// SPDX-License-Identifier: GPL-2.0
/* Maximum size of each resync request */
#define RESYNC_BLOCK_SIZE (64*1024)
#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
/*
* Number of guaranteed raid bios in case of extreme VM load:
*/
#define NR_RAID_BIOS 256
/* when we get a read error on a read-only array, we redirect to another
* device without failing the first device, or trying to over-write to
* correct the read error. To keep track of bad blocks on a per-bio
* level, we store IO_BLOCKED in the appropriate 'bios' pointer
*/
#define IO_BLOCKED ((struct bio *)1)
/* When we successfully write to a known bad-block, we need to remove the
* bad-block marking which must be done from process context. So we record
* the success by setting devs[n].bio to IO_MADE_GOOD
*/
#define IO_MADE_GOOD ((struct bio *)2)
#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
#define MAX_PLUG_BIO 32
/* for managing resync I/O pages */
struct resync_pages {
void *raid_bio;
struct page *pages[RESYNC_PAGES];
};
struct raid1_plug_cb {
struct blk_plug_cb cb;
struct bio_list pending;
unsigned int count;
};
static void rbio_pool_free(void *rbio, void *data)
{
kfree(rbio);
}
static inline int resync_alloc_pages(struct resync_pages *rp,
gfp_t gfp_flags)
{
int i;
for (i = 0; i < RESYNC_PAGES; i++) {
rp->pages[i] = alloc_page(gfp_flags);
if (!rp->pages[i])
goto out_free;
}
return 0;
out_free:
while (--i >= 0)
put_page(rp->pages[i]);
return -ENOMEM;
}
static inline void resync_free_pages(struct resync_pages *rp)
{
int i;
for (i = 0; i < RESYNC_PAGES; i++)
put_page(rp->pages[i]);
}
static inline void resync_get_all_pages(struct resync_pages *rp)
{
int i;
for (i = 0; i < RESYNC_PAGES; i++)
get_page(rp->pages[i]);
}
static inline struct page *resync_fetch_page(struct resync_pages *rp,
unsigned idx)
{
if (WARN_ON_ONCE(idx >= RESYNC_PAGES))
return NULL;
return rp->pages[idx];
}
/*
* 'strct resync_pages' stores actual pages used for doing the resync
* IO, and it is per-bio, so make .bi_private points to it.
*/
static inline struct resync_pages *get_resync_pages(struct bio *bio)
{
return bio->bi_private;
}
/* generally called after bio_reset() for reseting bvec */
static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp,
int size)
{
int idx = 0;
/* initialize bvec table again */
do {
struct page *page = resync_fetch_page(rp, idx);
int len = min_t(int, size, PAGE_SIZE);
if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
bio->bi_status = BLK_STS_RESOURCE;
bio_endio(bio);
return;
}
size -= len;
} while (idx++ < RESYNC_PAGES && size > 0);
}
static inline void raid1_submit_write(struct bio *bio)
{
struct md_rdev *rdev = (void *)bio->bi_bdev;
bio->bi_next = NULL;
bio_set_dev(bio, rdev->bdev);
if (test_bit(Faulty, &rdev->flags))
bio_io_error(bio);
else if (unlikely(bio_op(bio) == REQ_OP_DISCARD &&
!bdev_max_discard_sectors(bio->bi_bdev)))
/* Just ignore it */
bio_endio(bio);
else
submit_bio_noacct(bio);
}
static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
blk_plug_cb_fn unplug, int copies)
{
struct raid1_plug_cb *plug = NULL;
struct blk_plug_cb *cb;
/*
* If bitmap is not enabled, it's safe to submit the io directly, and
* this can get optimal performance.
*/
if (!mddev->bitmap_ops->enabled(mddev)) {
raid1_submit_write(bio);
return true;
}
cb = blk_check_plugged(unplug, mddev, sizeof(*plug));
if (!cb)
return false;
plug = container_of(cb, struct raid1_plug_cb, cb);
bio_list_add(&plug->pending, bio);
if (++plug->count / MAX_PLUG_BIO >= copies) {
list_del(&cb->list);
cb->callback(cb, false);
}
return true;
}
/*
* current->bio_list will be set under submit_bio() context, in this case bitmap
* io will be added to the list and wait for current io submission to finish,
* while current io submission must wait for bitmap io to be done. In order to
* avoid such deadlock, submit bitmap io asynchronously.
*/
static inline void raid1_prepare_flush_writes(struct mddev *mddev)
{
mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL);
}
/*
* Used by fix_read_error() to decay the per rdev read_errors.
* We halve the read error count for every hour that has elapsed
* since the last recorded read error.
*/
static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
{
long cur_time_mon;
unsigned long hours_since_last;
unsigned int read_errors = atomic_read(&rdev->read_errors);
cur_time_mon = ktime_get_seconds();
if (rdev->last_read_error == 0) {
/* first time we've seen a read error */
rdev->last_read_error = cur_time_mon;
return;
}
hours_since_last = (long)(cur_time_mon -
rdev->last_read_error) / 3600;
rdev->last_read_error = cur_time_mon;
/*
* if hours_since_last is > the number of bits in read_errors
* just set read errors to 0. We do this to avoid
* overflowing the shift of read_errors by hours_since_last.
*/
if (hours_since_last >= 8 * sizeof(read_errors))
atomic_set(&rdev->read_errors, 0);
else
atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
}
static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev)
{
int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
int read_errors;
check_decay_read_errors(mddev, rdev);
read_errors = atomic_inc_return(&rdev->read_errors);
if (read_errors > max_read_errors) {
pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
mdname(mddev), rdev->bdev, read_errors, max_read_errors);
pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n",
mdname(mddev), rdev->bdev);
md_error(mddev, rdev);
return true;
}
return false;
}
/**
* raid1_check_read_range() - check a given read range for bad blocks,
* available read length is returned;
* @rdev: the rdev to read;
* @this_sector: read position;
* @len: read length;
*
* helper function for read_balance()
*
* 1) If there are no bad blocks in the range, @len is returned;
* 2) If the range are all bad blocks, 0 is returned;
* 3) If there are partial bad blocks:
* - If the bad block range starts after @this_sector, the length of first
* good region is returned;
* - If the bad block range starts before @this_sector, 0 is returned and
* the @len is updated to the offset into the region before we get to the
* good blocks;
*/
static inline int raid1_check_read_range(struct md_rdev *rdev,
sector_t this_sector, int *len)
{
sector_t first_bad;
int bad_sectors;
/* no bad block overlap */
if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors))
return *len;
/*
* bad block range starts offset into our range so we can return the
* number of sectors before the bad blocks start.
*/
if (first_bad > this_sector)
return first_bad - this_sector;
/* read range is fully consumed by bad blocks. */
if (this_sector + *len <= first_bad + bad_sectors)
return 0;
/*
* final case, bad block range starts before or at the start of our
* range but does not cover our entire range so we still return 0 but
* update the length with the number of sectors before we get to the
* good ones.
*/
*len = first_bad + bad_sectors - this_sector;
return 0;
}
/*
* Check if read should choose the first rdev.
*
* Balance on the whole device if no resync is going on (recovery is ok) or
* below the resync window. Otherwise, take the first readable disk.
*/
static inline bool raid1_should_read_first(struct mddev *mddev,
sector_t this_sector, int len)
{
if ((mddev->recovery_cp < this_sector + len))
return true;
if (mddev_is_clustered(mddev) &&
md_cluster_ops->area_resyncing(mddev, READ, this_sector,
this_sector + len))
return true;
return false;
}