// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017-2022 Linaro Ltd
* Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
* Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/led-class-multicolor.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/soc/qcom/qcom-pbs.h>
#define LPG_SUBTYPE_REG 0x05
#define LPG_SUBTYPE_LPG 0x2
#define LPG_SUBTYPE_PWM 0xb
#define LPG_SUBTYPE_HI_RES_PWM 0xc
#define LPG_SUBTYPE_LPG_LITE 0x11
#define LPG_PATTERN_CONFIG_REG 0x40
#define LPG_SIZE_CLK_REG 0x41
#define PWM_CLK_SELECT_MASK GENMASK(1, 0)
#define PWM_CLK_SELECT_HI_RES_MASK GENMASK(2, 0)
#define PWM_SIZE_HI_RES_MASK GENMASK(6, 4)
#define LPG_PREDIV_CLK_REG 0x42
#define PWM_FREQ_PRE_DIV_MASK GENMASK(6, 5)
#define PWM_FREQ_EXP_MASK GENMASK(2, 0)
#define PWM_TYPE_CONFIG_REG 0x43
#define PWM_VALUE_REG 0x44
#define PWM_ENABLE_CONTROL_REG 0x46
#define PWM_SYNC_REG 0x47
#define LPG_RAMP_DURATION_REG 0x50
#define LPG_HI_PAUSE_REG 0x52
#define LPG_LO_PAUSE_REG 0x54
#define LPG_HI_IDX_REG 0x56
#define LPG_LO_IDX_REG 0x57
#define PWM_SEC_ACCESS_REG 0xd0
#define PWM_DTEST_REG(x) (0xe2 + (x) - 1)
#define SDAM_REG_PBS_SEQ_EN 0x42
#define SDAM_PBS_TRIG_SET 0xe5
#define SDAM_PBS_TRIG_CLR 0xe6
#define TRI_LED_SRC_SEL 0x45
#define TRI_LED_EN_CTL 0x46
#define TRI_LED_ATC_CTL 0x47
#define LPG_LUT_REG(x) (0x40 + (x) * 2)
#define RAMP_CONTROL_REG 0xc8
#define LPG_RESOLUTION_9BIT BIT(9)
#define LPG_RESOLUTION_15BIT BIT(15)
#define PPG_MAX_LED_BRIGHTNESS 255
#define LPG_MAX_M 7
#define LPG_MAX_PREDIV 6
#define DEFAULT_TICK_DURATION_US 7800
#define RAMP_STEP_DURATION(x) (((x) * 1000 / DEFAULT_TICK_DURATION_US) & 0xff)
#define SDAM_MAX_DEVICES 2
/* LPG common config settings for PPG */
#define SDAM_START_BASE 0x40
#define SDAM_REG_RAMP_STEP_DURATION 0x47
#define SDAM_LUT_SDAM_LUT_PATTERN_OFFSET 0x45
#define SDAM_LPG_SDAM_LUT_PATTERN_OFFSET 0x80
/* LPG per channel config settings for PPG */
#define SDAM_LUT_EN_OFFSET 0x0
#define SDAM_PATTERN_CONFIG_OFFSET 0x1
#define SDAM_END_INDEX_OFFSET 0x3
#define SDAM_START_INDEX_OFFSET 0x4
#define SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET 0x6
#define SDAM_PAUSE_HI_MULTIPLIER_OFFSET 0x8
#define SDAM_PAUSE_LO_MULTIPLIER_OFFSET 0x9
struct lpg_channel;
struct lpg_data;
/**
* struct lpg - LPG device context
* @dev: pointer to LPG device
* @map: regmap for register access
* @lock: used to synchronize LED and pwm callback requests
* @pwm: PWM-chip object, if operating in PWM mode
* @data: reference to version specific data
* @lut_base: base address of the LUT block (optional)
* @lut_size: number of entries in the LUT block
* @lut_bitmap: allocation bitmap for LUT entries
* @pbs_dev: PBS device
* @lpg_chan_sdam: LPG SDAM peripheral device
* @lut_sdam: LUT SDAM peripheral device
* @pbs_en_bitmap: bitmap for tracking PBS triggers
* @triled_base: base address of the TRILED block (optional)
* @triled_src: power-source for the TRILED
* @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
* @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
* @channels: list of PWM channels
* @num_channels: number of @channels
*/
struct lpg {
struct device *dev;
struct regmap *map;
struct mutex lock;
struct pwm_chip *pwm;
const struct lpg_data *data;
u32 lut_base;
u32 lut_size;
unsigned long *lut_bitmap;
struct pbs_dev *pbs_dev;
struct nvmem_device *lpg_chan_sdam;
struct nvmem_device *lut_sdam;
unsigned long pbs_en_bitmap;
u32 triled_base;
u32 triled_src;
bool triled_has_atc_ctl;
bool triled_has_src_sel;
struct lpg_channel *channels;
unsigned int num_channels;
};
/**
* struct lpg_channel - per channel data
* @lpg: reference to parent lpg
* @base: base address of the PWM channel
* @triled_mask: mask in TRILED to enable this channel
* @lut_mask: mask in LUT to start pattern generator for this channel
* @subtype: PMIC hardware block subtype
* @sdam_offset: channel offset in LPG SDAM
* @in_use: channel is exposed to LED framework
* @color: color of the LED attached to this channel
* @dtest_line: DTEST line for output, or 0 if disabled
* @dtest_value: DTEST line configuration
* @pwm_value: duty (in microseconds) of the generated pulses, overridden by LUT
* @enabled: output enabled?
