// SPDX-License-Identifier: GPL-2.0-or-later
/*
* k10temp.c - AMD Family 10h/11h/12h/14h/15h/16h/17h
* processor hardware monitoring
*
* Copyright (c) 2009 Clemens Ladisch <[email protected]>
* Copyright (c) 2020 Guenter Roeck <[email protected]>
*
* Implementation notes:
* - CCD register address information as well as the calculation to
* convert raw register values is from https://github.com/ocerman/zenpower.
* The information is not confirmed from chip datasheets, but experiments
* suggest that it provides reasonable temperature values.
*/
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <asm/amd_nb.h>
#include <asm/processor.h>
MODULE_DESCRIPTION("AMD Family 10h+ CPU core temperature monitor");
MODULE_AUTHOR("Clemens Ladisch <[email protected]>");
MODULE_LICENSE("GPL");
static bool force;
module_param(force, bool, 0444);
MODULE_PARM_DESC(force, "force loading on processors with erratum 319");
/* Provide lock for writing to NB_SMU_IND_ADDR */
static DEFINE_MUTEX(nb_smu_ind_mutex);
#ifndef PCI_DEVICE_ID_AMD_15H_M70H_NB_F3
#define PCI_DEVICE_ID_AMD_15H_M70H_NB_F3 0x15b3
#endif
/* CPUID function 0x80000001, ebx */
#define CPUID_PKGTYPE_MASK GENMASK(31, 28)
#define CPUID_PKGTYPE_F 0x00000000
#define CPUID_PKGTYPE_AM2R2_AM3 0x10000000
/* DRAM controller (PCI function 2) */
#define REG_DCT0_CONFIG_HIGH 0x094
#define DDR3_MODE BIT(8)
/* miscellaneous (PCI function 3) */
#define REG_HARDWARE_THERMAL_CONTROL 0x64
#define HTC_ENABLE BIT(0)
#define REG_REPORTED_TEMPERATURE 0xa4
#define REG_NORTHBRIDGE_CAPABILITIES 0xe8
#define NB_CAP_HTC BIT(10)
/*
* For F15h M60h and M70h, REG_HARDWARE_THERMAL_CONTROL
* and REG_REPORTED_TEMPERATURE have been moved to
* D0F0xBC_xD820_0C64 [Hardware Temperature Control]
* D0F0xBC_xD820_0CA4 [Reported Temperature Control]
*/
#define F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET 0xd8200c64
#define F15H_M60H_REPORTED_TEMP_CTRL_OFFSET 0xd8200ca4
/* Common for Zen CPU families (Family 17h and 18h and 19h and 1Ah) */
#define ZEN_REPORTED_TEMP_CTRL_BASE 0x00059800
#define ZEN_CCD_TEMP(offset, x) (ZEN_REPORTED_TEMP_CTRL_BASE + \
(offset) + ((x) * 4))
#define ZEN_CCD_TEMP_VALID BIT(11)
#define ZEN_CCD_TEMP_MASK GENMASK(10, 0)
#define ZEN_CUR_TEMP_SHIFT 21
#define ZEN_CUR_TEMP_RANGE_SEL_MASK BIT(19)
#define ZEN_CUR_TEMP_TJ_SEL_MASK GENMASK(17, 16)
/*
* AMD's Industrial processor 3255 supports temperature from -40 deg to 105 deg Celsius.
* Use the model name to identify 3255 CPUs and set a flag to display negative temperature.
