_byte(client, param->msb[0]);
newval |= (currval & ~(param->mask[0] << param->shift[0]));
data->reg[param->msb[0]] = newval;
write_byte(client, param->msb[0], newval);
mutex_unlock(&data->update_lock);
return count;
}
static const u32 asc7621_pwm_auto_spinup_map[] = {
0, 100, 250, 400, 700, 1000, 2000, 4000
};
static ssize_t show_pwm_ast(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 regval =
(data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
regval = clamp_val(regval, 0, 7);
return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
}
static ssize_t store_pwm_ast(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
u8 currval, newval = 255;
u32 i;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
if (reqval == asc7621_pwm_auto_spinup_map[i]) {
newval = i;
break;
}
}
if (newval == 255)
return -EINVAL;
newval = (newval & param->mask[0]) << param->shift[0];
mutex_lock(&data->update_lock);
currval = read_byte(client, param->msb[0]);
newval |= (currval & ~(param->mask[0] << param->shift[0]));
data->reg[param->msb[0]] = newval;
write_byte(client, param->msb[0], newval);
mutex_unlock(&data->update_lock);
return count;
}
static const u32 asc7621_temp_smoothing_time_map[] = {
35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
};
static ssize_t show_temp_st(struct device *dev,
struct device_attribute *attr, char *buf)
{
SETUP_SHOW_DATA_PARAM(dev, attr);
u8 regval =
(data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
regval = clamp_val(regval, 0, 7);
return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
}
static ssize_t store_temp_st(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
SETUP_STORE_DATA_PARAM(dev, attr);
long reqval;
u8 currval, newval = 255;
u32 i;
if (kstrtol(buf, 10, &reqval))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
if (reqval == asc7621_temp_smoothing_time_map[i]) {
newval = i;
break;
}
}
if (newval == 255)
return -EINVAL;
newval = (newval & param->mask[0]) << param->shift[0];
mutex_lock(&data->update_lock);
currval = read_byte(client, param->msb[0]);
newval |= (currval & ~(param->mask[0] << param->shift[0]));
data->reg[param->msb[0]] = newval;
write_byte(client, param->msb[0], newval);
mutex_unlock(&data->update_lock);
return count;
}
/*
* End of data handlers
*
* These defines do nothing more than make the table easier
* to read when wrapped at column 80.
*/
/*
* Creates a variable length array inititalizer.
* VAA(1,3,5,7) would produce {1,3,5,7}
*/
#define VAA(args...) {args}
#define PREAD(name, n, pri, rm, rl, m, s, r) \
{.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
.priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
.shift[0] = s,}
#define PWRITE(name, n, pri, rm, rl, m, s, r) \
{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
.priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
.shift[0] = s,}
/*
* PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
* were created using the VAA macro.
*/
#define PWRITEM(name, n, pri, rm, rl, m, s, r) \
{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
.priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
static struct asc7621_param asc7621_params[] = {
PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask),
PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask),
PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask),
PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask),
PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask),
PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask),
PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask),
PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask),
PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask),
PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask),
PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask),
PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask),
PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask),
PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask),
PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
bitmask),
PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
bitmask),
PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
bitmask),
PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
bitmask),
PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
bitmask),
PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
bitmask),
PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
bitmask),
PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
bitmask),
PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
VAA(0x0f), VAA(4), ap2_temp),
PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
VAA(0x0f), VAA(4), ap2_temp),
PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
VAA(0x0f), VAA(4), ap2_temp),
PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
VAA(0x0f), VAA(4), ap2_temp),
PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
};
static struct asc7621_data *asc7621_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct asc7621_data *data = i2c_get_clientdata(client);
int i;
/*
* The asc7621 chips guarantee consistent reads of multi-byte values
* regardless of the order of the reads. No special logic is needed
* so we can just read the registers in whatever order they appear
* in the asc7621_params array.
