/*
* Copyright (c) 2016-2017 Hisilicon Limited.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/acpi.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <net/addrconf.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_umem.h>
#include <rdma/uverbs_ioctl.h>
#include "hnae3.h"
#include "hns_roce_common.h"
#include "hns_roce_device.h"
#include "hns_roce_cmd.h"
#include "hns_roce_hem.h"
#include "hns_roce_hw_v2.h"
enum {
CMD_RST_PRC_OTHERS,
CMD_RST_PRC_SUCCESS,
CMD_RST_PRC_EBUSY,
};
enum ecc_resource_type {
ECC_RESOURCE_QPC,
ECC_RESOURCE_CQC,
ECC_RESOURCE_MPT,
ECC_RESOURCE_SRQC,
ECC_RESOURCE_GMV,
ECC_RESOURCE_QPC_TIMER,
ECC_RESOURCE_CQC_TIMER,
ECC_RESOURCE_SCCC,
ECC_RESOURCE_COUNT,
};
static const struct {
const char *name;
u8 read_bt0_op;
u8 write_bt0_op;
} fmea_ram_res[] = {
{ "ECC_RESOURCE_QPC",
HNS_ROCE_CMD_READ_QPC_BT0, HNS_ROCE_CMD_WRITE_QPC_BT0 },
{ "ECC_RESOURCE_CQC",
HNS_ROCE_CMD_READ_CQC_BT0, HNS_ROCE_CMD_WRITE_CQC_BT0 },
{ "ECC_RESOURCE_MPT",
HNS_ROCE_CMD_READ_MPT_BT0, HNS_ROCE_CMD_WRITE_MPT_BT0 },
{ "ECC_RESOURCE_SRQC",
HNS_ROCE_CMD_READ_SRQC_BT0, HNS_ROCE_CMD_WRITE_SRQC_BT0 },
/* ECC_RESOURCE_GMV is handled by cmdq, not mailbox */
{ "ECC_RESOURCE_GMV",
0, 0 },
{ "ECC_RESOURCE_QPC_TIMER",
HNS_ROCE_CMD_READ_QPC_TIMER_BT0, HNS_ROCE_CMD_WRITE_QPC_TIMER_BT0 },
{ "ECC_RESOURCE_CQC_TIMER",
HNS_ROCE_CMD_READ_CQC_TIMER_BT0, HNS_ROCE_CMD_WRITE_CQC_TIMER_BT0 },
{ "ECC_RESOURCE_SCCC",
HNS_ROCE_CMD_READ_SCCC_BT0, HNS_ROCE_CMD_WRITE_SCCC_BT0 },
};
static inline void set_data_seg_v2(struct hns_roce_v2_wqe_data_seg *dseg,
struct ib_sge *sg)
{
dseg->lkey = cpu_to_le32(sg->lkey);
dseg->addr = cpu_to_le64(sg->addr);
dseg->len = cpu_to_le32(sg->length);
}
/*
* mapped-value = 1 + real-value
* The hns wr opcode real value is start from 0, In order to distinguish between
* initialized and uninitialized map values, we plus 1 to the actual value when
* defining the mapping, so that the validity can be identified by checking the
* mapped value is greater than 0.
*/
#define HR_OPC_MAP(ib_key, hr_key) \
[IB_WR_ ## ib_key] = 1 + HNS_ROCE_V2_WQE_OP_ ## hr_key
static const u32 hns_roce_op_code[] = {
HR_OPC_MAP(RDMA_WRITE, RDMA_WRITE),
HR_OPC_MAP(RDMA_WRITE_WITH_IMM, RDMA_WRITE_WITH_IMM),
HR_OPC_MAP(SEND, SEND),
HR_OPC_MAP(SEND_WITH_IMM, SEND_WITH_IMM),
HR_OPC_MAP(RDMA_READ, RDMA_READ),
HR_OPC_MAP(ATOMIC_CMP_AND_SWP, ATOM_CMP_AND_SWAP),
HR_OPC_MAP(ATOMIC_FETCH_AND_ADD, ATOM_FETCH_AND_ADD),
HR_OPC_MAP(SEND_WITH_INV, SEND_WITH_INV),
HR_OPC_MAP(MASKED_ATOMIC_CMP_AND_SWP, ATOM_MSK_CMP_AND_SWAP),
HR_OPC_MAP(MASKED_ATOMIC_FETCH_AND_ADD, ATOM_MSK_FETCH_AND_ADD),
HR_OPC_MAP(REG_MR, FAST_REG_PMR),
};
static u32 to_hr_opcode(u32 ib_opcode)
{
if (ib_opcode >= ARRAY_SIZE(hns_roce_op_code))
return HNS_ROCE_V2_WQE_OP_MASK;
return hns_roce_op_code[ib_opcode] ? hns_roce_op_code[ib_opcode] - 1 :
HNS_ROCE_V2_WQE_OP_MASK;
}
static void set_frmr_seg(struct hns_roce_v2_rc_send_wqe *rc_sq_wqe,
const struct ib_reg_wr *wr)
{
struct hns_roce_wqe_frmr_seg *fseg =
(void *)rc_sq_wqe + sizeof(struct hns_roce_v2_rc_send_wqe);
struct hns_roce_mr *mr = to_hr_mr(wr->mr);
u64 pbl_ba;
/* use ib_access_flags */
hr_reg_write_bool(fseg, FRMR_BIND_EN, wr->access & IB_ACCESS_MW_BIND);
hr_reg_write_bool(fseg, FRMR_ATOMIC,
wr->access & IB_ACCESS_REMOTE_ATOMIC);
hr_reg_write_bool(fseg, FRMR_RR, wr->access & IB_ACCESS_REMOTE_READ);
hr_reg_write_bool(fseg, FRMR_RW, wr->access & IB_ACCESS_REMOTE_WRITE);
hr_reg_write_bool(fseg, FRMR_LW, wr->access & IB_ACCESS_LOCAL_WRITE);
/* Data structure reuse may lead to confusion */
pbl_ba = mr->pbl_mtr.hem_cfg.root_ba;
rc_sq_wqe->msg_len = cpu_to_le32(lower_32_bits(pbl_ba));
rc_sq_wqe->inv_key = cpu_to_le32(upper_32_bits(pbl_ba));
rc_sq_wqe->byte_16 = cpu_to_le32(wr->mr->length & 0xffffffff);
rc_sq_wqe->byte_20 = cpu_to_le32(wr->mr->length >> 32);
rc_sq_wqe->rkey = cpu_to_le32(wr->key);
rc_sq_wqe->va = cpu_to_le64(wr->mr->iova);
hr_reg_write(fseg, FRMR_PBL_SIZE, mr->npages);
hr_reg_write(fseg, FRMR_PBL_BUF_PG_SZ,
to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.buf_pg_shift));
hr_reg_clear(fseg, FRMR_BLK_MODE);
}
static void set_atomic_seg(const struct ib_send_wr *wr,
struct hns_roce_v2_rc_send_wqe *rc_sq_wqe,
unsigned int valid_num_sge)
{
struct hns_roce_v2_wqe_data_seg *dseg =
(void *)rc_sq_wqe + sizeof(struct hns_roce_v2_rc_send_wqe);
struct hns_roce_wqe_atomic_seg *aseg =
(void *)dseg + sizeof(struct hns_roce_v2_wqe_data_seg);
set_data_seg_v2(dseg, wr->sg_list);
if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP) {
aseg->fetchadd_swap_data = cpu_to_le64(atomic_wr(wr)->swap);
aseg->cmp_data = cpu_to_le64(atomic_wr(wr)->compare_add);
} else {
aseg->fetchadd_swap_data =
cpu_to_le64(atomic_wr(wr)->compare_add);
aseg->cmp_data = 0;
}
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SGE_NUM, valid_num_sge);
}
static int fill_ext_sge_inl_data(struct hns_roce_qp *qp,
const struct ib_send_wr *wr,
unsigned int *sge_idx, u32 msg_len)
{
struct ib_device *ibdev = &(to_hr_dev(qp->ibqp.device))->ib_dev;
unsigned int left_len_in_pg;
unsigned int idx = *sge_idx;
unsigned int i = 0;
unsigned int len;
void *addr;
void *dseg;
if (msg_len > qp->sq.ext_sge_cnt * HNS_ROCE_SGE_SIZE) {
ibdev_err(ibdev,
"no enough extended sge space for inline data.\n");
return -EINVAL;
}
dseg = hns_roce_get_extend_sge(qp, idx & (qp->sge.sge_cnt - 1));
left_len_in_pg = hr_hw_page_align((uintptr_t)dseg) - (uintptr_t)dseg;
len = wr->sg_list[0].length;
addr = (void *)(unsigned long)(wr->sg_list[0].addr);
/* When copying data to extended sge space, the left length in page may
* not long enough for current user's sge. So the data should be
* splited into several parts, one in the first page, and the others in
* the subsequent pages.
*/
while (1) {
if (len <= left_len_in_pg) {
memcpy(dseg, addr, len);
idx += len / HNS_ROCE_SGE_SIZE;
i++;
if (i >= wr->num_sge)
break;
left_len_in_pg -= len;
len = wr->sg_list[i].length;
addr = (void *)(unsigned long)(wr->sg_list[i].addr);
dseg += len;
} else {
memcpy(dseg, addr, left_len_in_pg);
len -= left_len_in_pg;
addr += left_len_in_pg;
idx += left_len_in_pg / HNS_ROCE_SGE_SIZE;
dseg = hns_roce_get_extend_sge(qp,
idx & (qp->sge.sge_cnt - 1));
left_len_in_pg = 1 << HNS_HW_PAGE_SHIFT;
}
}
*sge_idx = idx;
return 0;
}
static void set_extend_sge(struct hns_roce_qp *qp, struct ib_sge *sge,
unsigned int *sge_ind, unsigned int cnt)
{
struct hns_roce_v2_wqe_data_seg *dseg;
unsigned int idx = *sge_ind;
while (cnt > 0) {
dseg = hns_roce_get_extend_sge(qp, idx & (qp->sge.sge_cnt - 1));
if (likely(sge->length)) {
set_data_seg_v2(dseg, sge);
idx++;
cnt--;
}
sge++;
}
*sge_ind = idx;
}
static bool check_inl_data_len(struct hns_roce_qp *qp, unsigned int len)
{
struct hns_roce_dev *hr_dev = to_hr_dev(qp->ibqp.device);
int mtu = ib_mtu_enum_to_int(qp->path_mtu);
if (mtu < 0 || len > qp->max_inline_data || len > mtu) {
ibdev_err(&hr_dev->ib_dev,
"invalid length of data, data len = %u, max inline len = %u, path mtu = %d.\n",
len, qp->max_inline_data, mtu);
return false;
}
return true;
}
static int set_rc_inl(struct hns_roce_qp *qp, const struct ib_send_wr *wr,
struct hns_roce_v2_rc_send_wqe *rc_sq_wqe,
unsigned int *sge_idx)
{
struct hns_roce_dev *hr_dev = to_hr_dev(qp->ibqp.device);
u32 msg_len = le32_to_cpu(rc_sq_wqe->msg_len);
struct ib_device *ibdev = &hr_dev->ib_dev;
unsigned int curr_idx = *sge_idx;
void *dseg = rc_sq_wqe;
unsigned int i;
int ret;
if (unlikely(wr->opcode == IB_WR_RDMA_READ)) {
ibdev_err(ibdev, "invalid inline parameters!\n");
return -EINVAL;
}
if (!check_inl_data_len(qp, msg_len))
return -EINVAL;
dseg += sizeof(struct hns_roce_v2_rc_send_wqe);
if (msg_len <= HNS_ROCE_V2_MAX_RC_INL_INN_SZ) {
hr_reg_clear(rc_sq_wqe, RC_SEND_WQE_INL_TYPE);
for (i = 0; i < wr->num_sge; i++) {
memcpy(dseg, ((void *)wr->sg_list[i].addr),
wr->sg_list[i].length);
dseg += wr->sg_list[i].length;
}
} else {
hr_reg_enable(rc_sq_wqe, RC_SEND_WQE_INL_TYPE);
ret = fill_ext_sge_inl_data(qp, wr, &curr_idx, msg_len);
if (ret)
return ret;
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SGE_NUM, curr_idx - *sge_idx);
}
*sge_idx = curr_idx;
return 0;
}
static int set_rwqe_data_seg(struct ib_qp *ibqp, const struct ib_send_wr *wr,
struct hns_roce_v2_rc_send_wqe *rc_sq_wqe,
unsigned int *sge_ind,
unsigned int valid_num_sge)
{
struct hns_roce_v2_wqe_data_seg *dseg =
(void *)rc_sq_wqe + sizeof(struct hns_roce_v2_rc_send_wqe);
struct hns_roce_qp *qp = to_hr_qp(ibqp);
int j = 0;
int i;
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_MSG_START_SGE_IDX,
(*sge_ind) & (qp->sge.sge_cnt - 1));
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_INLINE,
!!(wr->send_flags & IB_SEND_INLINE));
if (wr->send_flags & IB_SEND_INLINE)
return set_rc_inl(qp, wr, rc_sq_wqe, sge_ind);
if (valid_num_sge <= HNS_ROCE_SGE_IN_WQE) {
for (i = 0; i < wr->num_sge; i++) {
if (likely(wr->sg_list[i].length)) {
set_data_seg_v2(dseg, wr->sg_list + i);
dseg++;
}
}
} else {
for (i = 0; i < wr->num_sge && j < HNS_ROCE_SGE_IN_WQE; i++) {
if (likely(wr->sg_list[i].length)) {
set_data_seg_v2(dseg, wr->sg_list + i);
dseg++;
j++;
}
}
set_extend_sge(qp, wr->sg_list + i, sge_ind,
valid_num_sge - HNS_ROCE_SGE_IN_WQE);
}
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SGE_NUM, valid_num_sge);
return 0;
}
static int check_send_valid(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *hr_qp)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
if (unlikely(hr_qp->state == IB_QPS_RESET ||
hr_qp->state == IB_QPS_INIT ||
hr_qp->state == IB_QPS_RTR)) {
ibdev_err(ibdev, "failed to post WQE, QP state %u!\n",
hr_qp->state);
return -EINVAL;
} else if (unlikely(hr_dev->state >= HNS_ROCE_DEVICE_STATE_RST_DOWN)) {
ibdev_err(ibdev, "failed to post WQE, dev state %d!\n",
hr_dev->state);
return -EIO;
}
return 0;
}
static unsigned int calc_wr_sge_num(const struct ib_send_wr *wr,
unsigned int *sge_len)
{
unsigned int valid_num = 0;
unsigned int len = 0;
int i;
for (i = 0; i < wr->num_sge; i++) {
if (likely(wr->sg_list[i].length)) {
len += wr->sg_list[i].length;
valid_num++;
}
}
*sge_len = len;
return valid_num;
}
static __le32 get_immtdata(const struct ib_send_wr *wr)
{
switch (wr->opcode) {
case IB_WR_SEND_WITH_IMM:
case IB_WR_RDMA_WRITE_WITH_IMM:
return cpu_to_le32(be32_to_cpu(wr->ex.imm_data));
default:
return 0;
}
}
static int set_ud_opcode(struct hns_roce_v2_ud_send_wqe *ud_sq_wqe,
const struct ib_send_wr *wr)
{
u32 ib_op = wr->opcode;
if (ib_op != IB_WR_SEND && ib_op != IB_WR_SEND_WITH_IMM)
return -EINVAL;
ud_sq_wqe->immtdata = get_immtdata(wr);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_OPCODE, to_hr_opcode(ib_op));
return 0;
}
static int fill_ud_av(struct hns_roce_v2_ud_send_wqe *ud_sq_wqe,
struct hns_roce_ah *ah)
{
struct ib_device *ib_dev = ah->ibah.device;
struct hns_roce_dev *hr_dev = to_hr_dev(ib_dev);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_UDPSPN, ah->av.udp_sport);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_HOPLIMIT, ah->av.hop_limit);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_TCLASS, ah->av.tclass);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_FLOW_LABEL, ah->av.flowlabel);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_SL, ah->av.sl);
ud_sq_wqe->sgid_index = ah->av.gid_index;
memcpy(ud_sq_wqe->dmac, ah->av.mac, ETH_ALEN);
memcpy(ud_sq_wqe->dgid, ah->av.dgid, GID_LEN_V2);
if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09)
return 0;
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_VLAN_EN, ah->av.vlan_en);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_VLAN, ah->av.vlan_id);
return 0;
}
static inline int set_ud_wqe(struct hns_roce_qp *qp,
const struct ib_send_wr *wr,
void *wqe, unsigned int *sge_idx,
unsigned int owner_bit)
{
struct hns_roce_ah *ah = to_hr_ah(ud_wr(wr)->ah);
struct hns_roce_v2_ud_send_wqe *ud_sq_wqe = wqe;
unsigned int curr_idx = *sge_idx;
unsigned int valid_num_sge;
u32 msg_len = 0;
int ret;
valid_num_sge = calc_wr_sge_num(wr, &msg_len);
ret = set_ud_opcode(ud_sq_wqe, wr);
if (WARN_ON(ret))
return ret;
ud_sq_wqe->msg_len = cpu_to_le32(msg_len);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_CQE,
!!(wr->send_flags & IB_SEND_SIGNALED));
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_SE,
!!(wr->send_flags & IB_SEND_SOLICITED));
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_PD, to_hr_pd(qp->ibqp.pd)->pdn);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_SGE_NUM, valid_num_sge);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_MSG_START_SGE_IDX,
curr_idx & (qp->sge.sge_cnt - 1));
ud_sq_wqe->qkey = cpu_to_le32(ud_wr(wr)->remote_qkey & 0x80000000 ?
qp->qkey : ud_wr(wr)->remote_qkey);
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_DQPN, ud_wr(wr)->remote_qpn);
ret = fill_ud_av(ud_sq_wqe, ah);
if (ret)
return ret;
qp->sl = to_hr_ah(ud_wr(wr)->ah)->av.sl;
set_extend_sge(qp, wr->sg_list, &curr_idx, valid_num_sge);
/*
* The pipeline can sequentially post all valid WQEs into WQ buffer,
* including new WQEs waiting for the doorbell to update the PI again.