* Do not round off to zero for negative Tctl or Tdie values if the flag is set
*/
#define AMD_I3255_STR "3255"
struct k10temp_data {
struct pci_dev *pdev;
void (*read_htcreg)(struct pci_dev *pdev, u32 *regval);
void (*read_tempreg)(struct pci_dev *pdev, u32 *regval);
int temp_offset;
u32 temp_adjust_mask;
u32 show_temp;
bool is_zen;
u32 ccd_offset;
bool disp_negative;
};
#define TCTL_BIT 0
#define TDIE_BIT 1
#define TCCD_BIT(x) ((x) + 2)
#define HAVE_TEMP(d, channel) ((d)->show_temp & BIT(channel))
struct tctl_offset {
u8 model;
char const *id;
int offset;
};
static const struct tctl_offset tctl_offset_table[] = {
{ 0x17, "AMD Ryzen 5 1600X", 20000 },
{ 0x17, "AMD Ryzen 7 1700X", 20000 },
{ 0x17, "AMD Ryzen 7 1800X", 20000 },
{ 0x17, "AMD Ryzen 7 2700X", 10000 },
{ 0x17, "AMD Ryzen Threadripper 19", 27000 }, /* 19{00,20,50}X */
{ 0x17, "AMD Ryzen Threadripper 29", 27000 }, /* 29{20,50,70,90}[W]X */
};
static void read_htcreg_pci(struct pci_dev *pdev, u32 *regval)
{
pci_read_config_dword(pdev, REG_HARDWARE_THERMAL_CONTROL, regval);
}
static void read_tempreg_pci(struct pci_dev *pdev, u32 *regval)
{
pci_read_config_dword(pdev, REG_REPORTED_TEMPERATURE, regval);
}
static void amd_nb_index_read(struct pci_dev *pdev, unsigned int devfn,
unsigned int base, int offset, u32 *val)
{
mutex_lock(&nb_smu_ind_mutex);
pci_bus_write_config_dword(pdev->bus, devfn,
base, offset);
pci_bus_read_config_dword(pdev->bus, devfn,
base + 4, val);
mutex_unlock(&nb_smu_ind_mutex);
}
static void read_htcreg_nb_f15(struct pci_dev *pdev, u32 *regval)
{
amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8,
F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET, regval);
}
static void read_tempreg_nb_f15(struct pci_dev *pdev, u32 *regval)
{
amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8,
F15H_M60H_REPORTED_TEMP_CTRL_OFFSET, regval);
}
static void read_tempreg_nb_zen(struct pci_dev *pdev, u32 *regval)
{
if (amd_smn_read(amd_pci_dev_to_node_id(pdev),
ZEN_REPORTED_TEMP_CTRL_BASE, regval))
*regval = 0;
}
static int read_ccd_temp_reg(struct k10temp_data *data, int ccd, u32 *regval)
{
u16 node_id = amd_pci_dev_to_node_id(data->pdev);
return amd_smn_read(node_id, ZEN_CCD_TEMP(data->ccd_offset, ccd), regval);
}
static long get_raw_temp(struct k10temp_data *data)
{
u32 regval;
long temp;
data->read_tempreg(data->pdev, ®val);
temp = (regval >> ZEN_CUR_TEMP_SHIFT) * 125;
if ((regval & data->temp_adjust_mask) ||
(regval & ZEN_CUR_TEMP_TJ_SEL_MASK) == ZEN_CUR_TEMP_TJ_SEL_MASK)
temp -= 49000;
return temp;
}
static const char *k10temp_temp_label[] = {
"Tctl",
"Tdie",
"Tccd1",
"Tccd2",
"Tccd3",
"Tccd4",
"Tccd5",
"Tccd6",
"Tccd7",
"Tccd8",
"Tccd9",
"Tccd10",
"Tccd11",
"Tccd12",
};
static int k10temp_read_labels(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_temp:
*str = k10temp_temp_label[channel];
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int k10temp_read_temp(struct device *dev, u32 attr, int channel,
long *val)
{
struct k10temp_data *data = dev_get_drvdata(dev);
int ret = -EOPNOTSUPP;
u32 regval;
switch (attr) {
case hwmon_temp_input:
switch (channel) {
case 0: /* Tctl */
*val = get_raw_temp(data);
if (*val < 0 && !data->disp_negative)
*val = 0;
break;
case 1: /* Tdie */
*val = get_raw_temp(data) - data->temp_offset;
if (*val < 0 && !data->disp_negative)
*val = 0;