*/
mutex_lock(&data->update_lock);
/* Read all the high priority registers */
if (!data->valid ||
time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
if (asc7621_register_priorities[i] == PRI_HIGH) {
data->reg[i] =
i2c_smbus_read_byte_data(client, i) & 0xff;
}
}
data->last_high_reading = jiffies;
} /* last_reading */
/* Read all the low priority registers. */
if (!data->valid ||
time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
if (asc7621_register_priorities[i] == PRI_LOW) {
data->reg[i] =
i2c_smbus_read_byte_data(client, i) & 0xff;
}
}
data->last_low_reading = jiffies;
} /* last_reading */
data->valid = true;
mutex_unlock(&data->update_lock);
return data;
}
/*
* Standard detection and initialization below
*
* Helper function that checks if an address is valid
* for a particular chip.
*/
static inline int valid_address_for_chip(int chip_type, int address)
{
int i;
for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
i++) {
if (asc7621_chips[chip_type].addresses[i] == address)
return 1;
}
return 0;
}
static void asc7621_init_client(struct i2c_client *client)
{
int value;
/* Warn if part was not "READY" */
value = read_byte(client, 0x40);
if (value & 0x02) {
dev_err(&client->dev,
"Client (%d,0x%02x) config is locked.\n",
i2c_adapter_id(client->adapter), client->addr);
}
if (!(value & 0x04)) {
dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
i2c_adapter_id(client->adapter), client->addr);
}
/*
* Start monitoring
*
* Try to clear LOCK, Set START, save everything else
*/
value = (value & ~0x02) | 0x01;
write_byte(client, 0x40, value & 0xff);
}
static int
asc7621_probe(struct i2c_client *client)
{
struct asc7621_data *data;
int i, err;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data),
GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
/* Initialize the asc7621 chip */
asc7621_init_client(client);
/* Create the sysfs entries */
for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
err =
device_create_file(&client->dev,
&(asc7621_params[i].sda.dev_attr));
if (err)
goto exit_remove;
}
data->class_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->class_dev)) {
err = PTR_ERR(data->class_dev);
goto exit_remove;
}
return 0;
exit_remove:
for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
device_remove_file(&client->dev,
&(asc7621_params[i].sda.dev_attr));
}
return err;
}
static int asc7621_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int company, verstep, chip_index;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
if (!valid_address_for_chip(chip_index, client->addr))
continue;
company = read_byte(client,
asc7621_chips[chip_index].company_reg);
verstep = read_byte(client,
asc7621_chips[chip_index].verstep_reg);
if (company == asc7621_chips[chip_index].company_id &&
verstep == asc7621_chips[chip_index].verstep_id) {
strscpy(info->type, asc7621_chips[chip_index].name,
I2C_NAME_SIZE);
dev_info(&adapter->dev, "Matched %s at 0x%02x\n",
asc7621_chips[chip_index].name, client->addr);
return 0;
}
}
return -ENODEV;
}
static void asc7621_remove(struct i2c_client *client)
{
struct asc7621_data *data = i2c_get_clientdata(client);
int i;
hwmon_device_unregister(data->class_dev);
for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
device_remove_file(&client->dev,
&(asc7621_params[i].sda.dev_attr));
}
}
static const struct i2c_device_id asc7621_id[] = {
{"asc7621", asc7621},
{"asc7621a", asc7621a},
{},
};
MODULE_DEVICE_TABLE(i2c, asc7621_id);
static struct i2c_driver asc7621_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "asc7621",
},
.probe = asc7621_probe,
.remove = asc7621_remove,
.id_table = asc7621_id,
.detect = asc7621_detect,
.address_list = normal_i2c,
};
static int __init sm_asc7621_init(void)
{
int i, j;
/*
* Collect all the registers needed into a single array.
* This way, if a register isn't actually used for anything,
* we don't retrieve it.
*/
for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
asc7621_register_priorities[asc7621_params[i].msb[j]] =
asc7621_params[i].priority;
for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
asc7621_register_priorities[asc7621_params[i].lsb[j]] =
asc7621_params[i].priority;
}
return i2c_add_driver(&asc7621_driver);
}
static void __exit sm_asc7621_exit(void)
{
i2c_del_driver(&asc7621_driver);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("George Joseph");
MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
module_init(sm_asc7621_init);
module_exit(sm_asc7621_exit);