* Therefore, the owner bit of WQE MUST be updated after all fields
* and extSGEs have been written into DDR instead of cache.
*/
if (qp->en_flags & HNS_ROCE_QP_CAP_OWNER_DB)
dma_wmb();
*sge_idx = curr_idx;
hr_reg_write(ud_sq_wqe, UD_SEND_WQE_OWNER, owner_bit);
return 0;
}
static int set_rc_opcode(struct hns_roce_dev *hr_dev,
struct hns_roce_v2_rc_send_wqe *rc_sq_wqe,
const struct ib_send_wr *wr)
{
u32 ib_op = wr->opcode;
int ret = 0;
rc_sq_wqe->immtdata = get_immtdata(wr);
switch (ib_op) {
case IB_WR_RDMA_READ:
case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_WRITE_WITH_IMM:
rc_sq_wqe->rkey = cpu_to_le32(rdma_wr(wr)->rkey);
rc_sq_wqe->va = cpu_to_le64(rdma_wr(wr)->remote_addr);
break;
case IB_WR_SEND:
case IB_WR_SEND_WITH_IMM:
break;
case IB_WR_ATOMIC_CMP_AND_SWP:
case IB_WR_ATOMIC_FETCH_AND_ADD:
rc_sq_wqe->rkey = cpu_to_le32(atomic_wr(wr)->rkey);
rc_sq_wqe->va = cpu_to_le64(atomic_wr(wr)->remote_addr);
break;
case IB_WR_REG_MR:
if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09)
set_frmr_seg(rc_sq_wqe, reg_wr(wr));
else
ret = -EOPNOTSUPP;
break;
case IB_WR_SEND_WITH_INV:
rc_sq_wqe->inv_key = cpu_to_le32(wr->ex.invalidate_rkey);
break;
default:
ret = -EINVAL;
}
if (unlikely(ret))
return ret;
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_OPCODE, to_hr_opcode(ib_op));
return ret;
}
static inline int set_rc_wqe(struct hns_roce_qp *qp,
const struct ib_send_wr *wr,
void *wqe, unsigned int *sge_idx,
unsigned int owner_bit)
{
struct hns_roce_dev *hr_dev = to_hr_dev(qp->ibqp.device);
struct hns_roce_v2_rc_send_wqe *rc_sq_wqe = wqe;
unsigned int curr_idx = *sge_idx;
unsigned int valid_num_sge;
u32 msg_len = 0;
int ret;
valid_num_sge = calc_wr_sge_num(wr, &msg_len);
rc_sq_wqe->msg_len = cpu_to_le32(msg_len);
ret = set_rc_opcode(hr_dev, rc_sq_wqe, wr);
if (WARN_ON(ret))
return ret;
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_FENCE,
(wr->send_flags & IB_SEND_FENCE) ? 1 : 0);
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SE,
(wr->send_flags & IB_SEND_SOLICITED) ? 1 : 0);
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_CQE,
(wr->send_flags & IB_SEND_SIGNALED) ? 1 : 0);
if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
wr->opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
if (msg_len != ATOMIC_WR_LEN)
return -EINVAL;
set_atomic_seg(wr, rc_sq_wqe, valid_num_sge);
} else if (wr->opcode != IB_WR_REG_MR) {
ret = set_rwqe_data_seg(&qp->ibqp, wr, rc_sq_wqe,
&curr_idx, valid_num_sge);
if (ret)
return ret;
}
/*
* The pipeline can sequentially post all valid WQEs into WQ buffer,
* including new WQEs waiting for the doorbell to update the PI again.
* Therefore, the owner bit of WQE MUST be updated after all fields
* and extSGEs have been written into DDR instead of cache.
*/
if (qp->en_flags & HNS_ROCE_QP_CAP_OWNER_DB)
dma_wmb();
*sge_idx = curr_idx;
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_OWNER, owner_bit);
return ret;
}
static inline void update_sq_db(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *qp)
{
if (unlikely(qp->state == IB_QPS_ERR)) {
flush_cqe(hr_dev, qp);
} else {
struct hns_roce_v2_db sq_db = {};
hr_reg_write(&sq_db, DB_TAG, qp->qpn);
hr_reg_write(&sq_db, DB_CMD, HNS_ROCE_V2_SQ_DB);
hr_reg_write(&sq_db, DB_PI, qp->sq.head);
hr_reg_write(&sq_db, DB_SL, qp->sl);
hns_roce_write64(hr_dev, (__le32 *)&sq_db, qp->sq.db_reg);
}
}
static inline void update_rq_db(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *qp)
{
if (unlikely(qp->state == IB_QPS_ERR)) {
flush_cqe(hr_dev, qp);
} else {
if (likely(qp->en_flags & HNS_ROCE_QP_CAP_RQ_RECORD_DB)) {
*qp->rdb.db_record =
qp->rq.head & V2_DB_PRODUCER_IDX_M;
} else {
struct hns_roce_v2_db rq_db = {};
hr_reg_write(&rq_db, DB_TAG, qp->qpn);
hr_reg_write(&rq_db, DB_CMD, HNS_ROCE_V2_RQ_DB);
hr_reg_write(&rq_db, DB_PI, qp->rq.head);
hns_roce_write64(hr_dev, (__le32 *)&rq_db,
qp->rq.db_reg);
}
}
}
static void hns_roce_write512(struct hns_roce_dev *hr_dev, u64 *val,
u64 __iomem *dest)
{
#define HNS_ROCE_WRITE_TIMES 8
struct hns_roce_v2_priv *priv = (struct hns_roce_v2_priv *)hr_dev->priv;
struct hnae3_handle *handle = priv->handle;
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
int i;
if (!hr_dev->dis_db && !ops->get_hw_reset_stat(handle))
for (i = 0; i < HNS_ROCE_WRITE_TIMES; i++)
writeq_relaxed(*(val + i), dest + i);
}
static void write_dwqe(struct hns_roce_dev *hr_dev, struct hns_roce_qp *qp,
void *wqe)
{
#define HNS_ROCE_SL_SHIFT 2
struct hns_roce_v2_rc_send_wqe *rc_sq_wqe = wqe;
/* All kinds of DirectWQE have the same header field layout */
hr_reg_enable(rc_sq_wqe, RC_SEND_WQE_FLAG);
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_DB_SL_L, qp->sl);
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_DB_SL_H,
qp->sl >> HNS_ROCE_SL_SHIFT);
hr_reg_write(rc_sq_wqe, RC_SEND_WQE_WQE_INDEX, qp->sq.head);
hns_roce_write512(hr_dev, wqe, qp->sq.db_reg);
}
static int hns_roce_v2_post_send(struct ib_qp *ibqp,
const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_qp *qp = to_hr_qp(ibqp);
unsigned long flags = 0;
unsigned int owner_bit;
unsigned int sge_idx;
unsigned int wqe_idx;
void *wqe = NULL;
u32 nreq;
int ret;
spin_lock_irqsave(&qp->sq.lock, flags);
ret = check_send_valid(hr_dev, qp);
if (unlikely(ret)) {
*bad_wr = wr;
nreq = 0;
goto out;
}
sge_idx = qp->next_sge;
for (nreq = 0; wr; ++nreq, wr = wr->next) {
if (hns_roce_wq_overflow(&qp->sq, nreq, qp->ibqp.send_cq)) {
ret = -ENOMEM;
*bad_wr = wr;
goto out;
}
wqe_idx = (qp->sq.head + nreq) & (qp->sq.wqe_cnt - 1);
if (unlikely(wr->num_sge > qp->sq.max_gs)) {
ibdev_err(ibdev, "num_sge = %d > qp->sq.max_gs = %u.\n",
wr->num_sge, qp->sq.max_gs);
ret = -EINVAL;
*bad_wr = wr;
goto out;
}
wqe = hns_roce_get_send_wqe(qp, wqe_idx);
qp->sq.wrid[wqe_idx] = wr->wr_id;
owner_bit =
~(((qp->sq.head + nreq) >> ilog2(qp->sq.wqe_cnt)) & 0x1);
/* Corresponding to the QP type, wqe process separately */
if (ibqp->qp_type == IB_QPT_RC)
ret = set_rc_wqe(qp, wr, wqe, &sge_idx, owner_bit);
else
ret = set_ud_wqe(qp, wr, wqe, &sge_idx, owner_bit);
if (unlikely(ret)) {
*bad_wr = wr;
goto out;
}
}
out:
if (likely(nreq)) {
qp->sq.head += nreq;
qp->next_sge = sge_idx;
if (nreq == 1 && !ret &&
(qp->en_flags & HNS_ROCE_QP_CAP_DIRECT_WQE))
write_dwqe(hr_dev, qp, wqe);
else
update_sq_db(hr_dev, qp);
}
spin_unlock_irqrestore(&qp->sq.lock, flags);
return ret;
}
static int check_recv_valid(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *hr_qp)
{
if (unlikely(hr_dev->state >= HNS_ROCE_DEVICE_STATE_RST_DOWN))
return -EIO;
if (hr_qp->state == IB_QPS_RESET)
return -EINVAL;
return 0;
}
static void fill_recv_sge_to_wqe(const struct ib_recv_wr *wr, void *wqe,
u32 max_sge, bool rsv)
{
struct hns_roce_v2_wqe_data_seg *dseg = wqe;
u32 i, cnt;
for (i = 0, cnt = 0; i < wr->num_sge; i++) {
/* Skip zero-length sge */
if (!wr->sg_list[i].length)
continue;
set_data_seg_v2(dseg + cnt, wr->sg_list + i);
cnt++;
}
/* Fill a reserved sge to make hw stop reading remaining segments */
if (rsv) {
dseg[cnt].lkey = cpu_to_le32(HNS_ROCE_INVALID_LKEY);
dseg[cnt].addr = 0;
dseg[cnt].len = cpu_to_le32(HNS_ROCE_INVALID_SGE_LENGTH);
} else {
/* Clear remaining segments to make ROCEE ignore sges */
if (cnt < max_sge)
memset(dseg + cnt, 0,
(max_sge - cnt) * HNS_ROCE_SGE_SIZE);
}
}
static void fill_rq_wqe(struct hns_roce_qp *hr_qp, const struct ib_recv_wr *wr,
u32 wqe_idx, u32 max_sge)
{
void *wqe = NULL;
wqe = hns_roce_get_recv_wqe(hr_qp, wqe_idx);
fill_recv_sge_to_wqe(wr, wqe, max_sge, hr_qp->rq.rsv_sge);
}
static int hns_roce_v2_post_recv(struct ib_qp *ibqp,
const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
struct ib_device *ibdev = &hr_dev->ib_dev;
u32 wqe_idx, nreq, max_sge;
unsigned long flags;
int ret;
spin_lock_irqsave(&hr_qp->rq.lock, flags);
ret = check_recv_valid(hr_dev, hr_qp);
if (unlikely(ret)) {
*bad_wr = wr;
nreq = 0;
goto out;
}
max_sge = hr_qp->rq.max_gs - hr_qp->rq.rsv_sge;
for (nreq = 0; wr; ++nreq, wr = wr->next) {
if (unlikely(hns_roce_wq_overflow(&hr_qp->rq, nreq,
hr_qp->ibqp.recv_cq))) {
ret = -ENOMEM;
*bad_wr = wr;
goto out;
}
if (unlikely(wr->num_sge > max_sge)) {
ibdev_err(ibdev, "num_sge = %d >= max_sge = %u.\n",
wr->num_sge, max_sge);
ret = -EINVAL;
*bad_wr = wr;
goto out;
}
wqe_idx = (hr_qp->rq.head + nreq) & (hr_qp->rq.wqe_cnt - 1);
fill_rq_wqe(hr_qp, wr, wqe_idx, max_sge);
hr_qp->rq.wrid[wqe_idx] = wr->wr_id;
}
out:
if (likely(nreq)) {
hr_qp->rq.head += nreq;
update_rq_db(hr_dev, hr_qp);
}
spin_unlock_irqrestore(&hr_qp->rq.lock, flags);
return ret;
}
static void *get_srq_wqe_buf(struct hns_roce_srq *srq, u32 n)
{
return hns_roce_buf_offset(srq->buf_mtr.kmem, n << srq->wqe_shift);
}
static void *get_idx_buf(struct hns_roce_idx_que *idx_que, u32 n)
{
return hns_roce_buf_offset(idx_que->mtr.kmem,
n << idx_que->entry_shift);
}
static void hns_roce_free_srq_wqe(struct hns_roce_srq *srq, u32 wqe_index)
{
/* always called with interrupts disabled. */
spin_lock(&srq->lock);
bitmap_clear(srq->idx_que.bitmap, wqe_index, 1);
srq->idx_que.tail++;
spin_unlock(&srq->lock);
}
static int hns_roce_srqwq_overflow(struct hns_roce_srq *srq)
{
struct hns_roce_idx_que *idx_que = &srq->idx_que;
return idx_que->head - idx_que->tail >= srq->wqe_cnt;
}
static int check_post_srq_valid(struct hns_roce_srq *srq, u32 max_sge,
const struct ib_recv_wr *wr)
{
struct ib_device *ib_dev = srq->ibsrq.device;
if (unlikely(wr->num_sge > max_sge)) {
ibdev_err(ib_dev,
"failed to check sge, wr->num_sge = %d, max_sge = %u.\n",
wr->num_sge, max_sge);
return -EINVAL;
}
if (unlikely(hns_roce_srqwq_overflow(srq))) {
ibdev_err(ib_dev,
"failed to check srqwq status, srqwq is full.\n");
return -ENOMEM;
}
return 0;
}
static int get_srq_wqe_idx(struct hns_roce_srq *srq, u32 *wqe_idx)
{
struct hns_roce_idx_que *idx_que = &srq->idx_que;
u32 pos;
pos = find_first_zero_bit(idx_que->bitmap, srq->wqe_cnt);
if (unlikely(pos == srq->wqe_cnt))
return -ENOSPC;
bitmap_set(idx_que->bitmap, pos, 1);
*wqe_idx = pos;
return 0;
}
static void fill_wqe_idx(struct hns_roce_srq *srq, unsigned int wqe_idx)
{
struct hns_roce_idx_que *idx_que = &srq->idx_que;
unsigned int head;
__le32 *buf;
head = idx_que->head & (srq->wqe_cnt - 1);
buf = get_idx_buf(idx_que, head);
*buf = cpu_to_le32(wqe_idx);
idx_que->head++;
}
static void update_srq_db(struct hns_roce_srq *srq)
{
struct hns_roce_dev *hr_dev = to_hr_dev(srq->ibsrq.device);
struct hns_roce_v2_db db;
hr_reg_write(&db, DB_TAG, srq->srqn);
hr_reg_write(&db, DB_CMD, HNS_ROCE_V2_SRQ_DB);
hr_reg_write(&db, DB_PI, srq->idx_que.head);
hns_roce_write64(hr_dev, (__le32 *)&db, srq->db_reg);
}
static int hns_roce_v2_post_srq_recv(struct ib_srq *ibsrq,
const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
struct hns_roce_srq *srq = to_hr_srq(ibsrq);
unsigned long flags;
int ret = 0;
u32 max_sge;
u32 wqe_idx;
void *wqe;
u32 nreq;
spin_lock_irqsave(&srq->lock, flags);
max_sge = srq->max_gs - srq->rsv_sge;
for (nreq = 0; wr; ++nreq, wr = wr->next) {
ret = check_post_srq_valid(srq, max_sge, wr);
if (ret) {
*bad_wr = wr;
break;
}
ret = get_srq_wqe_idx(srq, &wqe_idx);
if (unlikely(ret)) {
*bad_wr = wr;
break;
}
wqe = get_srq_wqe_buf(srq, wqe_idx);
fill_recv_sge_to_wqe(wr, wqe, max_sge, srq->rsv_sge);
fill_wqe_idx(srq, wqe_idx);
srq->wrid[wqe_idx] = wr->wr_id;
}
if (likely(nreq)) {
if (srq->cap_flags & HNS_ROCE_SRQ_CAP_RECORD_DB)
*srq->rdb.db_record = srq->idx_que.head &
V2_DB_PRODUCER_IDX_M;
else
update_srq_db(srq);
}
spin_unlock_irqrestore(&srq->lock, flags);
return ret;
}
static u32 hns_roce_v2_cmd_hw_reseted(struct hns_roce_dev *hr_dev,
unsigned long instance_stage,
unsigned long reset_stage)
{
/* When hardware reset has been completed once or more, we should stop
* sending mailbox&cmq&doorbell to hardware. If now in .init_instance()
* function, we should exit with error. If now at HNAE3_INIT_CLIENT
* stage of soft reset process, we should exit with error, and then
* HNAE3_INIT_CLIENT related process can rollback the operation like
* notifing hardware to free resources, HNAE3_INIT_CLIENT related
* process will exit with error to notify NIC driver to reschedule soft
* reset process once again.