break;
case 2 ... 13: /* Tccd{1-12} */
ret = read_ccd_temp_reg(data, channel - 2, ®val);
if (ret)
return ret;
*val = (regval & ZEN_CCD_TEMP_MASK) * 125 - 49000;
break;
default:
return ret;
}
break;
case hwmon_temp_max:
*val = 70 * 1000;
break;
case hwmon_temp_crit:
data->read_htcreg(data->pdev, ®val);
*val = ((regval >> 16) & 0x7f) * 500 + 52000;
break;
case hwmon_temp_crit_hyst:
data->read_htcreg(data->pdev, ®val);
*val = (((regval >> 16) & 0x7f)
- ((regval >> 24) & 0xf)) * 500 + 52000;
break;
default:
return ret;
}
return 0;
}
static int k10temp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return k10temp_read_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t k10temp_is_visible(const void *drvdata,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct k10temp_data *data = drvdata;
struct pci_dev *pdev = data->pdev;
u32 reg;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
if (!HAVE_TEMP(data, channel))
return 0;
break;
case hwmon_temp_max:
if (channel || data->is_zen)
return 0;
break;
case hwmon_temp_crit:
case hwmon_temp_crit_hyst:
if (channel || !data->read_htcreg)
return 0;
pci_read_config_dword(pdev,
REG_NORTHBRIDGE_CAPABILITIES,
®);
if (!(reg & NB_CAP_HTC))
return 0;
data->read_htcreg(data->pdev, ®);
if (!(reg & HTC_ENABLE))
return 0;
break;
case hwmon_temp_label:
/* Show temperature labels only on Zen CPUs */
if (!data->is_zen || !HAVE_TEMP(data, channel))
return 0;
break;
default:
return 0;
}
break;
default:
return 0;
}
return 0444;
}
static bool has_erratum_319(struct pci_dev *pdev)
{
u32 pkg_type, reg_dram_cfg;
if (boot_cpu_data.x86 != 0x10)
return false;
/*
* Erratum 319: The thermal sensor of Socket F/AM2+ processors
* may be unreliable.
*/
pkg_type = cpuid_ebx(0x80000001) & CPUID_PKGTYPE_MASK;
if (pkg_type == CPUID_PKGTYPE_F)
return true;
if (pkg_type != CPUID_PKGTYPE_AM2R2_AM3)
return false;
/* DDR3 memory implies socket AM3, which is good */
pci_bus_read_config_dword(pdev->bus,
PCI_DEVFN(PCI_SLOT(pdev->devfn), 2),
REG_DCT0_CONFIG_HIGH, ®_dram_cfg);
if (reg_dram_cfg & DDR3_MODE)
return false;
/*
* Unfortunately it is possible to run a socket AM3 CPU with DDR2
* memory. We blacklist all the cores which do exist in socket AM2+
* format. It still isn't perfect, as RB-C2 cores exist in both AM2+
* and AM3 formats, but that's the best we can do.
*/
return boot_cpu_data.x86_model < 4 ||
(boot_cpu_data.x86_model == 4 && boot_cpu_data.x86_stepping <= 2);
}
static const struct hwmon_channel_info * const k10temp_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_MAX |
HWMON_T_CRIT | HWMON_T_CRIT_HYST |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL),
NULL
};
static const struct hwmon_ops k10temp_hwmon_ops = {
.is_visible = k10temp_is_visible,
.read = k10temp_read,
.read_string = k10temp_read_labels,
};
static const struct hwmon_chip_info k10temp_chip_info = {
.ops = &k10temp_hwmon_ops,
.info = k10temp_info,
};
static void k10temp_get_ccd_support(struct k10temp_data *data, int limit)
{
u32 regval;
int i;
for (i = 0; i < limit; i++) {
/*
* Ignore inaccessible CCDs.
*
* Some systems will return a register value of 0, and the TEMP_VALID
* bit check below will naturally fail.
*
* Other systems will return a PCI_ERROR_RESPONSE (0xFFFFFFFF) for
* the register value. And this will incorrectly pass the TEMP_VALID
* bit check.