* @period: period (in nanoseconds) of the generated pulses
* @clk_sel: reference clock frequency selector
* @pre_div_sel: divider selector of the reference clock
* @pre_div_exp: exponential divider of the reference clock
* @pwm_resolution_sel: pwm resolution selector
* @ramp_enabled: duty cycle is driven by iterating over lookup table
* @ramp_ping_pong: reverse through pattern, rather than wrapping to start
* @ramp_oneshot: perform only a single pass over the pattern
* @ramp_reverse: iterate over pattern backwards
* @ramp_tick_ms: length (in milliseconds) of one step in the pattern
* @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern
* @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern
* @pattern_lo_idx: start index of associated pattern
* @pattern_hi_idx: last index of associated pattern
*/
struct lpg_channel {
struct lpg *lpg;
u32 base;
unsigned int triled_mask;
unsigned int lut_mask;
unsigned int subtype;
u32 sdam_offset;
bool in_use;
int color;
u32 dtest_line;
u32 dtest_value;
u16 pwm_value;
bool enabled;
u64 period;
unsigned int clk_sel;
unsigned int pre_div_sel;
unsigned int pre_div_exp;
unsigned int pwm_resolution_sel;
bool ramp_enabled;
bool ramp_ping_pong;
bool ramp_oneshot;
bool ramp_reverse;
unsigned short ramp_tick_ms;
unsigned long ramp_lo_pause_ms;
unsigned long ramp_hi_pause_ms;
unsigned int pattern_lo_idx;
unsigned int pattern_hi_idx;
};
/**
* struct lpg_led - logical LED object
* @lpg: lpg context reference
* @cdev: LED class device
* @mcdev: Multicolor LED class device
* @num_channels: number of @channels
* @channels: list of channels associated with the LED
*/
struct lpg_led {
struct lpg *lpg;
struct led_classdev cdev;
struct led_classdev_mc mcdev;
unsigned int num_channels;
struct lpg_channel *channels[] __counted_by(num_channels);
};
/**
* struct lpg_channel_data - per channel initialization data
* @sdam_offset: Channel offset in LPG SDAM
* @base: base address for PWM channel registers
* @triled_mask: bitmask for controlling this channel in TRILED
*/
struct lpg_channel_data {
unsigned int sdam_offset;
unsigned int base;
u8 triled_mask;
};
/**
* struct lpg_data - initialization data
* @lut_base: base address of LUT block
* @lut_size: number of entries in LUT
* @triled_base: base address of TRILED
* @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
* @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
* @num_channels: number of channels in LPG
* @channels: list of channel initialization data
*/
struct lpg_data {
unsigned int lut_base;
unsigned int lut_size;
unsigned int triled_base;
bool triled_has_atc_ctl;
bool triled_has_src_sel;
int num_channels;
const struct lpg_channel_data *channels;
};
#define PBS_SW_TRIG_BIT BIT(0)
static int lpg_clear_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
{
u8 val = 0;
int rc;
if (!lpg->lpg_chan_sdam)
return 0;
lpg->pbs_en_bitmap &= (~lut_mask);
if (!lpg->pbs_en_bitmap) {
rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
if (rc < 0)
return rc;
if (lpg->lut_sdam) {
val = PBS_SW_TRIG_BIT;
rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_CLR, 1, &val);
if (rc < 0)
return rc;
}
}
return 0;
}
static int lpg_set_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
{
u8 val = PBS_SW_TRIG_BIT;
int rc;
if (!lpg->lpg_chan_sdam)
return 0;
if (!lpg->pbs_en_bitmap) {
rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
if (rc < 0)
return rc;
if (lpg->lut_sdam) {
rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_SET, 1, &val);
if (rc < 0)
return rc;
} else {
rc = qcom_pbs_trigger_event(lpg->pbs_dev, val);
if (rc < 0)
return rc;
}
}
lpg->pbs_en_bitmap |= lut_mask;
return 0;
}
static int lpg_sdam_configure_triggers(struct lpg_channel *chan, u8 set_trig)
{
u32 addr = SDAM_LUT_EN_OFFSET + chan->sdam_offset;
if (!chan->lpg->lpg_chan_sdam)
return 0;
return nvmem_device_write(chan->lpg->lpg_chan_sdam, addr, 1, &set_trig);
}
static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable)
{
/* Skip if we don't have a triled block */
if (!lpg->triled_base)
return 0;
return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL,
mask, enable);
}
static int lpg_lut_store_sdam(struct lpg *lpg, struct led_pattern *pattern,
size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
{
unsigned int idx;
u8 brightness;
int i, rc;
u16 addr;
if (len > lpg->lut_size) {
dev_err(lpg->dev, "Pattern length (%zu) exceeds maximum pattern length (%d)\n",
len, lpg->lut_size);
return -EINVAL;
}
idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, 0, len, 0);
if (idx >= lpg->lut_size)
return -ENOSPC;
for (i = 0; i < len; i++) {
brightness = pattern[i].brightness;
if (lpg->lut_sdam) {
addr = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET + i + idx;
rc = nvmem_device_write(lpg->lut_sdam, addr, 1, &brightness);
} else {
addr = SDAM_LPG_SDAM_LUT_PATTERN_OFFSET + i + idx;
rc = nvmem_device_write(lpg->lpg_chan_sdam, addr, 1, &brightness);
}
if (rc < 0)
return rc;
}
bitmap_set(lpg->lut_bitmap, idx, len);
*lo_idx = idx;
*hi_idx = idx + len - 1;
return 0;
}
static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern,
size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
{
unsigned int idx;
u16 val;
int i;
idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size,
0, len, 0);
if (idx >= lpg->lut_size)
return -ENOMEM;
for (i = 0; i < len; i++) {
val = pattern[i].brightness;
regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i),
&val, sizeof(val));
}
bitmap_set(lpg->lut_bitmap, idx, len);
*lo_idx = idx;
*hi_idx = idx + len - 1;
return 0;
}
static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx)
{
int len;
len = hi_idx - lo_idx + 1;
if (len == 1)
return;
bitmap_clear(lpg->lut_bitmap, lo_idx, len);
}
static int lpg_lut_sync(struct lpg *lpg, unsigned int mask)
{
if (!lpg->lut_base)
return 0;
return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask);
}
static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000};
static const unsigned int lpg_clk_rates_hi_res[] = {0, 1024, 32768, 19200000, 76800000};
static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6};
static const unsigned int lpg_pwm_resolution[] = {9};
static const unsigned int lpg_pwm_resolution_hi_res[] = {8, 9, 10, 11, 12, 13, 14, 15};
static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period)
{
unsigned int i, pwm_resolution_count, best_pwm_resolution_sel = 0;
const unsigned int *clk_rate_arr, *pwm_resolution_arr;
unsigned int clk_sel, clk_len, best_clk = 0;
unsigned int div, best_div = 0;
unsigned int m, best_m = 0;
unsigned int resolution;
unsigned int error;
unsigned int best_err = UINT_MAX;
u64 max_period, min_period;
u64 best_period = 0;
u64 max_res;
/*
* The PWM period is determined by:
*
* resolution * pre_div * 2^M
* period = --------------------------
* refclk
*
* Resolution = 2^9 bits for PWM or
* 2^{8, 9, 10, 11, 12, 13, 14, 15} bits for high resolution PWM
* pre_div = {1, 3, 5, 6} and
* M = [0..7].