*/
hr_dev->is_reset = true;
hr_dev->dis_db = true;
if (reset_stage == HNS_ROCE_STATE_RST_INIT ||
instance_stage == HNS_ROCE_STATE_INIT)
return CMD_RST_PRC_EBUSY;
return CMD_RST_PRC_SUCCESS;
}
static u32 hns_roce_v2_cmd_hw_resetting(struct hns_roce_dev *hr_dev,
unsigned long instance_stage,
unsigned long reset_stage)
{
#define HW_RESET_TIMEOUT_US 1000000
#define HW_RESET_SLEEP_US 1000
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hnae3_handle *handle = priv->handle;
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
unsigned long val;
int ret;
/* When hardware reset is detected, we should stop sending mailbox&cmq&
* doorbell to hardware. If now in .init_instance() function, we should
* exit with error. If now at HNAE3_INIT_CLIENT stage of soft reset
* process, we should exit with error, and then HNAE3_INIT_CLIENT
* related process can rollback the operation like notifing hardware to
* free resources, HNAE3_INIT_CLIENT related process will exit with
* error to notify NIC driver to reschedule soft reset process once
* again.
*/
hr_dev->dis_db = true;
ret = read_poll_timeout(ops->ae_dev_reset_cnt, val,
val > hr_dev->reset_cnt, HW_RESET_SLEEP_US,
HW_RESET_TIMEOUT_US, false, handle);
if (!ret)
hr_dev->is_reset = true;
if (!hr_dev->is_reset || reset_stage == HNS_ROCE_STATE_RST_INIT ||
instance_stage == HNS_ROCE_STATE_INIT)
return CMD_RST_PRC_EBUSY;
return CMD_RST_PRC_SUCCESS;
}
static u32 hns_roce_v2_cmd_sw_resetting(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hnae3_handle *handle = priv->handle;
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
/* When software reset is detected at .init_instance() function, we
* should stop sending mailbox&cmq&doorbell to hardware, and exit
* with error.
*/
hr_dev->dis_db = true;
if (ops->ae_dev_reset_cnt(handle) != hr_dev->reset_cnt)
hr_dev->is_reset = true;
return CMD_RST_PRC_EBUSY;
}
static u32 check_aedev_reset_status(struct hns_roce_dev *hr_dev,
struct hnae3_handle *handle)
{
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
unsigned long instance_stage; /* the current instance stage */
unsigned long reset_stage; /* the current reset stage */
unsigned long reset_cnt;
bool sw_resetting;
bool hw_resetting;
/* Get information about reset from NIC driver or RoCE driver itself,
* the meaning of the following variables from NIC driver are described
* as below:
* reset_cnt -- The count value of completed hardware reset.
* hw_resetting -- Whether hardware device is resetting now.
* sw_resetting -- Whether NIC's software reset process is running now.
*/
instance_stage = handle->rinfo.instance_state;
reset_stage = handle->rinfo.reset_state;
reset_cnt = ops->ae_dev_reset_cnt(handle);
if (reset_cnt != hr_dev->reset_cnt)
return hns_roce_v2_cmd_hw_reseted(hr_dev, instance_stage,
reset_stage);
hw_resetting = ops->get_cmdq_stat(handle);
if (hw_resetting)
return hns_roce_v2_cmd_hw_resetting(hr_dev, instance_stage,
reset_stage);
sw_resetting = ops->ae_dev_resetting(handle);
if (sw_resetting && instance_stage == HNS_ROCE_STATE_INIT)
return hns_roce_v2_cmd_sw_resetting(hr_dev);
return CMD_RST_PRC_OTHERS;
}
static bool check_device_is_in_reset(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hnae3_handle *handle = priv->handle;
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
if (hr_dev->reset_cnt != ops->ae_dev_reset_cnt(handle))
return true;
if (ops->get_hw_reset_stat(handle))
return true;
if (ops->ae_dev_resetting(handle))
return true;
return false;
}
static bool v2_chk_mbox_is_avail(struct hns_roce_dev *hr_dev, bool *busy)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
u32 status;
if (hr_dev->is_reset)
status = CMD_RST_PRC_SUCCESS;
else
status = check_aedev_reset_status(hr_dev, priv->handle);
*busy = (status == CMD_RST_PRC_EBUSY);
return status == CMD_RST_PRC_OTHERS;
}
static int hns_roce_alloc_cmq_desc(struct hns_roce_dev *hr_dev,
struct hns_roce_v2_cmq_ring *ring)
{
int size = ring->desc_num * sizeof(struct hns_roce_cmq_desc);
ring->desc = dma_alloc_coherent(hr_dev->dev, size,
&ring->desc_dma_addr, GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
return 0;
}
static void hns_roce_free_cmq_desc(struct hns_roce_dev *hr_dev,
struct hns_roce_v2_cmq_ring *ring)
{
dma_free_coherent(hr_dev->dev,
ring->desc_num * sizeof(struct hns_roce_cmq_desc),
ring->desc, ring->desc_dma_addr);
ring->desc_dma_addr = 0;
}
static int init_csq(struct hns_roce_dev *hr_dev,
struct hns_roce_v2_cmq_ring *csq)
{
dma_addr_t dma;
int ret;
csq->desc_num = CMD_CSQ_DESC_NUM;
spin_lock_init(&csq->lock);
csq->flag = TYPE_CSQ;
csq->head = 0;
ret = hns_roce_alloc_cmq_desc(hr_dev, csq);
if (ret)
return ret;
dma = csq->desc_dma_addr;
roce_write(hr_dev, ROCEE_TX_CMQ_BASEADDR_L_REG, lower_32_bits(dma));
roce_write(hr_dev, ROCEE_TX_CMQ_BASEADDR_H_REG, upper_32_bits(dma));
roce_write(hr_dev, ROCEE_TX_CMQ_DEPTH_REG,
(u32)csq->desc_num >> HNS_ROCE_CMQ_DESC_NUM_S);
/* Make sure to write CI first and then PI */
roce_write(hr_dev, ROCEE_TX_CMQ_CI_REG, 0);
roce_write(hr_dev, ROCEE_TX_CMQ_PI_REG, 0);
return 0;
}
static int hns_roce_v2_cmq_init(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
int ret;
priv->cmq.tx_timeout = HNS_ROCE_CMQ_TX_TIMEOUT;
ret = init_csq(hr_dev, &priv->cmq.csq);
if (ret)
dev_err(hr_dev->dev, "failed to init CSQ, ret = %d.\n", ret);
return ret;
}
static void hns_roce_v2_cmq_exit(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
hns_roce_free_cmq_desc(hr_dev, &priv->cmq.csq);
}
static void hns_roce_cmq_setup_basic_desc(struct hns_roce_cmq_desc *desc,
enum hns_roce_opcode_type opcode,
bool is_read)
{
memset((void *)desc, 0, sizeof(struct hns_roce_cmq_desc));
desc->opcode = cpu_to_le16(opcode);
desc->flag = cpu_to_le16(HNS_ROCE_CMD_FLAG_IN);
if (is_read)
desc->flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_WR);
else
desc->flag &= cpu_to_le16(~HNS_ROCE_CMD_FLAG_WR);
}
static int hns_roce_cmq_csq_done(struct hns_roce_dev *hr_dev)
{
u32 tail = roce_read(hr_dev, ROCEE_TX_CMQ_CI_REG);
struct hns_roce_v2_priv *priv = hr_dev->priv;
return tail == priv->cmq.csq.head;
}
static void update_cmdq_status(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hnae3_handle *handle = priv->handle;
if (handle->rinfo.reset_state == HNS_ROCE_STATE_RST_INIT ||
handle->rinfo.instance_state == HNS_ROCE_STATE_INIT)
hr_dev->cmd.state = HNS_ROCE_CMDQ_STATE_FATAL_ERR;
}
static int hns_roce_cmd_err_convert_errno(u16 desc_ret)
{
struct hns_roce_cmd_errcode errcode_table[] = {
{CMD_EXEC_SUCCESS, 0},
{CMD_NO_AUTH, -EPERM},
{CMD_NOT_EXIST, -EOPNOTSUPP},
{CMD_CRQ_FULL, -EXFULL},
{CMD_NEXT_ERR, -ENOSR},
{CMD_NOT_EXEC, -ENOTBLK},
{CMD_PARA_ERR, -EINVAL},
{CMD_RESULT_ERR, -ERANGE},
{CMD_TIMEOUT, -ETIME},
{CMD_HILINK_ERR, -ENOLINK},
{CMD_INFO_ILLEGAL, -ENXIO},
{CMD_INVALID, -EBADR},
};
u16 i;
for (i = 0; i < ARRAY_SIZE(errcode_table); i++)
if (desc_ret == errcode_table[i].return_status)
return errcode_table[i].errno;
return -EIO;
}
static u32 hns_roce_cmdq_tx_timeout(u16 opcode, u32 tx_timeout)
{
static const struct hns_roce_cmdq_tx_timeout_map cmdq_tx_timeout[] = {
{HNS_ROCE_OPC_POST_MB, HNS_ROCE_OPC_POST_MB_TIMEOUT},
};
int i;
for (i = 0; i < ARRAY_SIZE(cmdq_tx_timeout); i++)
if (cmdq_tx_timeout[i].opcode == opcode)
return cmdq_tx_timeout[i].tx_timeout;
return tx_timeout;
}
static void hns_roce_wait_csq_done(struct hns_roce_dev *hr_dev, u16 opcode)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
u32 tx_timeout = hns_roce_cmdq_tx_timeout(opcode, priv->cmq.tx_timeout);
u32 timeout = 0;
do {
if (hns_roce_cmq_csq_done(hr_dev))
break;
udelay(1);
} while (++timeout < tx_timeout);
}
static int __hns_roce_cmq_send(struct hns_roce_dev *hr_dev,
struct hns_roce_cmq_desc *desc, int num)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_cmq_ring *csq = &priv->cmq.csq;
u16 desc_ret;
u32 tail;
int ret;
int i;
spin_lock_bh(&csq->lock);
tail = csq->head;
for (i = 0; i < num; i++) {
csq->desc[csq->head++] = desc[i];
if (csq->head == csq->desc_num)
csq->head = 0;
}
/* Write to hardware */
roce_write(hr_dev, ROCEE_TX_CMQ_PI_REG, csq->head);
atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_CMDS_CNT]);
hns_roce_wait_csq_done(hr_dev, le16_to_cpu(desc->opcode));
if (hns_roce_cmq_csq_done(hr_dev)) {
ret = 0;
for (i = 0; i < num; i++) {
/* check the result of hardware write back */
desc[i] = csq->desc[tail++];
if (tail == csq->desc_num)
tail = 0;
desc_ret = le16_to_cpu(desc[i].retval);
if (likely(desc_ret == CMD_EXEC_SUCCESS))
continue;
dev_err_ratelimited(hr_dev->dev,
"Cmdq IO error, opcode = 0x%x, return = 0x%x.\n",
desc->opcode, desc_ret);
ret = hns_roce_cmd_err_convert_errno(desc_ret);
}
} else {
/* FW/HW reset or incorrect number of desc */
tail = roce_read(hr_dev, ROCEE_TX_CMQ_CI_REG);
dev_warn(hr_dev->dev, "CMDQ move tail from %u to %u.\n",
csq->head, tail);
csq->head = tail;
update_cmdq_status(hr_dev);
ret = -EAGAIN;
}
spin_unlock_bh(&csq->lock);
if (ret)
atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_CMDS_ERR_CNT]);
return ret;
}
static int hns_roce_cmq_send(struct hns_roce_dev *hr_dev,
struct hns_roce_cmq_desc *desc, int num)
{
bool busy;
int ret;
if (hr_dev->cmd.state == HNS_ROCE_CMDQ_STATE_FATAL_ERR)
return -EIO;
if (!v2_chk_mbox_is_avail(hr_dev, &busy))
return busy ? -EBUSY : 0;
ret = __hns_roce_cmq_send(hr_dev, desc, num);
if (ret) {
if (!v2_chk_mbox_is_avail(hr_dev, &busy))
return busy ? -EBUSY : 0;
}
return ret;
}
static int config_hem_ba_to_hw(struct hns_roce_dev *hr_dev,
dma_addr_t base_addr, u8 cmd, unsigned long tag)
{
struct hns_roce_cmd_mailbox *mbox;
int ret;
mbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mbox))
return PTR_ERR(mbox);
ret = hns_roce_cmd_mbox(hr_dev, base_addr, mbox->dma, cmd, tag);
hns_roce_free_cmd_mailbox(hr_dev, mbox);
return ret;
}
static int hns_roce_cmq_query_hw_info(struct hns_roce_dev *hr_dev)
{
struct hns_roce_query_version *resp;
struct hns_roce_cmq_desc desc;
int ret;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_HW_VER, true);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret)
return ret;
resp = (struct hns_roce_query_version *)desc.data;
hr_dev->hw_rev = le16_to_cpu(resp->rocee_hw_version);
hr_dev->vendor_id = hr_dev->pci_dev->vendor;
return 0;
}
static void func_clr_hw_resetting_state(struct hns_roce_dev *hr_dev,
struct hnae3_handle *handle)
{
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
unsigned long end;
hr_dev->dis_db = true;
dev_warn(hr_dev->dev,
"func clear is pending, device in resetting state.\n");
end = HNS_ROCE_V2_HW_RST_TIMEOUT;
while (end) {
if (!ops->get_hw_reset_stat(handle)) {
hr_dev->is_reset = true;
dev_info(hr_dev->dev,
"func clear success after reset.\n");
return;
}
msleep(HNS_ROCE_V2_HW_RST_COMPLETION_WAIT);
end -= HNS_ROCE_V2_HW_RST_COMPLETION_WAIT;
}
dev_warn(hr_dev->dev, "func clear failed.\n");
}
static void func_clr_sw_resetting_state(struct hns_roce_dev *hr_dev,
struct hnae3_handle *handle)
{
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
unsigned long end;
hr_dev->dis_db = true;
dev_warn(hr_dev->dev,
"func clear is pending, device in resetting state.\n");
end = HNS_ROCE_V2_HW_RST_TIMEOUT;
while (end) {
if (ops->ae_dev_reset_cnt(handle) !=
hr_dev->reset_cnt) {
hr_dev->is_reset = true;
dev_info(hr_dev->dev,
"func clear success after sw reset\n");