*/
if (read_ccd_temp_reg(data, i, ®val))
continue;
if (regval & ZEN_CCD_TEMP_VALID)
data->show_temp |= BIT(TCCD_BIT(i));
}
}
static int k10temp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int unreliable = has_erratum_319(pdev);
struct device *dev = &pdev->dev;
struct k10temp_data *data;
struct device *hwmon_dev;
int i;
if (unreliable) {
if (!force) {
dev_err(dev,
"unreliable CPU thermal sensor; monitoring disabled\n");
return -ENODEV;
}
dev_warn(dev,
"unreliable CPU thermal sensor; check erratum 319\n");
}
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->pdev = pdev;
data->show_temp |= BIT(TCTL_BIT); /* Always show Tctl */
if (boot_cpu_data.x86 == 0x17 &&
strstr(boot_cpu_data.x86_model_id, AMD_I3255_STR)) {
data->disp_negative = true;
}
data->is_zen = cpu_feature_enabled(X86_FEATURE_ZEN);
if (data->is_zen) {
data->temp_adjust_mask = ZEN_CUR_TEMP_RANGE_SEL_MASK;
data->read_tempreg = read_tempreg_nb_zen;
} else if (boot_cpu_data.x86 == 0x15 &&
((boot_cpu_data.x86_model & 0xf0) == 0x60 ||
(boot_cpu_data.x86_model & 0xf0) == 0x70)) {
data->read_htcreg = read_htcreg_nb_f15;
data->read_tempreg = read_tempreg_nb_f15;
} else {
data->read_htcreg = read_htcreg_pci;
data->read_tempreg = read_tempreg_pci;
}
if (boot_cpu_data.x86 == 0x17 || boot_cpu_data.x86 == 0x18) {
switch (boot_cpu_data.x86_model) {
case 0x1: /* Zen */
case 0x8: /* Zen+ */
case 0x11: /* Zen APU */
case 0x18: /* Zen+ APU */
data->ccd_offset = 0x154;
k10temp_get_ccd_support(data, 4);
break;
case 0x31: /* Zen2 Threadripper */
case 0x60: /* Renoir */
case 0x68: /* Lucienne */
case 0x71: /* Zen2 */
data->ccd_offset = 0x154;
k10temp_get_ccd_support(data, 8);
break;
case 0xa0 ... 0xaf:
data->ccd_offset = 0x300;
k10temp_get_ccd_support(data, 8);
break;
}
} else if (boot_cpu_data.x86 == 0x19) {
switch (boot_cpu_data.x86_model) {
case 0x0 ... 0x1: /* Zen3 SP3/TR */
case 0x8: /* Zen3 TR Chagall */
case 0x21: /* Zen3 Ryzen Desktop */
case 0x50 ... 0x5f: /* Green Sardine */
data->ccd_offset = 0x154;
k10temp_get_ccd_support(data, 8);
break;
case 0x40 ... 0x4f: /* Yellow Carp */
data->ccd_offset = 0x300;
k10temp_get_ccd_support(data, 8);
break;
case 0x60 ... 0x6f:
case 0x70 ... 0x7f:
data->ccd_offset = 0x308;
k10temp_get_ccd_support(data, 8);
break;
case 0x10 ... 0x1f:
case 0xa0 ... 0xaf:
data->ccd_offset = 0x300;
k10temp_get_ccd_support(data, 12);
break;
}
}
for (i = 0; i < ARRAY_SIZE(tctl_offset_table); i++) {
const struct tctl_offset *entry = &tctl_offset_table[i];
if (boot_cpu_data.x86 == entry->model &&
strstr(boot_cpu_data.x86_model_id, entry->id)) {
data->show_temp |= BIT(TDIE_BIT); /* show Tdie */
data->temp_offset = entry->offset;
break;
}
}
hwmon_dev = devm_hwmon_device_register_with_info(dev, "k10temp", data,
&k10temp_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct pci_device_id k10temp_id_table[] = {
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_11H_NB_MISC) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M10H_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M60H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M70H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_MA0H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_M10H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_M40H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_M50H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_M60H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_M70H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_M78H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_1AH_M00H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_1AH_M20H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_1AH_M60H_DF_F3) },
{ PCI_VDEVICE(HYGON, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{}
};
MODULE_DEVICE_TABLE(pci, k10temp_id_table);
static struct pci_driver k10temp_driver = {
.name = "k10temp",
.id_table = k10temp_id_table,
.probe = k10temp_probe,
};
module_pci_driver(k10temp_driver);