*
* This allows for periods between 27uS and 384s for PWM channels and periods between
* 3uS and 24576s for high resolution PWMs.
* The PWM framework wants a period of equal or lower length than requested,
* reject anything below minimum period.
*/
if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
clk_rate_arr = lpg_clk_rates_hi_res;
clk_len = ARRAY_SIZE(lpg_clk_rates_hi_res);
pwm_resolution_arr = lpg_pwm_resolution_hi_res;
pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution_hi_res);
max_res = LPG_RESOLUTION_15BIT;
} else {
clk_rate_arr = lpg_clk_rates;
clk_len = ARRAY_SIZE(lpg_clk_rates);
pwm_resolution_arr = lpg_pwm_resolution;
pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution);
max_res = LPG_RESOLUTION_9BIT;
}
min_period = div64_u64((u64)NSEC_PER_SEC * (1 << pwm_resolution_arr[0]),
clk_rate_arr[clk_len - 1]);
if (period <= min_period)
return -EINVAL;
/* Limit period to largest possible value, to avoid overflows */
max_period = div64_u64((u64)NSEC_PER_SEC * max_res * LPG_MAX_PREDIV * (1 << LPG_MAX_M),
1024);
if (period > max_period)
period = max_period;
/*
* Search for the pre_div, refclk, resolution and M by solving the rewritten formula
* for each refclk, resolution and pre_div value:
*
* period * refclk
* M = log2 -------------------------------------
* NSEC_PER_SEC * pre_div * resolution
*/
for (i = 0; i < pwm_resolution_count; i++) {
resolution = 1 << pwm_resolution_arr[i];
for (clk_sel = 1; clk_sel < clk_len; clk_sel++) {
u64 numerator = period * clk_rate_arr[clk_sel];
for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) {
u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] *
resolution;
u64 actual;
u64 ratio;
if (numerator < denominator)
continue;
ratio = div64_u64(numerator, denominator);
m = ilog2(ratio);
if (m > LPG_MAX_M)
m = LPG_MAX_M;
actual = DIV_ROUND_UP_ULL(denominator * (1 << m),
clk_rate_arr[clk_sel]);
error = period - actual;
if (error < best_err) {
best_err = error;
best_div = div;
best_m = m;
best_clk = clk_sel;
best_period = actual;
best_pwm_resolution_sel = i;
}
}
}
}
chan->clk_sel = best_clk;
chan->pre_div_sel = best_div;
chan->pre_div_exp = best_m;
chan->period = best_period;
chan->pwm_resolution_sel = best_pwm_resolution_sel;
return 0;
}
static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty)
{
unsigned int max;
unsigned int val;
unsigned int clk_rate;
if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
max = LPG_RESOLUTION_15BIT - 1;
clk_rate = lpg_clk_rates_hi_res[chan->clk_sel];
} else {
max = LPG_RESOLUTION_9BIT - 1;
clk_rate = lpg_clk_rates[chan->clk_sel];
}
val = div64_u64(duty * clk_rate,
(u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp));
chan->pwm_value = min(val, max);
}
static void lpg_apply_freq(struct lpg_channel *chan)
{
unsigned long val;
struct lpg *lpg = chan->lpg;
if (!chan->enabled)
return;
val = chan->clk_sel;
/* Specify resolution, based on the subtype of the channel */
switch (chan->subtype) {
case LPG_SUBTYPE_LPG:
val |= GENMASK(5, 4);
break;
case LPG_SUBTYPE_PWM:
val |= BIT(2);
break;
case LPG_SUBTYPE_HI_RES_PWM:
val |= FIELD_PREP(PWM_SIZE_HI_RES_MASK, chan->pwm_resolution_sel);
break;
case LPG_SUBTYPE_LPG_LITE:
default:
val |= BIT(4);
break;
}
regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val);
val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) |
FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp);
regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val);
}
#define LPG_ENABLE_GLITCH_REMOVAL BIT(5)
static void lpg_enable_glitch(struct lpg_channel *chan)
{
struct lpg *lpg = chan->lpg;
regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
LPG_ENABLE_GLITCH_REMOVAL, 0);
}
static void lpg_disable_glitch(struct lpg_channel *chan)
{
struct lpg *lpg = chan->lpg;
regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
LPG_ENABLE_GLITCH_REMOVAL,
LPG_ENABLE_GLITCH_REMOVAL);
}
static void lpg_apply_pwm_value(struct lpg_channel *chan)
{
struct lpg *lpg = chan->lpg;
u16 val = chan->pwm_value;
if (!chan->enabled)
return;
regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val));
}
#define LPG_PATTERN_CONFIG_LO_TO_HI BIT(4)
#define LPG_PATTERN_CONFIG_REPEAT BIT(3)
#define LPG_PATTERN_CONFIG_TOGGLE BIT(2)
#define LPG_PATTERN_CONFIG_PAUSE_HI BIT(1)
#define LPG_PATTERN_CONFIG_PAUSE_LO BIT(0)
static void lpg_sdam_apply_lut_control(struct lpg_channel *chan)
{
struct nvmem_device *lpg_chan_sdam = chan->lpg->lpg_chan_sdam;
unsigned int lo_idx = chan->pattern_lo_idx;
unsigned int hi_idx = chan->pattern_hi_idx;
u8 val = 0, conf = 0, lut_offset = 0;
unsigned int hi_pause, lo_pause;
struct lpg *lpg = chan->lpg;
if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
return;
hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, chan->ramp_tick_ms);
lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, chan->ramp_tick_ms);
if (!chan->ramp_oneshot)
conf |= LPG_PATTERN_CONFIG_REPEAT;
if (chan->ramp_hi_pause_ms && lpg->lut_sdam)
conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
if (chan->ramp_lo_pause_ms && lpg->lut_sdam)
conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
if (lpg->lut_sdam) {
lut_offset = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET - SDAM_START_BASE;
hi_idx += lut_offset;
lo_idx += lut_offset;
}
nvmem_device_write(lpg_chan_sdam, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
nvmem_device_write(lpg_chan_sdam, SDAM_PATTERN_CONFIG_OFFSET + chan->sdam_offset, 1, &conf);