return;
}
msleep(HNS_ROCE_V2_HW_RST_COMPLETION_WAIT);
end -= HNS_ROCE_V2_HW_RST_COMPLETION_WAIT;
}
dev_warn(hr_dev->dev, "func clear failed because of unfinished sw reset\n");
}
static void hns_roce_func_clr_rst_proc(struct hns_roce_dev *hr_dev, int retval,
int flag)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hnae3_handle *handle = priv->handle;
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
if (ops->ae_dev_reset_cnt(handle) != hr_dev->reset_cnt) {
hr_dev->dis_db = true;
hr_dev->is_reset = true;
dev_info(hr_dev->dev, "func clear success after reset.\n");
return;
}
if (ops->get_hw_reset_stat(handle)) {
func_clr_hw_resetting_state(hr_dev, handle);
return;
}
if (ops->ae_dev_resetting(handle) &&
handle->rinfo.instance_state == HNS_ROCE_STATE_INIT) {
func_clr_sw_resetting_state(hr_dev, handle);
return;
}
if (retval && !flag)
dev_warn(hr_dev->dev,
"func clear read failed, ret = %d.\n", retval);
dev_warn(hr_dev->dev, "func clear failed.\n");
}
static void __hns_roce_function_clear(struct hns_roce_dev *hr_dev, int vf_id)
{
bool fclr_write_fail_flag = false;
struct hns_roce_func_clear *resp;
struct hns_roce_cmq_desc desc;
unsigned long end;
int ret = 0;
if (check_device_is_in_reset(hr_dev))
goto out;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_FUNC_CLEAR, false);
resp = (struct hns_roce_func_clear *)desc.data;
resp->rst_funcid_en = cpu_to_le32(vf_id);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret) {
fclr_write_fail_flag = true;
dev_err(hr_dev->dev, "func clear write failed, ret = %d.\n",
ret);
goto out;
}
msleep(HNS_ROCE_V2_READ_FUNC_CLEAR_FLAG_INTERVAL);
end = HNS_ROCE_V2_FUNC_CLEAR_TIMEOUT_MSECS;
while (end) {
if (check_device_is_in_reset(hr_dev))
goto out;
msleep(HNS_ROCE_V2_READ_FUNC_CLEAR_FLAG_FAIL_WAIT);
end -= HNS_ROCE_V2_READ_FUNC_CLEAR_FLAG_FAIL_WAIT;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_FUNC_CLEAR,
true);
resp->rst_funcid_en = cpu_to_le32(vf_id);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret)
continue;
if (hr_reg_read(resp, FUNC_CLEAR_RST_FUN_DONE)) {
if (vf_id == 0)
hr_dev->is_reset = true;
return;
}
}
out:
hns_roce_func_clr_rst_proc(hr_dev, ret, fclr_write_fail_flag);
}
static int hns_roce_free_vf_resource(struct hns_roce_dev *hr_dev, int vf_id)
{
enum hns_roce_opcode_type opcode = HNS_ROCE_OPC_ALLOC_VF_RES;
struct hns_roce_cmq_desc desc[2];
struct hns_roce_cmq_req *req_a;
req_a = (struct hns_roce_cmq_req *)desc[0].data;
hns_roce_cmq_setup_basic_desc(&desc[0], opcode, false);
desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
hns_roce_cmq_setup_basic_desc(&desc[1], opcode, false);
hr_reg_write(req_a, FUNC_RES_A_VF_ID, vf_id);
return hns_roce_cmq_send(hr_dev, desc, 2);
}
static void hns_roce_function_clear(struct hns_roce_dev *hr_dev)
{
int ret;
int i;
if (hr_dev->cmd.state == HNS_ROCE_CMDQ_STATE_FATAL_ERR)
return;
for (i = hr_dev->func_num - 1; i >= 0; i--) {
__hns_roce_function_clear(hr_dev, i);
if (i == 0)
continue;
ret = hns_roce_free_vf_resource(hr_dev, i);
if (ret)
ibdev_err(&hr_dev->ib_dev,
"failed to free vf resource, vf_id = %d, ret = %d.\n",
i, ret);
}
}
static int hns_roce_clear_extdb_list_info(struct hns_roce_dev *hr_dev)
{
struct hns_roce_cmq_desc desc;
int ret;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CLEAR_EXTDB_LIST_INFO,
false);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret)
ibdev_err(&hr_dev->ib_dev,
"failed to clear extended doorbell info, ret = %d.\n",
ret);
return ret;
}
static int hns_roce_query_fw_ver(struct hns_roce_dev *hr_dev)
{
struct hns_roce_query_fw_info *resp;
struct hns_roce_cmq_desc desc;
int ret;
hns_roce_cmq_setup_basic_desc(&desc, HNS_QUERY_FW_VER, true);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret)
return ret;
resp = (struct hns_roce_query_fw_info *)desc.data;
hr_dev->caps.fw_ver = (u64)(le32_to_cpu(resp->fw_ver));
return 0;
}
static int hns_roce_query_func_info(struct hns_roce_dev *hr_dev)
{
struct hns_roce_cmq_desc desc;
int ret;
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) {
hr_dev->func_num = 1;
return 0;
}
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_FUNC_INFO,
true);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret) {
hr_dev->func_num = 1;
return ret;
}
hr_dev->func_num = le32_to_cpu(desc.func_info.own_func_num);
hr_dev->cong_algo_tmpl_id = le32_to_cpu(desc.func_info.own_mac_id);
return 0;
}
static int hns_roce_hw_v2_query_counter(struct hns_roce_dev *hr_dev,
u64 *stats, u32 port, int *num_counters)
{
#define CNT_PER_DESC 3
struct hns_roce_cmq_desc *desc;
int bd_idx, cnt_idx;
__le64 *cnt_data;
int desc_num;
int ret;
int i;
if (port > hr_dev->caps.num_ports)
return -EINVAL;
desc_num = DIV_ROUND_UP(HNS_ROCE_HW_CNT_TOTAL, CNT_PER_DESC);
desc = kcalloc(desc_num, sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
for (i = 0; i < desc_num; i++) {
hns_roce_cmq_setup_basic_desc(&desc[i],
HNS_ROCE_OPC_QUERY_COUNTER, true);
if (i != desc_num - 1)
desc[i].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
}
ret = hns_roce_cmq_send(hr_dev, desc, desc_num);
if (ret) {
ibdev_err(&hr_dev->ib_dev,
"failed to get counter, ret = %d.\n", ret);
goto err_out;
}
for (i = 0; i < HNS_ROCE_HW_CNT_TOTAL && i < *num_counters; i++) {
bd_idx = i / CNT_PER_DESC;
if (bd_idx != HNS_ROCE_HW_CNT_TOTAL / CNT_PER_DESC &&
!(desc[bd_idx].flag & cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT)))
break;
cnt_data = (__le64 *)&desc[bd_idx].data[0];
cnt_idx = i % CNT_PER_DESC;
stats[i] = le64_to_cpu(cnt_data[cnt_idx]);
}
*num_counters = i;
err_out:
kfree(desc);
return ret;
}
static int hns_roce_config_global_param(struct hns_roce_dev *hr_dev)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data;
u32 clock_cycles_of_1us;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GLOBAL_PARAM,
false);
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08)
clock_cycles_of_1us = HNS_ROCE_1NS_CFG;
else
clock_cycles_of_1us = HNS_ROCE_1US_CFG;
hr_reg_write(req, CFG_GLOBAL_PARAM_1US_CYCLES, clock_cycles_of_1us);
hr_reg_write(req, CFG_GLOBAL_PARAM_UDP_PORT, ROCE_V2_UDP_DPORT);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static int load_func_res_caps(struct hns_roce_dev *hr_dev, bool is_vf)
{
struct hns_roce_cmq_desc desc[2];
struct hns_roce_cmq_req *r_a = (struct hns_roce_cmq_req *)desc[0].data;
struct hns_roce_cmq_req *r_b = (struct hns_roce_cmq_req *)desc[1].data;
struct hns_roce_caps *caps = &hr_dev->caps;
enum hns_roce_opcode_type opcode;
u32 func_num;
int ret;
if (is_vf) {
opcode = HNS_ROCE_OPC_QUERY_VF_RES;
func_num = 1;
} else {
opcode = HNS_ROCE_OPC_QUERY_PF_RES;
func_num = hr_dev->func_num;
}
hns_roce_cmq_setup_basic_desc(&desc[0], opcode, true);
desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
hns_roce_cmq_setup_basic_desc(&desc[1], opcode, true);
ret = hns_roce_cmq_send(hr_dev, desc, 2);
if (ret)
return ret;
caps->qpc_bt_num = hr_reg_read(r_a, FUNC_RES_A_QPC_BT_NUM) / func_num;
caps->srqc_bt_num = hr_reg_read(r_a, FUNC_RES_A_SRQC_BT_NUM) / func_num;
caps->cqc_bt_num = hr_reg_read(r_a, FUNC_RES_A_CQC_BT_NUM) / func_num;
caps->mpt_bt_num = hr_reg_read(r_a, FUNC_RES_A_MPT_BT_NUM) / func_num;
caps->eqc_bt_num = hr_reg_read(r_a, FUNC_RES_A_EQC_BT_NUM) / func_num;
caps->smac_bt_num = hr_reg_read(r_b, FUNC_RES_B_SMAC_NUM) / func_num;
caps->sgid_bt_num = hr_reg_read(r_b, FUNC_RES_B_SGID_NUM) / func_num;
caps->sccc_bt_num = hr_reg_read(r_b, FUNC_RES_B_SCCC_BT_NUM) / func_num;
if (is_vf) {
caps->sl_num = hr_reg_read(r_b, FUNC_RES_V_QID_NUM) / func_num;
caps->gmv_bt_num = hr_reg_read(r_b, FUNC_RES_V_GMV_BT_NUM) /
func_num;
} else {
caps->sl_num = hr_reg_read(r_b, FUNC_RES_B_QID_NUM) / func_num;
caps->gmv_bt_num = hr_reg_read(r_b, FUNC_RES_B_GMV_BT_NUM) /
func_num;
}
return 0;
}
static int load_pf_timer_res_caps(struct hns_roce_dev *hr_dev)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data;
struct hns_roce_caps *caps = &hr_dev->caps;
int ret;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_PF_TIMER_RES,
true);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret)
return ret;
caps->qpc_timer_bt_num = hr_reg_read(req, PF_TIMER_RES_QPC_ITEM_NUM);
caps->cqc_timer_bt_num = hr_reg_read(req, PF_TIMER_RES_CQC_ITEM_NUM);
return 0;
}
static int hns_roce_query_pf_resource(struct hns_roce_dev *hr_dev)
{
struct device *dev = hr_dev->dev;
int ret;
ret = load_func_res_caps(hr_dev, false);
if (ret) {
dev_err(dev, "failed to load pf res caps, ret = %d.\n", ret);
return ret;
}
ret = load_pf_timer_res_caps(hr_dev);
if (ret)
dev_err(dev, "failed to load pf timer resource, ret = %d.\n",
ret);
return ret;
}
static int hns_roce_query_vf_resource(struct hns_roce_dev *hr_dev)
{
struct device *dev = hr_dev->dev;
int ret;
ret = load_func_res_caps(hr_dev, true);
if (ret)
dev_err(dev, "failed to load vf res caps, ret = %d.\n", ret);
return ret;
}
static int __hns_roce_set_vf_switch_param(struct hns_roce_dev *hr_dev,
u32 vf_id)
{
struct hns_roce_vf_switch *swt;
struct hns_roce_cmq_desc desc;
int ret;
swt = (struct hns_roce_vf_switch *)desc.data;
hns_roce_cmq_setup_basic_desc(&desc, HNS_SWITCH_PARAMETER_CFG, true);
swt->rocee_sel |= cpu_to_le32(HNS_ICL_SWITCH_CMD_ROCEE_SEL);
hr_reg_write(swt, VF_SWITCH_VF_ID, vf_id);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret)
return ret;
desc.flag = cpu_to_le16(HNS_ROCE_CMD_FLAG_IN);
desc.flag &= cpu_to_le16(~HNS_ROCE_CMD_FLAG_WR);
hr_reg_enable(swt, VF_SWITCH_ALW_LPBK);
hr_reg_clear(swt, VF_SWITCH_ALW_LCL_LPBK);
hr_reg_enable(swt, VF_SWITCH_ALW_DST_OVRD);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static int hns_roce_set_vf_switch_param(struct hns_roce_dev *hr_dev)
{
u32 vf_id;
int ret;
for (vf_id = 0; vf_id < hr_dev->func_num; vf_id++) {
ret = __hns_roce_set_vf_switch_param(hr_dev, vf_id);
if (ret)
return ret;
}
return 0;
}
static int config_vf_hem_resource(struct hns_roce_dev *hr_dev, int vf_id)
{
struct hns_roce_cmq_desc desc[2];
struct hns_roce_cmq_req *r_a = (struct hns_roce_cmq_req *)desc[0].data;
struct hns_roce_cmq_req *r_b = (struct hns_roce_cmq_req *)desc[1].data;
enum hns_roce_opcode_type opcode = HNS_ROCE_OPC_ALLOC_VF_RES;
struct hns_roce_caps *caps = &hr_dev->caps;
hns_roce_cmq_setup_basic_desc(&desc[0], opcode, false);
desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
hns_roce_cmq_setup_basic_desc(&desc[1], opcode, false);
hr_reg_write(r_a, FUNC_RES_A_VF_ID, vf_id);
hr_reg_write(r_a, FUNC_RES_A_QPC_BT_NUM, caps->qpc_bt_num);
hr_reg_write(r_a, FUNC_RES_A_QPC_BT_IDX, vf_id * caps->qpc_bt_num);
hr_reg_write(r_a, FUNC_RES_A_SRQC_BT_NUM, caps->srqc_bt_num);
hr_reg_write(r_a, FUNC_RES_A_SRQC_BT_IDX, vf_id * caps->srqc_bt_num);
hr_reg_write(r_a, FUNC_RES_A_CQC_BT_NUM, caps->cqc_bt_num);
hr_reg_write(r_a, FUNC_RES_A_CQC_BT_IDX, vf_id * caps->cqc_bt_num);
hr_reg_write(r_a, FUNC_RES_A_MPT_BT_NUM, caps->mpt_bt_num);
hr_reg_write(r_a, FUNC_RES_A_MPT_BT_IDX, vf_id * caps->mpt_bt_num);
hr_reg_write(r_a, FUNC_RES_A_EQC_BT_NUM, caps->eqc_bt_num);
hr_reg_write(r_a, FUNC_RES_A_EQC_BT_IDX, vf_id * caps->eqc_bt_num);
hr_reg_write(r_b, FUNC_RES_V_QID_NUM, caps->sl_num);
hr_reg_write(r_b, FUNC_RES_B_QID_IDX, vf_id * caps->sl_num);
hr_reg_write(r_b, FUNC_RES_B_SCCC_BT_NUM, caps->sccc_bt_num);
hr_reg_write(r_b, FUNC_RES_B_SCCC_BT_IDX, vf_id * caps->sccc_bt_num);
if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) {
hr_reg_write(r_b, FUNC_RES_V_GMV_BT_NUM, caps->gmv_bt_num);
hr_reg_write(r_b, FUNC_RES_B_GMV_BT_IDX,
vf_id * caps->gmv_bt_num);
} else {
hr_reg_write(r_b, FUNC_RES_B_SGID_NUM, caps->sgid_bt_num);
hr_reg_write(r_b, FUNC_RES_B_SGID_IDX,
vf_id * caps->sgid_bt_num);
hr_reg_write(r_b, FUNC_RES_B_SMAC_NUM, caps->smac_bt_num);
hr_reg_write(r_b, FUNC_RES_B_SMAC_IDX,
vf_id * caps->smac_bt_num);
}
return hns_roce_cmq_send(hr_dev, desc, 2);
}
static int hns_roce_alloc_vf_resource(struct hns_roce_dev *hr_dev)
{
u32 func_num = max_t(u32, 1, hr_dev->func_num);
u32 vf_id;
int ret;
for (vf_id = 0; vf_id < func_num; vf_id++) {
ret = config_vf_hem_resource(hr_dev, vf_id);
if (ret) {
dev_err(hr_dev->dev,
"failed to config vf-%u hem res, ret = %d.\n",
vf_id, ret);
return ret;
}
}
return 0;
}
static int hns_roce_v2_set_bt(struct hns_roce_dev *hr_dev)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data;
struct hns_roce_caps *caps = &hr_dev->caps;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_BT_ATTR, false);
hr_reg_write(req, CFG_BT_ATTR_QPC_BA_PGSZ,
caps->qpc_ba_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_QPC_BUF_PGSZ,
caps->qpc_buf_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_QPC_HOPNUM,
to_hr_hem_hopnum(caps->qpc_hop_num, caps->num_qps));
hr_reg_write(req, CFG_BT_ATTR_SRQC_BA_PGSZ,
caps->srqc_ba_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_SRQC_BUF_PGSZ,
caps->srqc_buf_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_SRQC_HOPNUM,
to_hr_hem_hopnum(caps->srqc_hop_num, caps->num_srqs));
hr_reg_write(req, CFG_BT_ATTR_CQC_BA_PGSZ,
caps->cqc_ba_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_CQC_BUF_PGSZ,
caps->cqc_buf_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_CQC_HOPNUM,
to_hr_hem_hopnum(caps->cqc_hop_num, caps->num_cqs));
hr_reg_write(req, CFG_BT_ATTR_MPT_BA_PGSZ,
caps->mpt_ba_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_MPT_BUF_PGSZ,
caps->mpt_buf_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_MPT_HOPNUM,
to_hr_hem_hopnum(caps->mpt_hop_num, caps->num_mtpts));
hr_reg_write(req, CFG_BT_ATTR_SCCC_BA_PGSZ,
caps->sccc_ba_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_SCCC_BUF_PGSZ,
caps->sccc_buf_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(req, CFG_BT_ATTR_SCCC_HOPNUM,
to_hr_hem_hopnum(caps->sccc_hop_num, caps->num_qps));
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static void calc_pg_sz(u32 obj_num, u32 obj_size, u32 hop_num, u32 ctx_bt_num,
u32 *buf_page_size, u32 *bt_page_size, u32 hem_type)
{
u64 obj_per_chunk;
u64 bt_chunk_size = PAGE_SIZE;
u64 buf_chunk_size = PAGE_SIZE;
u64 obj_per_chunk_default = buf_chunk_size / obj_size;
*buf_page_size = 0;
*bt_page_size = 0;
switch (hop_num) {
case 3:
obj_per_chunk = ctx_bt_num * (bt_chunk_size / BA_BYTE_LEN) *
(bt_chunk_size / BA_BYTE_LEN) *
(bt_chunk_size / BA_BYTE_LEN) *
obj_per_chunk_default;
break;
case 2:
obj_per_chunk = ctx_bt_num * (bt_chunk_size / BA_BYTE_LEN) *
(bt_chunk_size / BA_BYTE_LEN) *
obj_per_chunk_default;
break;
case 1:
obj_per_chunk = ctx_bt_num * (bt_chunk_size / BA_BYTE_LEN) *
obj_per_chunk_default;
break;
case HNS_ROCE_HOP_NUM_0:
obj_per_chunk = ctx_bt_num * obj_per_chunk_default;
break;
default:
pr_err("table %u not support hop_num = %u!\n", hem_type,
hop_num);
return;
}
if (hem_type >= HEM_TYPE_MTT)
*bt_page_size = ilog2(DIV_ROUND_UP(obj_num, obj_per_chunk));
else
*buf_page_size = ilog2(DIV_ROUND_UP(obj_num, obj_per_chunk));
}
static void set_hem_page_size(struct hns_roce_dev *hr_dev)
{
struct hns_roce_caps *caps = &hr_dev->caps;
/* EQ */
caps->eqe_ba_pg_sz = 0;
caps->eqe_buf_pg_sz = 0;
/* Link Table */
caps->llm_buf_pg_sz = 0;
/* MR */
caps->mpt_ba_pg_sz = 0;
caps->mpt_buf_pg_sz = 0;
caps->pbl_ba_pg_sz = HNS_ROCE_BA_PG_SZ_SUPPORTED_16K;
caps->pbl_buf_pg_sz = 0;
calc_pg_sz(caps->num_mtpts, caps->mtpt_entry_sz, caps->mpt_hop_num,
caps->mpt_bt_num, &caps->mpt_buf_pg_sz, &caps->mpt_ba_pg_sz,
HEM_TYPE_MTPT);
/* QP */
caps->qpc_ba_pg_sz = 0;
caps->qpc_buf_pg_sz = 0;
caps->qpc_timer_ba_pg_sz = 0;
caps->qpc_timer_buf_pg_sz = 0;
caps->sccc_ba_pg_sz = 0;
caps->sccc_buf_pg_sz = 0;
caps->mtt_ba_pg_sz = 0;
caps->mtt_buf_pg_sz = 0;
calc_pg_sz(caps->num_qps, caps->qpc_sz, caps->qpc_hop_num,
caps->qpc_bt_num, &caps->qpc_buf_pg_sz, &caps->qpc_ba_pg_sz,
HEM_TYPE_QPC);
if (caps->flags & HNS_ROCE_CAP_FLAG_QP_FLOW_CTRL)
calc_pg_sz(caps->num_qps, caps->sccc_sz, caps->sccc_hop_num,
caps->sccc_bt_num, &caps->sccc_buf_pg_sz,
&caps->sccc_ba_pg_sz, HEM_TYPE_SCCC);
/* CQ */
caps->cqc_ba_pg_sz = 0;
caps->cqc_buf_pg_sz = 0;
caps->cqc_timer_ba_pg_sz = 0;
caps->cqc_timer_buf_pg_sz = 0;
caps->cqe_ba_pg_sz = HNS_ROCE_BA_PG_SZ_SUPPORTED_256K;
caps->cqe_buf_pg_sz = 0;
calc_pg_sz(caps->num_cqs, caps->cqc_entry_sz, caps->cqc_hop_num,
caps->cqc_bt_num, &caps->cqc_buf_pg_sz, &caps->cqc_ba_pg_sz,
HEM_TYPE_CQC);
calc_pg_sz(caps->max_cqes, caps->cqe_sz, caps->cqe_hop_num,
1, &caps->cqe_buf_pg_sz, &caps->cqe_ba_pg_sz, HEM_TYPE_CQE);
/* SRQ */
if (caps->flags & HNS_ROCE_CAP_FLAG_SRQ) {
caps->srqc_ba_pg_sz = 0;
caps->srqc_buf_pg_sz = 0;
caps->srqwqe_ba_pg_sz = 0;
caps->srqwqe_buf_pg_sz = 0;
caps->idx_ba_pg_sz = 0;
caps->idx_buf_pg_sz = 0;
calc_pg_sz(caps->num_srqs, caps->srqc_entry_sz,
caps->srqc_hop_num, caps->srqc_bt_num,
&caps->srqc_buf_pg_sz, &caps->srqc_ba_pg_sz,
HEM_TYPE_SRQC);
calc_pg_sz(caps->num_srqwqe_segs, caps->mtt_entry_sz,
caps->srqwqe_hop_num, 1, &caps->srqwqe_buf_pg_sz,
&caps->srqwqe_ba_pg_sz, HEM_TYPE_SRQWQE);
calc_pg_sz(caps->num_idx_segs, caps->idx_entry_sz,
caps->idx_hop_num, 1, &caps->idx_buf_pg_sz,
&caps->idx_ba_pg_sz, HEM_TYPE_IDX);
}
/* GMV */
caps->gmv_ba_pg_sz = 0;
caps->gmv_buf_pg_sz = 0;
}
/* Apply all loaded caps before setting to hardware */
static void apply_func_caps(struct hns_roce_dev *hr_dev)
{
#define MAX_GID_TBL_LEN 256
struct hns_roce_caps *caps = &hr_dev->caps;
struct hns_roce_v2_priv *priv = hr_dev->priv;
/* The following configurations don't need to be got from firmware. */
caps->qpc_timer_entry_sz = HNS_ROCE_V2_QPC_TIMER_ENTRY_SZ;
caps->cqc_timer_entry_sz = HNS_ROCE_V2_CQC_TIMER_ENTRY_SZ;
caps->mtt_entry_sz = HNS_ROCE_V2_MTT_ENTRY_SZ;
caps->pbl_hop_num = HNS_ROCE_PBL_HOP_NUM;
caps->qpc_timer_hop_num = HNS_ROCE_HOP_NUM_0;
caps->cqc_timer_hop_num = HNS_ROCE_HOP_NUM_0;
caps->num_srqwqe_segs = HNS_ROCE_V2_MAX_SRQWQE_SEGS;
caps->num_idx_segs = HNS_ROCE_V2_MAX_IDX_SEGS;
if (!caps->num_comp_vectors)
caps->num_comp_vectors =
min_t(u32, caps->eqc_bt_num - HNS_ROCE_V2_AEQE_VEC_NUM,
(u32)priv->handle->rinfo.num_vectors -
(HNS_ROCE_V2_AEQE_VEC_NUM + HNS_ROCE_V2_ABNORMAL_VEC_NUM));
if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) {
caps->eqe_hop_num = HNS_ROCE_V3_EQE_HOP_NUM;
caps->ceqe_size = HNS_ROCE_V3_EQE_SIZE;
caps->aeqe_size = HNS_ROCE_V3_EQE_SIZE;
/* The following configurations will be overwritten */
caps->qpc_sz = HNS_ROCE_V3_QPC_SZ;
caps->cqe_sz = HNS_ROCE_V3_CQE_SIZE;
caps->sccc_sz = HNS_ROCE_V3_SCCC_SZ;
/* The following configurations are not got from firmware */
caps->gmv_entry_sz = HNS_ROCE_V3_GMV_ENTRY_SZ;
caps->gmv_hop_num = HNS_ROCE_HOP_NUM_0;
/* It's meaningless to support excessively large gid_table_len,
* as the type of sgid_index in kernel struct ib_global_route
* and userspace struct ibv_global_route are u8/uint8_t (0-255).
*/
caps->gid_table_len[0] = min_t(u32, MAX_GID_TBL_LEN,
caps->gmv_bt_num *
(HNS_HW_PAGE_SIZE / caps->gmv_entry_sz));
caps->gmv_entry_num = caps->gmv_bt_num * (HNS_HW_PAGE_SIZE /
caps->gmv_entry_sz);
} else {
u32 func_num = max_t(u32, 1, hr_dev->func_num);
caps->eqe_hop_num = HNS_ROCE_V2_EQE_HOP_NUM;
caps->ceqe_size = HNS_ROCE_CEQE_SIZE;
caps->aeqe_size = HNS_ROCE_AEQE_SIZE;
caps->gid_table_len[0] /= func_num;
}
if (hr_dev->is_vf) {
caps->default_aeq_arm_st = 0x3;
caps->default_ceq_arm_st = 0x3;
caps->default_ceq_max_cnt = 0x1;
caps->default_ceq_period = 0x10;
caps->default_aeq_max_cnt = 0x1;
caps->default_aeq_period = 0x10;
}
set_hem_page_size(hr_dev);
}
static int hns_roce_query_caps(struct hns_roce_dev *hr_dev)
{
struct hns_roce_cmq_desc desc[HNS_ROCE_QUERY_PF_CAPS_CMD_NUM];
struct hns_roce_caps *caps = &hr_dev->caps;
struct hns_roce_query_pf_caps_a *resp_a;
struct hns_roce_query_pf_caps_b *resp_b;
struct hns_roce_query_pf_caps_c *resp_c;
struct hns_roce_query_pf_caps_d *resp_d;
struct hns_roce_query_pf_caps_e *resp_e;
enum hns_roce_opcode_type cmd;
int ctx_hop_num;
int pbl_hop_num;
int ret;
int i;
cmd = hr_dev->is_vf ? HNS_ROCE_OPC_QUERY_VF_CAPS_NUM :
HNS_ROCE_OPC_QUERY_PF_CAPS_NUM;
for (i = 0; i < HNS_ROCE_QUERY_PF_CAPS_CMD_NUM; i++) {
hns_roce_cmq_setup_basic_desc(&desc[i], cmd, true);
if (i < (HNS_ROCE_QUERY_PF_CAPS_CMD_NUM - 1))
desc[i].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
else
desc[i].flag &= ~cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
}
ret = hns_roce_cmq_send(hr_dev, desc, HNS_ROCE_QUERY_PF_CAPS_CMD_NUM);
if (ret)
return ret;
resp_a = (struct hns_roce_query_pf_caps_a *)desc[0].data;
resp_b = (struct hns_roce_query_pf_caps_b *)desc[1].data;
resp_c = (struct hns_roce_query_pf_caps_c *)desc[2].data;
resp_d = (struct hns_roce_query_pf_caps_d *)desc[3].data;
resp_e = (struct hns_roce_query_pf_caps_e *)desc[4].data;
caps->local_ca_ack_delay = resp_a->local_ca_ack_delay;
caps->max_sq_sg = le16_to_cpu(resp_a->max_sq_sg);
caps->max_sq_inline = le16_to_cpu(resp_a->max_sq_inline);
caps->max_rq_sg = le16_to_cpu(resp_a->max_rq_sg);
caps->max_rq_sg = roundup_pow_of_two(caps->max_rq_sg);
caps->max_srq_sges = le16_to_cpu(resp_a->max_srq_sges);
caps->max_srq_sges = roundup_pow_of_two(caps->max_srq_sges);
caps->num_aeq_vectors = resp_a->num_aeq_vectors;
caps->num_other_vectors = resp_a->num_other_vectors;
caps->max_sq_desc_sz = resp_a->max_sq_desc_sz;
caps->max_rq_desc_sz = resp_a->max_rq_desc_sz;
caps->mtpt_entry_sz = resp_b->mtpt_entry_sz;
caps->irrl_entry_sz = resp_b->irrl_entry_sz;
caps->trrl_entry_sz = resp_b->trrl_entry_sz;
caps->cqc_entry_sz = resp_b->cqc_entry_sz;
caps->srqc_entry_sz = resp_b->srqc_entry_sz;
caps->idx_entry_sz = resp_b->idx_entry_sz;
caps->sccc_sz = resp_b->sccc_sz;
caps->max_mtu = resp_b->max_mtu;
caps->min_cqes = resp_b->min_cqes;
caps->min_wqes = resp_b->min_wqes;
caps->page_size_cap = le32_to_cpu(resp_b->page_size_cap);
caps->pkey_table_len[0] = resp_b->pkey_table_len;
caps->phy_num_uars = resp_b->phy_num_uars;
ctx_hop_num = resp_b->ctx_hop_num;
pbl_hop_num = resp_b->pbl_hop_num;
caps->num_pds = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_PDS);
caps->flags = hr_reg_read(resp_c, PF_CAPS_C_CAP_FLAGS);
caps->flags |= le16_to_cpu(resp_d->cap_flags_ex) <<
HNS_ROCE_CAP_FLAGS_EX_SHIFT;
caps->num_cqs = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_CQS);
caps->gid_table_len[0] = hr_reg_read(resp_c, PF_CAPS_C_MAX_GID);
caps->max_cqes = 1 << hr_reg_read(resp_c, PF_CAPS_C_CQ_DEPTH);
caps->num_xrcds = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_XRCDS);
caps->num_mtpts = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_MRWS);
caps->num_qps = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_QPS);
caps->max_qp_init_rdma = hr_reg_read(resp_c, PF_CAPS_C_MAX_ORD);
caps->max_qp_dest_rdma = caps->max_qp_init_rdma;
caps->max_wqes = 1 << le16_to_cpu(resp_c->sq_depth);