nvmem_device_write(lpg_chan_sdam, SDAM_END_INDEX_OFFSET + chan->sdam_offset, 1, &hi_idx);
nvmem_device_write(lpg_chan_sdam, SDAM_START_INDEX_OFFSET + chan->sdam_offset, 1, &lo_idx);
val = RAMP_STEP_DURATION(chan->ramp_tick_ms);
nvmem_device_write(lpg_chan_sdam, SDAM_REG_RAMP_STEP_DURATION, 1, &val);
if (lpg->lut_sdam) {
nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_HI_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &hi_pause);
nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_LO_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &lo_pause);
}
}
static void lpg_apply_lut_control(struct lpg_channel *chan)
{
struct lpg *lpg = chan->lpg;
unsigned int hi_pause;
unsigned int lo_pause;
unsigned int conf = 0;
unsigned int lo_idx = chan->pattern_lo_idx;
unsigned int hi_idx = chan->pattern_hi_idx;
u16 step = chan->ramp_tick_ms;
if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
return;
hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step);
lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step);
if (!chan->ramp_reverse)
conf |= LPG_PATTERN_CONFIG_LO_TO_HI;
if (!chan->ramp_oneshot)
conf |= LPG_PATTERN_CONFIG_REPEAT;
if (chan->ramp_ping_pong)
conf |= LPG_PATTERN_CONFIG_TOGGLE;
if (chan->ramp_hi_pause_ms)
conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
if (chan->ramp_lo_pause_ms)
conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf);
regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx);
regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx);
regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step));
regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause);
regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause);
}
#define LPG_ENABLE_CONTROL_OUTPUT BIT(7)
#define LPG_ENABLE_CONTROL_BUFFER_TRISTATE BIT(5)
#define LPG_ENABLE_CONTROL_SRC_PWM BIT(2)
#define LPG_ENABLE_CONTROL_RAMP_GEN BIT(1)
static void lpg_apply_control(struct lpg_channel *chan)
{
unsigned int ctrl;
struct lpg *lpg = chan->lpg;
ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE;
if (chan->enabled)
ctrl |= LPG_ENABLE_CONTROL_OUTPUT;
if (chan->pattern_lo_idx != chan->pattern_hi_idx)
ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN;
else
ctrl |= LPG_ENABLE_CONTROL_SRC_PWM;
regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl);
/*
* Due to LPG hardware bug, in the PWM mode, having enabled PWM,
* We have to write PWM values one more time.
*/
if (chan->enabled)
lpg_apply_pwm_value(chan);
}
#define LPG_SYNC_PWM BIT(0)
static void lpg_apply_sync(struct lpg_channel *chan)
{
struct lpg *lpg = chan->lpg;
regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM);
}
static int lpg_parse_dtest(struct lpg *lpg)
{
struct lpg_channel *chan;
struct device_node *np = lpg->dev->of_node;
int count;
int ret;
int i;
count = of_property_count_u32_elems(np, "qcom,dtest");
if (count == -EINVAL) {
return 0;
} else if (count < 0) {
ret = count;
goto err_malformed;
} else if (count != lpg->data->num_channels * 2) {
return dev_err_probe(lpg->dev, -EINVAL,
"qcom,dtest needs to be %d items\n",
lpg->data->num_channels * 2);
}
for (i = 0; i < lpg->data->num_channels; i++) {
chan = &lpg->channels[i];
ret = of_property_read_u32_index(np, "qcom,dtest", i * 2,
&chan->dtest_line);
if (ret)
goto err_malformed;
ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1,
&chan->dtest_value);
if (ret)
goto err_malformed;
}
return 0;
err_malformed:
return dev_err_probe(lpg->dev, ret, "malformed qcom,dtest\n");
}
static void lpg_apply_dtest(struct lpg_channel *chan)
{
struct lpg *lpg = chan->lpg;
if (!chan->dtest_line)
return;
regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5);
regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line),
chan->dtest_value);
}
static void lpg_apply(struct lpg_channel *chan)
{
lpg_disable_glitch(chan);
lpg_apply_freq(chan);
lpg_apply_pwm_value(chan);
lpg_apply_control(chan);
lpg_apply_sync(chan);
if (chan->lpg->lpg_chan_sdam)
lpg_sdam_apply_lut_control(chan);
else
lpg_apply_lut_control(chan);
lpg_enable_glitch(chan);
}
static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev,
struct mc_subled *subleds)
{
enum led_brightness brightness;
struct lpg_channel *chan;
unsigned int triled_enabled = 0;
unsigned int triled_mask = 0;
unsigned int lut_mask = 0;
unsigned int duty;
struct lpg *lpg = led->lpg;
int i;
for (i = 0; i < led->num_channels; i++) {
chan = led->channels[i];
brightness = subleds[i].brightness;
if (brightness == LED_OFF) {
chan->enabled = false;
chan->ramp_enabled = false;
} else if (chan->pattern_lo_idx != chan->pattern_hi_idx) {
lpg_calc_freq(chan, NSEC_PER_MSEC);
lpg_sdam_configure_triggers(chan, 1);
chan->enabled = true;
chan->ramp_enabled = true;
lut_mask |= chan->lut_mask;
triled_enabled |= chan->triled_mask;
} else {
lpg_calc_freq(chan, NSEC_PER_MSEC);
duty = div_u64(brightness * chan->period, cdev->max_brightness);
lpg_calc_duty(chan, duty);
chan->enabled = true;
chan->ramp_enabled = false;
triled_enabled |= chan->triled_mask;
}
triled_mask |= chan->triled_mask;
lpg_apply(chan);
}
/* Toggle triled lines */
if (triled_mask)
triled_set(lpg, triled_mask, triled_enabled);
/* Trigger start of ramp generator(s) */
if (lut_mask) {
lpg_lut_sync(lpg, lut_mask);
lpg_set_pbs_trigger(lpg, lut_mask);
}
}
static int lpg_brightness_single_set(struct led_classdev *cdev,
enum led_brightness value)
{
struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
struct mc_subled info;
mutex_lock(&led->lpg->lock);