caps->num_srqs = 1 << hr_reg_read(resp_d, PF_CAPS_D_NUM_SRQS);
caps->cong_cap = hr_reg_read(resp_d, PF_CAPS_D_CONG_CAP);
caps->max_srq_wrs = 1 << le16_to_cpu(resp_d->srq_depth);
caps->ceqe_depth = 1 << hr_reg_read(resp_d, PF_CAPS_D_CEQ_DEPTH);
caps->num_comp_vectors = hr_reg_read(resp_d, PF_CAPS_D_NUM_CEQS);
caps->aeqe_depth = 1 << hr_reg_read(resp_d, PF_CAPS_D_AEQ_DEPTH);
caps->default_cong_type = hr_reg_read(resp_d, PF_CAPS_D_DEFAULT_ALG);
caps->reserved_pds = hr_reg_read(resp_d, PF_CAPS_D_RSV_PDS);
caps->num_uars = 1 << hr_reg_read(resp_d, PF_CAPS_D_NUM_UARS);
caps->reserved_qps = hr_reg_read(resp_d, PF_CAPS_D_RSV_QPS);
caps->reserved_uars = hr_reg_read(resp_d, PF_CAPS_D_RSV_UARS);
caps->reserved_mrws = hr_reg_read(resp_e, PF_CAPS_E_RSV_MRWS);
caps->chunk_sz = 1 << hr_reg_read(resp_e, PF_CAPS_E_CHUNK_SIZE_SHIFT);
caps->reserved_cqs = hr_reg_read(resp_e, PF_CAPS_E_RSV_CQS);
caps->reserved_xrcds = hr_reg_read(resp_e, PF_CAPS_E_RSV_XRCDS);
caps->reserved_srqs = hr_reg_read(resp_e, PF_CAPS_E_RSV_SRQS);
caps->reserved_lkey = hr_reg_read(resp_e, PF_CAPS_E_RSV_LKEYS);
caps->qpc_hop_num = ctx_hop_num;
caps->sccc_hop_num = ctx_hop_num;
caps->srqc_hop_num = ctx_hop_num;
caps->cqc_hop_num = ctx_hop_num;
caps->mpt_hop_num = ctx_hop_num;
caps->mtt_hop_num = pbl_hop_num;
caps->cqe_hop_num = pbl_hop_num;
caps->srqwqe_hop_num = pbl_hop_num;
caps->idx_hop_num = pbl_hop_num;
caps->wqe_sq_hop_num = hr_reg_read(resp_d, PF_CAPS_D_SQWQE_HOP_NUM);
caps->wqe_sge_hop_num = hr_reg_read(resp_d, PF_CAPS_D_EX_SGE_HOP_NUM);
caps->wqe_rq_hop_num = hr_reg_read(resp_d, PF_CAPS_D_RQWQE_HOP_NUM);
if (!(caps->page_size_cap & PAGE_SIZE))
caps->page_size_cap = HNS_ROCE_V2_PAGE_SIZE_SUPPORTED;
if (!hr_dev->is_vf) {
caps->cqe_sz = resp_a->cqe_sz;
caps->qpc_sz = le16_to_cpu(resp_b->qpc_sz);
caps->default_aeq_arm_st =
hr_reg_read(resp_d, PF_CAPS_D_AEQ_ARM_ST);
caps->default_ceq_arm_st =
hr_reg_read(resp_d, PF_CAPS_D_CEQ_ARM_ST);
caps->default_ceq_max_cnt = le16_to_cpu(resp_e->ceq_max_cnt);
caps->default_ceq_period = le16_to_cpu(resp_e->ceq_period);
caps->default_aeq_max_cnt = le16_to_cpu(resp_e->aeq_max_cnt);
caps->default_aeq_period = le16_to_cpu(resp_e->aeq_period);
}
return 0;
}
static int config_hem_entry_size(struct hns_roce_dev *hr_dev, u32 type, u32 val)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_ENTRY_SIZE,
false);
hr_reg_write(req, CFG_HEM_ENTRY_SIZE_TYPE, type);
hr_reg_write(req, CFG_HEM_ENTRY_SIZE_VALUE, val);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static int hns_roce_config_entry_size(struct hns_roce_dev *hr_dev)
{
struct hns_roce_caps *caps = &hr_dev->caps;
int ret;
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08)
return 0;
ret = config_hem_entry_size(hr_dev, HNS_ROCE_CFG_QPC_SIZE,
caps->qpc_sz);
if (ret) {
dev_err(hr_dev->dev, "failed to cfg qpc sz, ret = %d.\n", ret);
return ret;
}
ret = config_hem_entry_size(hr_dev, HNS_ROCE_CFG_SCCC_SIZE,
caps->sccc_sz);
if (ret)
dev_err(hr_dev->dev, "failed to cfg sccc sz, ret = %d.\n", ret);
return ret;
}
static int hns_roce_v2_vf_profile(struct hns_roce_dev *hr_dev)
{
struct device *dev = hr_dev->dev;
int ret;
hr_dev->func_num = 1;
ret = hns_roce_query_caps(hr_dev);
if (ret) {
dev_err(dev, "failed to query VF caps, ret = %d.\n", ret);
return ret;
}
ret = hns_roce_query_vf_resource(hr_dev);
if (ret) {
dev_err(dev, "failed to query VF resource, ret = %d.\n", ret);
return ret;
}
apply_func_caps(hr_dev);
ret = hns_roce_v2_set_bt(hr_dev);
if (ret)
dev_err(dev, "failed to config VF BA table, ret = %d.\n", ret);
return ret;
}
static int hns_roce_v2_pf_profile(struct hns_roce_dev *hr_dev)
{
struct device *dev = hr_dev->dev;
int ret;
ret = hns_roce_query_func_info(hr_dev);
if (ret) {
dev_err(dev, "failed to query func info, ret = %d.\n", ret);
return ret;
}
ret = hns_roce_config_global_param(hr_dev);
if (ret) {
dev_err(dev, "failed to config global param, ret = %d.\n", ret);
return ret;
}
ret = hns_roce_set_vf_switch_param(hr_dev);
if (ret) {
dev_err(dev, "failed to set switch param, ret = %d.\n", ret);
return ret;
}
ret = hns_roce_query_caps(hr_dev);
if (ret) {
dev_err(dev, "failed to query PF caps, ret = %d.\n", ret);
return ret;
}
ret = hns_roce_query_pf_resource(hr_dev);
if (ret) {
dev_err(dev, "failed to query pf resource, ret = %d.\n", ret);
return ret;
}
apply_func_caps(hr_dev);
ret = hns_roce_alloc_vf_resource(hr_dev);
if (ret) {
dev_err(dev, "failed to alloc vf resource, ret = %d.\n", ret);
return ret;
}
ret = hns_roce_v2_set_bt(hr_dev);
if (ret) {
dev_err(dev, "failed to config BA table, ret = %d.\n", ret);
return ret;
}
/* Configure the size of QPC, SCCC, etc. */
return hns_roce_config_entry_size(hr_dev);
}
static int hns_roce_v2_profile(struct hns_roce_dev *hr_dev)
{
struct device *dev = hr_dev->dev;
int ret;
ret = hns_roce_cmq_query_hw_info(hr_dev);
if (ret) {
dev_err(dev, "failed to query hardware info, ret = %d.\n", ret);
return ret;
}
ret = hns_roce_query_fw_ver(hr_dev);
if (ret) {
dev_err(dev, "failed to query firmware info, ret = %d.\n", ret);
return ret;
}
hr_dev->vendor_part_id = hr_dev->pci_dev->device;
hr_dev->sys_image_guid = be64_to_cpu(hr_dev->ib_dev.node_guid);
if (hr_dev->is_vf)
return hns_roce_v2_vf_profile(hr_dev);
else
return hns_roce_v2_pf_profile(hr_dev);
}
static void config_llm_table(struct hns_roce_buf *data_buf, void *cfg_buf)
{
u32 i, next_ptr, page_num;
__le64 *entry = cfg_buf;
dma_addr_t addr;
u64 val;
page_num = data_buf->npages;
for (i = 0; i < page_num; i++) {
addr = hns_roce_buf_page(data_buf, i);
if (i == (page_num - 1))
next_ptr = 0;
else
next_ptr = i + 1;
val = HNS_ROCE_EXT_LLM_ENTRY(addr, (u64)next_ptr);
entry[i] = cpu_to_le64(val);
}
}
static int set_llm_cfg_to_hw(struct hns_roce_dev *hr_dev,
struct hns_roce_link_table *table)
{
struct hns_roce_cmq_desc desc[2];
struct hns_roce_cmq_req *r_a = (struct hns_roce_cmq_req *)desc[0].data;
struct hns_roce_cmq_req *r_b = (struct hns_roce_cmq_req *)desc[1].data;
struct hns_roce_buf *buf = table->buf;
enum hns_roce_opcode_type opcode;
dma_addr_t addr;
opcode = HNS_ROCE_OPC_CFG_EXT_LLM;
hns_roce_cmq_setup_basic_desc(&desc[0], opcode, false);
desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
hns_roce_cmq_setup_basic_desc(&desc[1], opcode, false);
hr_reg_write(r_a, CFG_LLM_A_BA_L, lower_32_bits(table->table.map));
hr_reg_write(r_a, CFG_LLM_A_BA_H, upper_32_bits(table->table.map));
hr_reg_write(r_a, CFG_LLM_A_DEPTH, buf->npages);
hr_reg_write(r_a, CFG_LLM_A_PGSZ, to_hr_hw_page_shift(buf->page_shift));
hr_reg_enable(r_a, CFG_LLM_A_INIT_EN);
addr = to_hr_hw_page_addr(hns_roce_buf_page(buf, 0));
hr_reg_write(r_a, CFG_LLM_A_HEAD_BA_L, lower_32_bits(addr));
hr_reg_write(r_a, CFG_LLM_A_HEAD_BA_H, upper_32_bits(addr));
hr_reg_write(r_a, CFG_LLM_A_HEAD_NXTPTR, 1);
hr_reg_write(r_a, CFG_LLM_A_HEAD_PTR, 0);
addr = to_hr_hw_page_addr(hns_roce_buf_page(buf, buf->npages - 1));
hr_reg_write(r_b, CFG_LLM_B_TAIL_BA_L, lower_32_bits(addr));
hr_reg_write(r_b, CFG_LLM_B_TAIL_BA_H, upper_32_bits(addr));
hr_reg_write(r_b, CFG_LLM_B_TAIL_PTR, buf->npages - 1);
return hns_roce_cmq_send(hr_dev, desc, 2);
}
static struct hns_roce_link_table *
alloc_link_table_buf(struct hns_roce_dev *hr_dev)
{
u16 total_sl = hr_dev->caps.sl_num * hr_dev->func_num;
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_link_table *link_tbl;
u32 pg_shift, size, min_size;
link_tbl = &priv->ext_llm;
pg_shift = hr_dev->caps.llm_buf_pg_sz + PAGE_SHIFT;
size = hr_dev->caps.num_qps * hr_dev->func_num *
HNS_ROCE_V2_EXT_LLM_ENTRY_SZ;
min_size = HNS_ROCE_EXT_LLM_MIN_PAGES(total_sl) << pg_shift;
/* Alloc data table */
size = max(size, min_size);
link_tbl->buf = hns_roce_buf_alloc(hr_dev, size, pg_shift, 0);
if (IS_ERR(link_tbl->buf))
return ERR_PTR(-ENOMEM);
/* Alloc config table */
size = link_tbl->buf->npages * sizeof(u64);
link_tbl->table.buf = dma_alloc_coherent(hr_dev->dev, size,
&link_tbl->table.map,
GFP_KERNEL);
if (!link_tbl->table.buf) {
hns_roce_buf_free(hr_dev, link_tbl->buf);
return ERR_PTR(-ENOMEM);
}
return link_tbl;
}
static void free_link_table_buf(struct hns_roce_dev *hr_dev,
struct hns_roce_link_table *tbl)
{
if (tbl->buf) {
u32 size = tbl->buf->npages * sizeof(u64);
dma_free_coherent(hr_dev->dev, size, tbl->table.buf,
tbl->table.map);
}
hns_roce_buf_free(hr_dev, tbl->buf);
}
static int hns_roce_init_link_table(struct hns_roce_dev *hr_dev)
{
struct hns_roce_link_table *link_tbl;
int ret;
link_tbl = alloc_link_table_buf(hr_dev);
if (IS_ERR(link_tbl))
return -ENOMEM;
if (WARN_ON(link_tbl->buf->npages > HNS_ROCE_V2_EXT_LLM_MAX_DEPTH)) {
ret = -EINVAL;
goto err_alloc;
}
config_llm_table(link_tbl->buf, link_tbl->table.buf);
ret = set_llm_cfg_to_hw(hr_dev, link_tbl);
if (ret)
goto err_alloc;
return 0;
err_alloc:
free_link_table_buf(hr_dev, link_tbl);
return ret;
}
static void hns_roce_free_link_table(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
free_link_table_buf(hr_dev, &priv->ext_llm);
}
static void free_dip_list(struct hns_roce_dev *hr_dev)
{
struct hns_roce_dip *hr_dip;
struct hns_roce_dip *tmp;
unsigned long flags;
spin_lock_irqsave(&hr_dev->dip_list_lock, flags);
list_for_each_entry_safe(hr_dip, tmp, &hr_dev->dip_list, node) {
list_del(&hr_dip->node);
kfree(hr_dip);
}
spin_unlock_irqrestore(&hr_dev->dip_list_lock, flags);
}
static struct ib_pd *free_mr_init_pd(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_pd *hr_pd;
struct ib_pd *pd;
hr_pd = kzalloc(sizeof(*hr_pd), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(hr_pd))
return NULL;
pd = &hr_pd->ibpd;
pd->device = ibdev;
if (hns_roce_alloc_pd(pd, NULL)) {
ibdev_err(ibdev, "failed to create pd for free mr.\n");
kfree(hr_pd);
return NULL;
}
free_mr->rsv_pd = to_hr_pd(pd);
free_mr->rsv_pd->ibpd.device = &hr_dev->ib_dev;
free_mr->rsv_pd->ibpd.uobject = NULL;
free_mr->rsv_pd->ibpd.__internal_mr = NULL;
atomic_set(&free_mr->rsv_pd->ibpd.usecnt, 0);
return pd;
}
static struct ib_cq *free_mr_init_cq(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_device *ibdev = &hr_dev->ib_dev;
struct ib_cq_init_attr cq_init_attr = {};
struct hns_roce_cq *hr_cq;
struct ib_cq *cq;
cq_init_attr.cqe = HNS_ROCE_FREE_MR_USED_CQE_NUM;
hr_cq = kzalloc(sizeof(*hr_cq), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(hr_cq))
return NULL;
cq = &hr_cq->ib_cq;
cq->device = ibdev;
if (hns_roce_create_cq(cq, &cq_init_attr, NULL)) {
ibdev_err(ibdev, "failed to create cq for free mr.\n");
kfree(hr_cq);
return NULL;
}
free_mr->rsv_cq = to_hr_cq(cq);
free_mr->rsv_cq->ib_cq.device = &hr_dev->ib_dev;
free_mr->rsv_cq->ib_cq.uobject = NULL;
free_mr->rsv_cq->ib_cq.comp_handler = NULL;
free_mr->rsv_cq->ib_cq.event_handler = NULL;
free_mr->rsv_cq->ib_cq.cq_context = NULL;
atomic_set(&free_mr->rsv_cq->ib_cq.usecnt, 0);
return cq;
}
static int free_mr_init_qp(struct hns_roce_dev *hr_dev, struct ib_cq *cq,
struct ib_qp_init_attr *init_attr, int i)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_qp *hr_qp;
struct ib_qp *qp;
int ret;
hr_qp = kzalloc(sizeof(*hr_qp), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(hr_qp))
return -ENOMEM;
qp = &hr_qp->ibqp;
qp->device = ibdev;
ret = hns_roce_create_qp(qp, init_attr, NULL);
if (ret) {
ibdev_err(ibdev, "failed to create qp for free mr.\n");
kfree(hr_qp);
return ret;
}
free_mr->rsv_qp[i] = hr_qp;
free_mr->rsv_qp[i]->ibqp.recv_cq = cq;
free_mr->rsv_qp[i]->ibqp.send_cq = cq;
return 0;
}
static void free_mr_exit(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_qp *qp;
int i;
for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) {
if (free_mr->rsv_qp[i]) {
qp = &free_mr->rsv_qp[i]->ibqp;
hns_roce_v2_destroy_qp(qp, NULL);
kfree(free_mr->rsv_qp[i]);
free_mr->rsv_qp[i] = NULL;
}
}
if (free_mr->rsv_cq) {
hns_roce_destroy_cq(&free_mr->rsv_cq->ib_cq, NULL);
kfree(free_mr->rsv_cq);
free_mr->rsv_cq = NULL;
}
if (free_mr->rsv_pd) {
hns_roce_dealloc_pd(&free_mr->rsv_pd->ibpd, NULL);
kfree(free_mr->rsv_pd);
free_mr->rsv_pd = NULL;
}
mutex_destroy(&free_mr->mutex);
}
static int free_mr_alloc_res(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_qp_init_attr qp_init_attr = {};
struct ib_pd *pd;
struct ib_cq *cq;
int ret;
int i;
pd = free_mr_init_pd(hr_dev);
if (!pd)
return -ENOMEM;
cq = free_mr_init_cq(hr_dev);
if (!cq) {
ret = -ENOMEM;
goto create_failed_cq;
}
qp_init_attr.qp_type = IB_QPT_RC;
qp_init_attr.sq_sig_type = IB_SIGNAL_ALL_WR;
qp_init_attr.send_cq = cq;
qp_init_attr.recv_cq = cq;
for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) {
qp_init_attr.cap.max_send_wr = HNS_ROCE_FREE_MR_USED_SQWQE_NUM;
qp_init_attr.cap.max_send_sge = HNS_ROCE_FREE_MR_USED_SQSGE_NUM;
qp_init_attr.cap.max_recv_wr = HNS_ROCE_FREE_MR_USED_RQWQE_NUM;
qp_init_attr.cap.max_recv_sge = HNS_ROCE_FREE_MR_USED_RQSGE_NUM;
ret = free_mr_init_qp(hr_dev, cq, &qp_init_attr, i);
if (ret)
goto create_failed_qp;
}
return 0;
create_failed_qp:
for (i--; i >= 0; i--) {
hns_roce_v2_destroy_qp(&free_mr->rsv_qp[i]->ibqp, NULL);
kfree(free_mr->rsv_qp[i]);
}
hns_roce_destroy_cq(cq, NULL);
kfree(cq);
create_failed_cq:
hns_roce_dealloc_pd(pd, NULL);
kfree(pd);
return ret;
}
static int free_mr_modify_rsv_qp(struct hns_roce_dev *hr_dev,
struct ib_qp_attr *attr, int sl_num)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_qp *hr_qp;
int loopback;
int mask;
int ret;
hr_qp = to_hr_qp(&free_mr->rsv_qp[sl_num]->ibqp);
hr_qp->free_mr_en = 1;
hr_qp->ibqp.device = ibdev;
hr_qp->ibqp.qp_type = IB_QPT_RC;
mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS;
attr->qp_state = IB_QPS_INIT;
attr->port_num = 1;
attr->qp_access_flags = IB_ACCESS_REMOTE_WRITE;
ret = hr_dev->hw->modify_qp(&hr_qp->ibqp, attr, mask, IB_QPS_INIT,
IB_QPS_INIT, NULL);
if (ret) {
ibdev_err(ibdev, "failed to modify qp to init, ret = %d.\n",
ret);
return ret;
}
loopback = hr_dev->loop_idc;
/* Set qpc lbi = 1 incidate loopback IO */
hr_dev->loop_idc = 1;
mask = IB_QP_STATE | IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN |
IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER;
attr->qp_state = IB_QPS_RTR;
attr->ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE;
attr->path_mtu = IB_MTU_256;
attr->dest_qp_num = hr_qp->qpn;
attr->rq_psn = HNS_ROCE_FREE_MR_USED_PSN;
rdma_ah_set_sl(&attr->ah_attr, (u8)sl_num);
ret = hr_dev->hw->modify_qp(&hr_qp->ibqp, attr, mask, IB_QPS_INIT,
IB_QPS_RTR, NULL);
hr_dev->loop_idc = loopback;
if (ret) {
ibdev_err(ibdev, "failed to modify qp to rtr, ret = %d.\n",
ret);
return ret;
}
mask = IB_QP_STATE | IB_QP_SQ_PSN | IB_QP_RETRY_CNT | IB_QP_TIMEOUT |
IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC;
attr->qp_state = IB_QPS_RTS;
attr->sq_psn = HNS_ROCE_FREE_MR_USED_PSN;
attr->retry_cnt = HNS_ROCE_FREE_MR_USED_QP_RETRY_CNT;
attr->timeout = HNS_ROCE_FREE_MR_USED_QP_TIMEOUT;
ret = hr_dev->hw->modify_qp(&hr_qp->ibqp, attr, mask, IB_QPS_RTR,
IB_QPS_RTS, NULL);
if (ret)
ibdev_err(ibdev, "failed to modify qp to rts, ret = %d.\n",
ret);
return ret;
}
static int free_mr_modify_qp(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_qp_attr attr = {};
int ret;
int i;
rdma_ah_set_grh(&attr.ah_attr, NULL, 0, 0, 1, 0);
rdma_ah_set_static_rate(&attr.ah_attr, 3);
rdma_ah_set_port_num(&attr.ah_attr, 1);
for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) {
ret = free_mr_modify_rsv_qp(hr_dev, &attr, i);
if (ret)
return ret;
}
return 0;
}
static int free_mr_init(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
int ret;
mutex_init(&free_mr->mutex);
ret = free_mr_alloc_res(hr_dev);
if (ret) {
mutex_destroy(&free_mr->mutex);
return ret;
}
ret = free_mr_modify_qp(hr_dev);
if (ret)
goto err_modify_qp;
return 0;
err_modify_qp:
free_mr_exit(hr_dev);
return ret;
}
static int get_hem_table(struct hns_roce_dev *hr_dev)
{
unsigned int qpc_count;
unsigned int cqc_count;
unsigned int gmv_count;
int ret;
int i;
/* Alloc memory for source address table buffer space chunk */
for (gmv_count = 0; gmv_count < hr_dev->caps.gmv_entry_num;
gmv_count++) {
ret = hns_roce_table_get(hr_dev, &hr_dev->gmv_table, gmv_count);
if (ret)
goto err_gmv_failed;
}
if (hr_dev->is_vf)
return 0;
/* Alloc memory for QPC Timer buffer space chunk */
for (qpc_count = 0; qpc_count < hr_dev->caps.qpc_timer_bt_num;
qpc_count++) {
ret = hns_roce_table_get(hr_dev, &hr_dev->qpc_timer_table,
qpc_count);
if (ret) {
dev_err(hr_dev->dev, "QPC Timer get failed\n");
goto err_qpc_timer_failed;
}
}
/* Alloc memory for CQC Timer buffer space chunk */
for (cqc_count = 0; cqc_count < hr_dev->caps.cqc_timer_bt_num;
cqc_count++) {
ret = hns_roce_table_get(hr_dev, &hr_dev->cqc_timer_table,
cqc_count);
if (ret) {
dev_err(hr_dev->dev, "CQC Timer get failed\n");
goto err_cqc_timer_failed;
}
}
return 0;
err_cqc_timer_failed:
for (i = 0; i < cqc_count; i++)
hns_roce_table_put(hr_dev, &hr_dev->cqc_timer_table, i);
err_qpc_timer_failed:
for (i = 0; i < qpc_count; i++)
hns_roce_table_put(hr_dev, &hr_dev->qpc_timer_table, i);
err_gmv_failed:
for (i = 0; i < gmv_count; i++)
hns_roce_table_put(hr_dev, &hr_dev->gmv_table, i);
return ret;
}
static void put_hem_table(struct hns_roce_dev *hr_dev)
{
int i;
for (i = 0; i < hr_dev->caps.gmv_entry_num; i++)
hns_roce_table_put(hr_dev, &hr_dev->gmv_table, i);
if (hr_dev->is_vf)
return;
for (i = 0; i < hr_dev->caps.qpc_timer_bt_num; i++)
hns_roce_table_put(hr_dev, &hr_dev->qpc_timer_table, i);
for (i = 0; i < hr_dev->caps.cqc_timer_bt_num; i++)
hns_roce_table_put(hr_dev, &hr_dev->cqc_timer_table, i);
}
static int hns_roce_v2_init(struct hns_roce_dev *hr_dev)
{
int ret;
/* The hns ROCEE requires the extdb info to be cleared before using */
ret = hns_roce_clear_extdb_list_info(hr_dev);
if (ret)
return ret;
ret = get_hem_table(hr_dev);
if (ret)
return ret;
if (hr_dev->is_vf)
return 0;
ret = hns_roce_init_link_table(hr_dev);
if (ret) {
dev_err(hr_dev->dev, "failed to init llm, ret = %d.\n", ret);
goto err_llm_init_failed;
}
return 0;
err_llm_init_failed:
put_hem_table(hr_dev);
return ret;
}
static void hns_roce_v2_exit(struct hns_roce_dev *hr_dev)
{
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08)
free_mr_exit(hr_dev);
hns_roce_function_clear(hr_dev);
if (!hr_dev->is_vf)
hns_roce_free_link_table(hr_dev);
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP09)
free_dip_list(hr_dev);
}
static int hns_roce_mbox_post(struct hns_roce_dev *hr_dev,
struct hns_roce_mbox_msg *mbox_msg)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_post_mbox *mb = (struct hns_roce_post_mbox *)desc.data;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_POST_MB, false);
mb->in_param_l = cpu_to_le32(mbox_msg->in_param);
mb->in_param_h = cpu_to_le32(mbox_msg->in_param >> 32);
mb->out_param_l = cpu_to_le32(mbox_msg->out_param);
mb->out_param_h = cpu_to_le32(mbox_msg->out_param >> 32);
mb->cmd_tag = cpu_to_le32(mbox_msg->tag << 8 | mbox_msg->cmd);
mb->token_event_en = cpu_to_le32(mbox_msg->event_en << 16 |
mbox_msg->token);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static int v2_wait_mbox_complete(struct hns_roce_dev *hr_dev, u32 timeout,
u8 *complete_status)
{
struct hns_roce_mbox_status *mb_st;
struct hns_roce_cmq_desc desc;
unsigned long end;
int ret = -EBUSY;
u32 status;
bool busy;
mb_st = (struct hns_roce_mbox_status *)desc.data;
end = msecs_to_jiffies(timeout) + jiffies;
while (v2_chk_mbox_is_avail(hr_dev, &busy)) {
if (hr_dev->cmd.state == HNS_ROCE_CMDQ_STATE_FATAL_ERR)
return -EIO;
status = 0;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_MB_ST,
true);
ret = __hns_roce_cmq_send(hr_dev, &desc, 1);
if (!ret) {
status = le32_to_cpu(mb_st->mb_status_hw_run);
/* No pending message exists in ROCEE mbox. */
if (!(status & MB_ST_HW_RUN_M))
break;
} else if (!v2_chk_mbox_is_avail(hr_dev, &busy)) {
break;
}
if (time_after(jiffies, end)) {
dev_err_ratelimited(hr_dev->dev,
"failed to wait mbox status 0x%x\n",
status);
return -ETIMEDOUT;
}
cond_resched();
ret = -EBUSY;
}
if (!ret) {
*complete_status = (u8)(status & MB_ST_COMPLETE_M);
} else if (!v2_chk_mbox_is_avail(hr_dev, &busy)) {
/* Ignore all errors if the mbox is unavailable. */
ret = 0;
*complete_status = MB_ST_COMPLETE_M;
}
return ret;
}
static int v2_post_mbox(struct hns_roce_dev *hr_dev,
struct hns_roce_mbox_msg *mbox_msg)
{
u8 status = 0;
int ret;
/* Waiting for the mbox to be idle */
ret = v2_wait_mbox_complete(hr_dev, HNS_ROCE_V2_GO_BIT_TIMEOUT_MSECS,
&status);
if (unlikely(ret)) {
dev_err_ratelimited(hr_dev->dev,
"failed to check post mbox status = 0x%x, ret = %d.\n",
status, ret);
return ret;
}
/* Post new message to mbox */
ret = hns_roce_mbox_post(hr_dev, mbox_msg);
if (ret)
dev_err_ratelimited(hr_dev->dev,
"failed to post mailbox, ret = %d.\n", ret);
return ret;
}
static int v2_poll_mbox_done(struct hns_roce_dev *hr_dev)
{
u8 status = 0;
int ret;
ret = v2_wait_mbox_complete(hr_dev, HNS_ROCE_CMD_TIMEOUT_MSECS,
&status);
if (!ret) {
if (status != MB_ST_COMPLETE_SUCC)
return -EBUSY;
} else {
dev_err_ratelimited(hr_dev->dev,
"failed to check mbox status = 0x%x, ret = %d.\n",
status, ret);
}
return ret;
}
static void copy_gid(void *dest, const union ib_gid *gid)
{
#define GID_SIZE 4
const union ib_gid *src = gid;
__le32 (*p)[GID_SIZE] = dest;
int i;
if (!gid)
src = &zgid;
for (i = 0; i < GID_SIZE; i++)
(*p)[i] = cpu_to_le32(*(u32 *)&src->raw[i * sizeof(u32)]);
}
static int config_sgid_table(struct hns_roce_dev *hr_dev,
int gid_index, const union ib_gid *gid,
enum hns_roce_sgid_type sgid_type)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cfg_sgid_tb *sgid_tb =
(struct hns_roce_cfg_sgid_tb *)desc.data;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_SGID_TB, false);
hr_reg_write(sgid_tb, CFG_SGID_TB_TABLE_IDX, gid_index);
hr_reg_write(sgid_tb, CFG_SGID_TB_VF_SGID_TYPE, sgid_type);
copy_gid(&sgid_tb->vf_sgid_l, gid);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static int config_gmv_table(struct hns_roce_dev *hr_dev,
int gid_index, const union ib_gid *gid,
enum hns_roce_sgid_type sgid_type,
const struct ib_gid_attr *attr)
{
struct hns_roce_cmq_desc desc[2];
struct hns_roce_cfg_gmv_tb_a *tb_a =
(struct hns_roce_cfg_gmv_tb_a *)desc[0].data;
struct hns_roce_cfg_gmv_tb_b *tb_b =
(struct hns_roce_cfg_gmv_tb_b *)desc[1].data;
u16 vlan_id = VLAN_CFI_MASK;
u8 mac[ETH_ALEN] = {};
int ret;
if (gid) {
ret = rdma_read_gid_l2_fields(attr, &vlan_id, mac);
if (ret)
return ret;
}
hns_roce_cmq_setup_basic_desc(&desc[0], HNS_ROCE_OPC_CFG_GMV_TBL, false);
desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT);
hns_roce_cmq_setup_basic_desc(&desc[1], HNS_ROCE_OPC_CFG_GMV_TBL, false);
copy_gid(&tb_a->vf_sgid_l, gid);