info.brightness = value;
lpg_brightness_set(led, cdev, &info);
mutex_unlock(&led->lpg->lock);
return 0;
}
static int lpg_brightness_mc_set(struct led_classdev *cdev,
enum led_brightness value)
{
struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
mutex_lock(&led->lpg->lock);
led_mc_calc_color_components(mc, value);
lpg_brightness_set(led, cdev, mc->subled_info);
mutex_unlock(&led->lpg->lock);
return 0;
}
static int lpg_blink_set(struct lpg_led *led,
unsigned long *delay_on, unsigned long *delay_off)
{
struct lpg_channel *chan;
unsigned int period;
unsigned int triled_mask = 0;
struct lpg *lpg = led->lpg;
u64 duty;
int i;
if (!*delay_on && !*delay_off) {
*delay_on = 500;
*delay_off = 500;
}
duty = *delay_on * NSEC_PER_MSEC;
period = (*delay_on + *delay_off) * NSEC_PER_MSEC;
for (i = 0; i < led->num_channels; i++) {
chan = led->channels[i];
lpg_calc_freq(chan, period);
lpg_calc_duty(chan, duty);
chan->enabled = true;
chan->ramp_enabled = false;
triled_mask |= chan->triled_mask;
lpg_apply(chan);
}
/* Enable triled lines */
triled_set(lpg, triled_mask, triled_mask);
chan = led->channels[0];
duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION_9BIT);
*delay_on = div_u64(duty, NSEC_PER_MSEC);
*delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC);
return 0;
}
static int lpg_blink_single_set(struct led_classdev *cdev,
unsigned long *delay_on, unsigned long *delay_off)
{
struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
int ret;
mutex_lock(&led->lpg->lock);
ret = lpg_blink_set(led, delay_on, delay_off);
mutex_unlock(&led->lpg->lock);
return ret;
}
static int lpg_blink_mc_set(struct led_classdev *cdev,
unsigned long *delay_on, unsigned long *delay_off)
{
struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
int ret;
mutex_lock(&led->lpg->lock);
ret = lpg_blink_set(led, delay_on, delay_off);
mutex_unlock(&led->lpg->lock);
return ret;
}
static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern,
u32 len, int repeat)
{
struct lpg_channel *chan;
struct lpg *lpg = led->lpg;
struct led_pattern *pattern;
unsigned int brightness_a;
unsigned int brightness_b;
unsigned int hi_pause = 0;
unsigned int lo_pause = 0;
unsigned int actual_len;
unsigned int delta_t;
unsigned int lo_idx;
unsigned int hi_idx;
unsigned int i;
bool ping_pong = true;
int ret = -EINVAL;
/* Hardware only support oneshot or indefinite loops */
if (repeat != -1 && repeat != 1)
return -EINVAL;
/*
* The standardized leds-trigger-pattern format defines that the
* brightness of the LED follows a linear transition from one entry
* in the pattern to the next, over the given delta_t time. It
* describes that the way to perform instant transitions a zero-length
* entry should be added following a pattern entry.
*
* The LPG hardware is only able to perform the latter (no linear
* transitions), so require each entry in the pattern to be followed by
* a zero-length transition.
*/
if (len % 2)
return -EINVAL;
pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL);
if (!pattern)
return -ENOMEM;
for (i = 0; i < len; i += 2) {
if (led_pattern[i].brightness != led_pattern[i + 1].brightness)
goto out_free_pattern;
if (led_pattern[i + 1].delta_t != 0)
goto out_free_pattern;
pattern[i / 2].brightness = led_pattern[i].brightness;
pattern[i / 2].delta_t = led_pattern[i].delta_t;
}
len /= 2;
/*
* Specifying a pattern of length 1 causes the hardware to iterate
* through the entire LUT, so prohibit this.
*/
if (len < 2)
goto out_free_pattern;
/*
* The LPG plays patterns with at a fixed pace, a "low pause" can be
* used to stretch the first delay of the pattern and a "high pause"
* the last one.
*
* In order to save space the pattern can be played in "ping pong"
* mode, in which the pattern is first played forward, then "high
* pause" is applied, then the pattern is played backwards and finally
* the "low pause" is applied.
*
* The middle elements of the pattern are used to determine delta_t and
* the "low pause" and "high pause" multipliers are derrived from this.
*
* The first element in the pattern is used to determine "low pause".
*
* If the specified pattern is a palindrome the ping pong mode is
* enabled. In this scenario the delta_t of the middle entry (i.e. the
* last in the programmed pattern) determines the "high pause".
*
* SDAM-based devices do not support "ping pong", and only supports
* "low pause" and "high pause" with a dedicated SDAM LUT.
*/
/* Detect palindromes and use "ping pong" to reduce LUT usage */
if (lpg->lut_base) {
for (i = 0; i < len / 2; i++) {
brightness_a = pattern[i].brightness;
brightness_b = pattern[len - i - 1].brightness;
if (brightness_a != brightness_b) {
ping_pong = false;
break;
}
}
} else
ping_pong = false;
/* The pattern length to be written to the LUT */
if (ping_pong)
actual_len = (len + 1) / 2;
else
actual_len = len;
/*
* Validate that all delta_t in the pattern are the same, with the
* exception of the middle element in case of ping_pong.
*/
delta_t = pattern[1].delta_t;
for (i = 2; i < len; i++) {
if (pattern[i].delta_t != delta_t) {
/*
* Allow last entry in the full or shortened pattern to
* specify hi pause. Reject other variations.
*/
if (i != actual_len - 1)
goto out_free_pattern;
}
}
/* LPG_RAMP_DURATION_REG is a 9bit */
if (delta_t >= BIT(9))
goto out_free_pattern;
/*
* Find "low pause" and "high pause" in the pattern in the LUT case.
* SDAM-based devices without dedicated LUT SDAM require equal
* duration of all steps.
*/
if (lpg->lut_base || lpg->lut_sdam) {
lo_pause = pattern[0].delta_t;
hi_pause = pattern[actual_len - 1].delta_t;
} else {
if (delta_t != pattern[0].delta_t || delta_t != pattern[actual_len - 1].delta_t)
goto out_free_pattern;
}
mutex_lock(&lpg->lock);
if (lpg->lut_base)
ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx);
else
ret = lpg_lut_store_sdam(lpg, pattern, actual_len, &lo_idx, &hi_idx);
if (ret < 0)
goto out_unlock;
for (i = 0; i < led->num_channels; i++) {
chan = led->channels[i];
chan->ramp_tick_ms = delta_t;
chan->ramp_ping_pong = ping_pong;
chan->ramp_oneshot = repeat != -1;
chan->ramp_lo_pause_ms = lo_pause;
chan->ramp_hi_pause_ms = hi_pause;
chan->pattern_lo_idx = lo_idx;
chan->pattern_hi_idx = hi_idx;
}
out_unlock:
mutex_unlock(&lpg->lock);
out_free_pattern:
kfree(pattern);
return ret;
}
static int lpg_pattern_single_set(struct led_classdev *cdev,
struct led_pattern *pattern, u32 len,
int repeat)
{
struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
int ret;
ret = lpg_pattern_set(led, pattern, len, repeat);
if (ret < 0)
return ret;
lpg_brightness_single_set(cdev, LED_FULL);
return 0;
}
static int lpg_pattern_mc_set(struct led_classdev *cdev,
struct led_pattern *pattern, u32 len,
int repeat)
{
struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
unsigned int triled_mask = 0;
int ret, i;
for (i = 0; i < led->num_channels; i++)
triled_mask |= led->channels[i]->triled_mask;
triled_set(led->lpg, triled_mask, 0);
ret = lpg_pattern_set(led, pattern, len, repeat);
if (ret < 0)
return ret;
led_mc_calc_color_components(mc, LED_FULL);
lpg_brightness_set(led, cdev, mc->subled_info);
return 0;
}
static int lpg_pattern_clear(struct lpg_led *led)
{
struct lpg_channel *chan;
struct lpg *lpg = led->lpg;
int i;
mutex_lock(&lpg->lock);
chan = led->channels[0];
lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx);
for (i = 0; i < led->num_channels; i++) {
chan = led->channels[i];
lpg_sdam_configure_triggers(chan, 0);
lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
chan->pattern_lo_idx = 0;
chan->pattern_hi_idx = 0;
}
mutex_unlock(&lpg->lock);
return 0;
}
static int lpg_pattern_single_clear(struct led_classdev *cdev)
{
struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
return lpg_pattern_clear(led);
}
static int lpg_pattern_mc_clear(struct led_classdev *cdev)
{
struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
return lpg_pattern_clear(led);
}
static inline struct lpg *lpg_pwm_from_chip(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct lpg *lpg = lpg_pwm_from_chip(chip);
struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
return chan->in_use ? -EBUSY : 0;
}
/*
* Limitations:
* - Updating both duty and period is not done atomically, so the output signal
* will momentarily be a mix of the settings.
* - Changed parameters takes effect immediately.
* - A disabled channel outputs a logical 0.
*/
static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct lpg *lpg = lpg_pwm_from_chip(chip);
struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
int ret = 0;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
mutex_lock(&lpg->lock);
if (state->enabled) {
ret = lpg_calc_freq(chan, state->period);
if (ret < 0)
goto out_unlock;
lpg_calc_duty(chan, state->duty_cycle);
}
chan->enabled = state->enabled;
lpg_apply(chan);
triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0);
out_unlock:
mutex_unlock(&lpg->lock);
return ret;
}
static int lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct lpg *lpg = lpg_pwm_from_chip(chip);
struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
unsigned int resolution;
unsigned int pre_div;
unsigned int refclk;
unsigned int val;
unsigned int m;
u16 pwm_value;
int ret;
ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val);
if (ret)
return ret;
if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
refclk = lpg_clk_rates_hi_res[FIELD_GET(PWM_CLK_SELECT_HI_RES_MASK, val)];
resolution = lpg_pwm_resolution_hi_res[FIELD_GET(PWM_SIZE_HI_RES_MASK, val)];
} else {
refclk = lpg_clk_rates[FIELD_GET(PWM_CLK_SELECT_MASK, val)];
resolution = 9;
}
if (refclk) {
ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val);
if (ret)
return ret;
pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)];
m = FIELD_GET(PWM_FREQ_EXP_MASK, val);
ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value));
if (ret)
return ret;
state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * (1 << resolution) *
pre_div * (1 << m), refclk);
state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk);
} else {
state->period = 0;
state->duty_cycle = 0;
}
ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val);
if (ret)
return ret;
state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val);
state->polarity = PWM_POLARITY_NORMAL;
if (state->duty_cycle > state->period)
state->duty_cycle = state->period;
return 0;
}
static const struct pwm_ops lpg_pwm_ops = {
.request = lpg_pwm_request,
.apply = lpg_pwm_apply,
.get_state = lpg_pwm_get_state,
};
static int lpg_add_pwm(struct lpg *lpg)
{
struct pwm_chip *chip;
int ret;
lpg->pwm = chip = devm_pwmchip_alloc(lpg->dev, lpg->num_channels, 0);
if (IS_ERR(chip))
return PTR_ERR(chip);
chip->ops = &lpg_pwm_ops;
pwmchip_set_drvdata(chip, lpg);
ret = devm_pwmchip_add(lpg->dev, chip);
if (ret)
dev_err_probe(lpg->dev, ret, "failed to add PWM chip\n");
return ret;
}
static int lpg_parse_channel(struct lpg *lpg, struct device_node *np,
struct lpg_channel **channel)
{
struct lpg_channel *chan;
u32 color = LED_COLOR_ID_GREEN;
u32 reg;
int ret;
ret = of_property_read_u32(np, "reg", ®);
if (ret || !reg || reg > lpg->num_channels)
return dev_err_probe(lpg->dev, -EINVAL, "invalid \"reg\" of %pOFn\n", np);
chan = &lpg->channels[reg - 1];
chan->in_use = true;
ret = of_property_read_u32(np, "color", &color);
if (ret < 0 && ret != -EINVAL)
return dev_err_probe(lpg->dev, ret,
"failed to parse \"color\" of %pOF\n", np);
chan->color = color;
*channel = chan;
return 0;
}
static int lpg_add_led(struct lpg *lpg, struct device_node *np)
{
struct led_init_data init_data = {};
struct led_classdev *cdev;
struct mc_subled *info;
struct lpg_led *led;
const char *state;
int num_channels;
u32 color = 0;
int ret;
int i;
ret = of_property_read_u32(np, "color", &color);
if (ret < 0 && ret != -EINVAL)
return dev_err_probe(lpg->dev, ret,
"failed to parse \"color\" of %pOF\n", np);
if (color == LED_COLOR_ID_RGB)
num_channels = of_get_available_child_count(np);
else
num_channels = 1;
led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL);
if (!led)
return -ENOMEM;
led->lpg = lpg;
led->num_channels = num_channels;
if (color == LED_COLOR_ID_RGB) {
info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
i = 0;
for_each_available_child_of_node_scoped(np, child) {
ret = lpg_parse_channel(lpg, child, &led->channels[i]);
if (ret < 0)
return ret;
info[i].color_index = led->channels[i]->color;
info[i].intensity = 0;
i++;
}
led->mcdev.subled_info = info;
led->mcdev.num_colors = num_channels;
cdev = &led->mcdev.led_cdev;
cdev->brightness_set_blocking = lpg_brightness_mc_set;
cdev->blink_set = lpg_blink_mc_set;
/* Register pattern accessors if we have a LUT block or when using PPG */
if (lpg->lut_base || lpg->lpg_chan_sdam) {
cdev->pattern_set = lpg_pattern_mc_set;
cdev->pattern_clear = lpg_pattern_mc_clear;
}
} else {
ret = lpg_parse_channel(lpg, np, &led->channels[0]);
if (ret < 0)
return ret;
cdev = &led->cdev;
cdev->brightness_set_blocking = lpg_brightness_single_set;
cdev->blink_set = lpg_blink_single_set;
/* Register pattern accessors if we have a LUT block or when using PPG */
if (lpg->lut_base || lpg->lpg_chan_sdam) {
cdev->pattern_set = lpg_pattern_single_set;
cdev->pattern_clear = lpg_pattern_single_clear;
}
}
cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL);
if (lpg->lpg_chan_sdam)
cdev->max_brightness = PPG_MAX_LED_BRIGHTNESS;
else
cdev->max_brightness = LPG_RESOLUTION_9BIT - 1;
if (!of_property_read_string(np, "default-state", &state) &&
!strcmp(state, "on"))
cdev->brightness = cdev->max_brightness;
else
cdev->brightness = LED_OFF;
cdev->brightness_set_blocking(cdev, cdev->brightness);
init_data.fwnode = of_fwnode_handle(np);
if (color == LED_COLOR_ID_RGB)
ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data);
else
ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data);
if (ret)
dev_err_probe(lpg->dev, ret, "unable to register %s\n", cdev->name);
return ret;
}
static int lpg_init_channels(struct lpg *lpg)
{
const struct lpg_data *data = lpg->data;
struct lpg_channel *chan;
int i;
lpg->num_channels = data->num_channels;
lpg->channels = devm_kcalloc(lpg->dev, data->num_channels,
sizeof(struct lpg_channel), GFP_KERNEL);
if (!lpg->channels)
return -ENOMEM;
for (i = 0; i < data->num_channels; i++) {
chan = &lpg->channels[i];
chan->lpg = lpg;
chan->base = data->channels[i].base;
chan->triled_mask = data->channels[i].triled_mask;
chan->lut_mask = BIT(i);
chan->sdam_offset = data->channels[i].sdam_offset;
regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype);
}
return 0;
}
static int lpg_init_triled(struct lpg *lpg)
{
struct device_node *np = lpg->dev->of_node;
int ret;
/* Skip initialization if we don't have a triled block */
if (!lpg->data->triled_base)
return 0;
lpg->triled_base = lpg->data->triled_base;
lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl;
lpg->triled_has_src_sel = lpg->data->triled_has_src_sel;
if (lpg->triled_has_src_sel) {
ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src);
if (ret || lpg->triled_src == 2 || lpg->triled_src > 3)
return dev_err_probe(lpg->dev, -EINVAL,
"invalid power source\n");
}
/* Disable automatic trickle charge LED */
if (lpg->triled_has_atc_ctl)
regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0);
/* Configure power source */
if (lpg->triled_has_src_sel)
regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src);
/* Default all outputs to off */
regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0);
return 0;
}
static int lpg_init_lut(struct lpg *lpg)
{
const struct lpg_data *data = lpg->data;
if (!data->lut_size)
return 0;
lpg->lut_size = data->lut_size;
if (data->lut_base)
lpg->lut_base = data->lut_base;
lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL);
if (!lpg->lut_bitmap)
return -ENOMEM;
return 0;
}
static int lpg_init_sdam(struct lpg *lpg)
{
int i, sdam_count, rc;
u8 val = 0;
sdam_count = of_property_count_strings(lpg->dev->of_node, "nvmem-names");
if (sdam_count <= 0)
return 0;
if (sdam_count > SDAM_MAX_DEVICES)
return -EINVAL;
/* Get the 1st SDAM device for LPG/LUT config */
lpg->lpg_chan_sdam = devm_nvmem_device_get(lpg->dev, "lpg_chan_sdam");
if (IS_ERR(lpg->lpg_chan_sdam))
return dev_err_probe(lpg->dev, PTR_ERR(lpg->lpg_chan_sdam),
"Failed to get LPG chan SDAM device\n");
if (sdam_count == 1) {
/* Get PBS device node if single SDAM device */
lpg->pbs_dev = get_pbs_client_device(lpg->dev);
if (IS_ERR(lpg->pbs_dev))
return dev_err_probe(lpg->dev, PTR_ERR(lpg->pbs_dev),
"Failed to get PBS client device\n");
} else if (sdam_count == 2) {
/* Get the 2nd SDAM device for LUT pattern */
lpg->lut_sdam = devm_nvmem_device_get(lpg->dev, "lut_sdam");
if (IS_ERR(lpg->lut_sdam))
return dev_err_probe(lpg->dev, PTR_ERR(lpg->lut_sdam),
"Failed to get LPG LUT SDAM device\n");
}
for (i = 0; i < lpg->num_channels; i++) {
struct lpg_channel *chan = &lpg->channels[i];
if (chan->sdam_offset) {
rc = nvmem_device_write(lpg->lpg_chan_sdam,
SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
if (rc < 0)
return rc;
rc = lpg_sdam_configure_triggers(chan, 0);
if (rc < 0)
return rc;
rc = lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
if (rc < 0)
return rc;
}
}
return 0;
}
static int lpg_probe(struct platform_device *pdev)
{
struct lpg *lpg;
int ret;
int i;
lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL);
if (!lpg)
return -ENOMEM;
lpg->data = of_device_get_match_data(&pdev->dev);
if (!lpg->data)
return -EINVAL;
lpg->dev = &pdev->dev;
mutex_init(&lpg->lock);
lpg->map = dev_get_regmap(pdev->dev.parent, NULL);
if (!lpg->map)
return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n");
ret = lpg_init_channels(lpg);
if (ret < 0)
return ret;
ret = lpg_parse_dtest(lpg);
if (ret < 0)
return ret;
ret = lpg_init_triled(lpg);
if (ret < 0)
return ret;
ret = lpg_init_sdam(lpg);
if (ret < 0)
return ret;
ret = lpg_init_lut(lpg);
if (ret < 0)
return ret;
for_each_available_child_of_node_scoped(pdev->dev.of_node, np) {
ret = lpg_add_led(lpg, np);
if (ret)
return ret;
}
for (i = 0; i < lpg->num_channels; i++)
lpg_apply_dtest(&lpg->channels[i]);
return lpg_add_pwm(lpg);
}
static const struct lpg_data pm660l_lpg_data = {
.lut_base = 0xb000,
.lut_size = 49,
.triled_base = 0xd000,
.triled_has_atc_ctl = true,
.triled_has_src_sel = true,
.num_channels = 4,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb100, .triled_mask = BIT(5) },
{ .base = 0xb200, .triled_mask = BIT(6) },
{ .base = 0xb300, .triled_mask = BIT(7) },
{ .base = 0xb400 },
},
};
static const struct lpg_data pm8916_pwm_data = {
.num_channels = 1,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xbc00 },
},
};
static const struct lpg_data pm8941_lpg_data = {
.lut_base = 0xb000,
.lut_size = 64,
.triled_base = 0xd000,
.triled_has_atc_ctl = true,
.triled_has_src_sel = true,
.num_channels = 8,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb100 },
{ .base = 0xb200 },
{ .base = 0xb300 },
{ .base = 0xb400 },
{ .base = 0xb500, .triled_mask = BIT(5) },
{ .base = 0xb600, .triled_mask = BIT(6) },
{ .base = 0xb700, .triled_mask = BIT(7) },
{ .base = 0xb800 },
},
};
static const struct lpg_data pmi8950_pwm_data = {
.num_channels = 1,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb000 },
},
};
static const struct lpg_data pm8994_lpg_data = {
.lut_base = 0xb000,
.lut_size = 64,
.num_channels = 6,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb100 },
{ .base = 0xb200 },
{ .base = 0xb300 },
{ .base = 0xb400 },
{ .base = 0xb500 },
{ .base = 0xb600 },
},
};
/* PMI632 uses SDAM instead of LUT for pattern */
static const struct lpg_data pmi632_lpg_data = {
.triled_base = 0xd000,
.lut_size = 64,
.num_channels = 5,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb300, .triled_mask = BIT(7), .sdam_offset = 0x48 },
{ .base = 0xb400, .triled_mask = BIT(6), .sdam_offset = 0x56 },
{ .base = 0xb500, .triled_mask = BIT(5), .sdam_offset = 0x64 },
{ .base = 0xb600 },
{ .base = 0xb700 },
},
};
static const struct lpg_data pmi8994_lpg_data = {
.lut_base = 0xb000,
.lut_size = 24,
.triled_base = 0xd000,
.triled_has_atc_ctl = true,
.triled_has_src_sel = true,
.num_channels = 4,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb100, .triled_mask = BIT(5) },
{ .base = 0xb200, .triled_mask = BIT(6) },
{ .base = 0xb300, .triled_mask = BIT(7) },
{ .base = 0xb400 },
},
};
static const struct lpg_data pmi8998_lpg_data = {
.lut_base = 0xb000,
.lut_size = 49,
.triled_base = 0xd000,
.num_channels = 6,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb100 },
{ .base = 0xb200 },
{ .base = 0xb300, .triled_mask = BIT(5) },
{ .base = 0xb400, .triled_mask = BIT(6) },
{ .base = 0xb500, .triled_mask = BIT(7) },
{ .base = 0xb600 },
},
};
static const struct lpg_data pm8150b_lpg_data = {
.lut_base = 0xb000,
.lut_size = 24,
.triled_base = 0xd000,
.num_channels = 2,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb100, .triled_mask = BIT(7) },
{ .base = 0xb200, .triled_mask = BIT(6) },
},
};
static const struct lpg_data pm8150l_lpg_data = {
.lut_base = 0xb000,
.lut_size = 48,
.triled_base = 0xd000,
.num_channels = 5,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xb100, .triled_mask = BIT(7) },
{ .base = 0xb200, .triled_mask = BIT(6) },
{ .base = 0xb300, .triled_mask = BIT(5) },
{ .base = 0xbc00 },
{ .base = 0xbd00 },
},
};
static const struct lpg_data pm8350c_pwm_data = {
.triled_base = 0xef00,
.lut_size = 122,
.num_channels = 4,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xe800, .triled_mask = BIT(7), .sdam_offset = 0x48 },
{ .base = 0xe900, .triled_mask = BIT(6), .sdam_offset = 0x56 },
{ .base = 0xea00, .triled_mask = BIT(5), .sdam_offset = 0x64 },
{ .base = 0xeb00 },
},
};
static const struct lpg_data pmk8550_pwm_data = {
.num_channels = 2,
.channels = (const struct lpg_channel_data[]) {
{ .base = 0xe800 },
{ .base = 0xe900 },
},
};
static const struct of_device_id lpg_of_table[] = {
{ .compatible = "qcom,pm660l-lpg", .data = &pm660l_lpg_data },
{ .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data },
{ .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data },
{ .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data },
{ .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data },
{ .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data },
{ .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data },
{ .compatible = "qcom,pmi632-lpg", .data = &pmi632_lpg_data },
{ .compatible = "qcom,pmi8950-pwm", .data = &pmi8950_pwm_data },
{ .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data },
{ .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data },
{ .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data },
{ .compatible = "qcom,pmk8550-pwm", .data = &pmk8550_pwm_data },
{}
};
MODULE_DEVICE_TABLE(of, lpg_of_table);
static struct platform_driver lpg_driver = {
.probe = lpg_probe,
.driver = {
.name = "qcom-spmi-lpg",
.of_match_table = lpg_of_table,
},
};
module_platform_driver(lpg_driver);
MODULE_DESCRIPTION("Qualcomm LPG LED driver");
MODULE_LICENSE("GPL v2");