hr_reg_write(tb_a, GMV_TB_A_VF_SGID_TYPE, sgid_type);
hr_reg_write(tb_a, GMV_TB_A_VF_VLAN_EN, vlan_id < VLAN_CFI_MASK);
hr_reg_write(tb_a, GMV_TB_A_VF_VLAN_ID, vlan_id);
tb_b->vf_smac_l = cpu_to_le32(*(u32 *)mac);
hr_reg_write(tb_b, GMV_TB_B_SMAC_H, *(u16 *)&mac[4]);
hr_reg_write(tb_b, GMV_TB_B_SGID_IDX, gid_index);
return hns_roce_cmq_send(hr_dev, desc, 2);
}
static int hns_roce_v2_set_gid(struct hns_roce_dev *hr_dev, int gid_index,
const union ib_gid *gid,
const struct ib_gid_attr *attr)
{
enum hns_roce_sgid_type sgid_type = GID_TYPE_FLAG_ROCE_V1;
int ret;
if (gid) {
if (attr->gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
if (ipv6_addr_v4mapped((void *)gid))
sgid_type = GID_TYPE_FLAG_ROCE_V2_IPV4;
else
sgid_type = GID_TYPE_FLAG_ROCE_V2_IPV6;
} else if (attr->gid_type == IB_GID_TYPE_ROCE) {
sgid_type = GID_TYPE_FLAG_ROCE_V1;
}
}
if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09)
ret = config_gmv_table(hr_dev, gid_index, gid, sgid_type, attr);
else
ret = config_sgid_table(hr_dev, gid_index, gid, sgid_type);
if (ret)
ibdev_err(&hr_dev->ib_dev, "failed to set gid, ret = %d!\n",
ret);
return ret;
}
static int hns_roce_v2_set_mac(struct hns_roce_dev *hr_dev, u8 phy_port,
const u8 *addr)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cfg_smac_tb *smac_tb =
(struct hns_roce_cfg_smac_tb *)desc.data;
u16 reg_smac_h;
u32 reg_smac_l;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_SMAC_TB, false);
reg_smac_l = *(u32 *)(&addr[0]);
reg_smac_h = *(u16 *)(&addr[4]);
hr_reg_write(smac_tb, CFG_SMAC_TB_IDX, phy_port);
hr_reg_write(smac_tb, CFG_SMAC_TB_VF_SMAC_H, reg_smac_h);
smac_tb->vf_smac_l = cpu_to_le32(reg_smac_l);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static int set_mtpt_pbl(struct hns_roce_dev *hr_dev,
struct hns_roce_v2_mpt_entry *mpt_entry,
struct hns_roce_mr *mr)
{
u64 pages[HNS_ROCE_V2_MAX_INNER_MTPT_NUM] = { 0 };
struct ib_device *ibdev = &hr_dev->ib_dev;
dma_addr_t pbl_ba;
int ret;
int i;
ret = hns_roce_mtr_find(hr_dev, &mr->pbl_mtr, 0, pages,
min_t(int, ARRAY_SIZE(pages), mr->npages));
if (ret) {
ibdev_err(ibdev, "failed to find PBL mtr, ret = %d.\n", ret);
return ret;
}
/* Aligned to the hardware address access unit */
for (i = 0; i < ARRAY_SIZE(pages); i++)
pages[i] >>= MPT_PBL_BUF_ADDR_S;
pbl_ba = hns_roce_get_mtr_ba(&mr->pbl_mtr);
mpt_entry->pbl_size = cpu_to_le32(mr->npages);
mpt_entry->pbl_ba_l = cpu_to_le32(pbl_ba >> MPT_PBL_BA_ADDR_S);
hr_reg_write(mpt_entry, MPT_PBL_BA_H,
upper_32_bits(pbl_ba >> MPT_PBL_BA_ADDR_S));
mpt_entry->pa0_l = cpu_to_le32(lower_32_bits(pages[0]));
hr_reg_write(mpt_entry, MPT_PA0_H, upper_32_bits(pages[0]));
mpt_entry->pa1_l = cpu_to_le32(lower_32_bits(pages[1]));
hr_reg_write(mpt_entry, MPT_PA1_H, upper_32_bits(pages[1]));
hr_reg_write(mpt_entry, MPT_PBL_BUF_PG_SZ,
to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.buf_pg_shift));
return 0;
}
static int hns_roce_v2_write_mtpt(struct hns_roce_dev *hr_dev,
void *mb_buf, struct hns_roce_mr *mr)
{
struct hns_roce_v2_mpt_entry *mpt_entry;
mpt_entry = mb_buf;
memset(mpt_entry, 0, sizeof(*mpt_entry));
hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_VALID);
hr_reg_write(mpt_entry, MPT_PD, mr->pd);
hr_reg_write_bool(mpt_entry, MPT_BIND_EN,
mr->access & IB_ACCESS_MW_BIND);
hr_reg_write_bool(mpt_entry, MPT_ATOMIC_EN,
mr->access & IB_ACCESS_REMOTE_ATOMIC);
hr_reg_write_bool(mpt_entry, MPT_RR_EN,
mr->access & IB_ACCESS_REMOTE_READ);
hr_reg_write_bool(mpt_entry, MPT_RW_EN,
mr->access & IB_ACCESS_REMOTE_WRITE);
hr_reg_write_bool(mpt_entry, MPT_LW_EN,
mr->access & IB_ACCESS_LOCAL_WRITE);
mpt_entry->len_l = cpu_to_le32(lower_32_bits(mr->size));
mpt_entry->len_h = cpu_to_le32(upper_32_bits(mr->size));
mpt_entry->lkey = cpu_to_le32(mr->key);
mpt_entry->va_l = cpu_to_le32(lower_32_bits(mr->iova));
mpt_entry->va_h = cpu_to_le32(upper_32_bits(mr->iova));
if (mr->type != MR_TYPE_MR)
hr_reg_enable(mpt_entry, MPT_PA);
if (mr->type == MR_TYPE_DMA)
return 0;
if (mr->pbl_hop_num != HNS_ROCE_HOP_NUM_0)
hr_reg_write(mpt_entry, MPT_PBL_HOP_NUM, mr->pbl_hop_num);
hr_reg_write(mpt_entry, MPT_PBL_BA_PG_SZ,
to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.ba_pg_shift));
hr_reg_enable(mpt_entry, MPT_INNER_PA_VLD);
return set_mtpt_pbl(hr_dev, mpt_entry, mr);
}
static int hns_roce_v2_rereg_write_mtpt(struct hns_roce_dev *hr_dev,
struct hns_roce_mr *mr, int flags,
void *mb_buf)
{
struct hns_roce_v2_mpt_entry *mpt_entry = mb_buf;
u32 mr_access_flags = mr->access;
int ret = 0;
hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_VALID);
hr_reg_write(mpt_entry, MPT_PD, mr->pd);
if (flags & IB_MR_REREG_ACCESS) {
hr_reg_write(mpt_entry, MPT_BIND_EN,
(mr_access_flags & IB_ACCESS_MW_BIND ? 1 : 0));
hr_reg_write(mpt_entry, MPT_ATOMIC_EN,
mr_access_flags & IB_ACCESS_REMOTE_ATOMIC ? 1 : 0);
hr_reg_write(mpt_entry, MPT_RR_EN,
mr_access_flags & IB_ACCESS_REMOTE_READ ? 1 : 0);
hr_reg_write(mpt_entry, MPT_RW_EN,
mr_access_flags & IB_ACCESS_REMOTE_WRITE ? 1 : 0);
hr_reg_write(mpt_entry, MPT_LW_EN,
mr_access_flags & IB_ACCESS_LOCAL_WRITE ? 1 : 0);
}
if (flags & IB_MR_REREG_TRANS) {
mpt_entry->va_l = cpu_to_le32(lower_32_bits(mr->iova));
mpt_entry->va_h = cpu_to_le32(upper_32_bits(mr->iova));
mpt_entry->len_l = cpu_to_le32(lower_32_bits(mr->size));
mpt_entry->len_h = cpu_to_le32(upper_32_bits(mr->size));
ret = set_mtpt_pbl(hr_dev, mpt_entry, mr);
}
return ret;
}
static int hns_roce_v2_frmr_write_mtpt(void *mb_buf, struct hns_roce_mr *mr)
{
dma_addr_t pbl_ba = hns_roce_get_mtr_ba(&mr->pbl_mtr);
struct hns_roce_v2_mpt_entry *mpt_entry;
mpt_entry = mb_buf;
memset(mpt_entry, 0, sizeof(*mpt_entry));
hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_FREE);
hr_reg_write(mpt_entry, MPT_PD, mr->pd);
hr_reg_enable(mpt_entry, MPT_RA_EN);
hr_reg_enable(mpt_entry, MPT_R_INV_EN);
hr_reg_enable(mpt_entry, MPT_FRE);
hr_reg_clear(mpt_entry, MPT_MR_MW);
hr_reg_enable(mpt_entry, MPT_BPD);
hr_reg_clear(mpt_entry, MPT_PA);
hr_reg_write(mpt_entry, MPT_PBL_HOP_NUM, 1);
hr_reg_write(mpt_entry, MPT_PBL_BA_PG_SZ,
to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.ba_pg_shift));
hr_reg_write(mpt_entry, MPT_PBL_BUF_PG_SZ,
to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.buf_pg_shift));
mpt_entry->pbl_size = cpu_to_le32(mr->npages);
mpt_entry->pbl_ba_l = cpu_to_le32(lower_32_bits(pbl_ba >>
MPT_PBL_BA_ADDR_S));
hr_reg_write(mpt_entry, MPT_PBL_BA_H,
upper_32_bits(pbl_ba >> MPT_PBL_BA_ADDR_S));
return 0;
}
static int hns_roce_v2_mw_write_mtpt(void *mb_buf, struct hns_roce_mw *mw)
{
struct hns_roce_v2_mpt_entry *mpt_entry;
mpt_entry = mb_buf;
memset(mpt_entry, 0, sizeof(*mpt_entry));
hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_FREE);
hr_reg_write(mpt_entry, MPT_PD, mw->pdn);
hr_reg_enable(mpt_entry, MPT_R_INV_EN);
hr_reg_enable(mpt_entry, MPT_LW_EN);
hr_reg_enable(mpt_entry, MPT_MR_MW);
hr_reg_enable(mpt_entry, MPT_BPD);
hr_reg_clear(mpt_entry, MPT_PA);
hr_reg_write(mpt_entry, MPT_BQP,
mw->ibmw.type == IB_MW_TYPE_1 ? 0 : 1);
mpt_entry->lkey = cpu_to_le32(mw->rkey);
hr_reg_write(mpt_entry, MPT_PBL_HOP_NUM,
mw->pbl_hop_num == HNS_ROCE_HOP_NUM_0 ? 0 :
mw->pbl_hop_num);
hr_reg_write(mpt_entry, MPT_PBL_BA_PG_SZ,
mw->pbl_ba_pg_sz + PG_SHIFT_OFFSET);
hr_reg_write(mpt_entry, MPT_PBL_BUF_PG_SZ,
mw->pbl_buf_pg_sz + PG_SHIFT_OFFSET);
return 0;
}
static int free_mr_post_send_lp_wqe(struct hns_roce_qp *hr_qp)
{
struct hns_roce_dev *hr_dev = to_hr_dev(hr_qp->ibqp.device);
struct ib_device *ibdev = &hr_dev->ib_dev;
const struct ib_send_wr *bad_wr;
struct ib_rdma_wr rdma_wr = {};
struct ib_send_wr *send_wr;
int ret;
send_wr = &rdma_wr.wr;
send_wr->opcode = IB_WR_RDMA_WRITE;
ret = hns_roce_v2_post_send(&hr_qp->ibqp, send_wr, &bad_wr);
if (ret) {
ibdev_err(ibdev, "failed to post wqe for free mr, ret = %d.\n",
ret);
return ret;
}
return 0;
}
static int hns_roce_v2_poll_cq(struct ib_cq *ibcq, int num_entries,
struct ib_wc *wc);
static void free_mr_send_cmd_to_hw(struct hns_roce_dev *hr_dev)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hns_roce_v2_free_mr *free_mr = &priv->free_mr;
struct ib_wc wc[ARRAY_SIZE(free_mr->rsv_qp)];
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_qp *hr_qp;
unsigned long end;
int cqe_cnt = 0;
int npolled;
int ret;
int i;
/*
* If the device initialization is not complete or in the uninstall
* process, then there is no need to execute free mr.
*/
if (priv->handle->rinfo.reset_state == HNS_ROCE_STATE_RST_INIT ||
priv->handle->rinfo.instance_state == HNS_ROCE_STATE_INIT ||
hr_dev->state == HNS_ROCE_DEVICE_STATE_UNINIT)
return;
mutex_lock(&free_mr->mutex);
for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) {
hr_qp = free_mr->rsv_qp[i];
ret = free_mr_post_send_lp_wqe(hr_qp);
if (ret) {
ibdev_err(ibdev,
"failed to send wqe (qp:0x%lx) for free mr, ret = %d.\n",
hr_qp->qpn, ret);
break;
}
cqe_cnt++;
}
end = msecs_to_jiffies(HNS_ROCE_V2_FREE_MR_TIMEOUT) + jiffies;
while (cqe_cnt) {
npolled = hns_roce_v2_poll_cq(&free_mr->rsv_cq->ib_cq, cqe_cnt, wc);
if (npolled < 0) {
ibdev_err(ibdev,
"failed to poll cqe for free mr, remain %d cqe.\n",
cqe_cnt);
goto out;
}
if (time_after(jiffies, end)) {
ibdev_err(ibdev,
"failed to poll cqe for free mr and timeout, remain %d cqe.\n",
cqe_cnt);
goto out;
}
cqe_cnt -= npolled;
}
out:
mutex_unlock(&free_mr->mutex);
}
static void hns_roce_v2_dereg_mr(struct hns_roce_dev *hr_dev)
{
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08)
free_mr_send_cmd_to_hw(hr_dev);
}
static void *get_cqe_v2(struct hns_roce_cq *hr_cq, int n)
{
return hns_roce_buf_offset(hr_cq->mtr.kmem, n * hr_cq->cqe_size);
}
static void *get_sw_cqe_v2(struct hns_roce_cq *hr_cq, unsigned int n)
{
struct hns_roce_v2_cqe *cqe = get_cqe_v2(hr_cq, n & hr_cq->ib_cq.cqe);
/* Get cqe when Owner bit is Conversely with the MSB of cons_idx */
return (hr_reg_read(cqe, CQE_OWNER) ^ !!(n & hr_cq->cq_depth)) ? cqe :
NULL;
}
static inline void update_cq_db(struct hns_roce_dev *hr_dev,
struct hns_roce_cq *hr_cq)
{
if (likely(hr_cq->flags & HNS_ROCE_CQ_FLAG_RECORD_DB)) {
*hr_cq->set_ci_db = hr_cq->cons_index & V2_CQ_DB_CONS_IDX_M;
} else {
struct hns_roce_v2_db cq_db = {};
hr_reg_write(&cq_db, DB_TAG, hr_cq->cqn);
hr_reg_write(&cq_db, DB_CMD, HNS_ROCE_V2_CQ_DB);
hr_reg_write(&cq_db, DB_CQ_CI, hr_cq->cons_index);
hr_reg_write(&cq_db, DB_CQ_CMD_SN, 1);
hns_roce_write64(hr_dev, (__le32 *)&cq_db, hr_cq->db_reg);
}
}
static void __hns_roce_v2_cq_clean(struct hns_roce_cq *hr_cq, u32 qpn,
struct hns_roce_srq *srq)
{
struct hns_roce_dev *hr_dev = to_hr_dev(hr_cq->ib_cq.device);
struct hns_roce_v2_cqe *cqe, *dest;
u32 prod_index;
int nfreed = 0;
int wqe_index;
u8 owner_bit;
for (prod_index = hr_cq->cons_index; get_sw_cqe_v2(hr_cq, prod_index);
++prod_index) {
if (prod_index > hr_cq->cons_index + hr_cq->ib_cq.cqe)
break;
}
/*
* Now backwards through the CQ, removing CQ entries
* that match our QP by overwriting them with next entries.
*/
while ((int) --prod_index - (int) hr_cq->cons_index >= 0) {
cqe = get_cqe_v2(hr_cq, prod_index & hr_cq->ib_cq.cqe);
if (hr_reg_read(cqe, CQE_LCL_QPN) == qpn) {
if (srq && hr_reg_read(cqe, CQE_S_R)) {
wqe_index = hr_reg_read(cqe, CQE_WQE_IDX);
hns_roce_free_srq_wqe(srq, wqe_index);
}
++nfreed;
} else if (nfreed) {
dest = get_cqe_v2(hr_cq, (prod_index + nfreed) &
hr_cq->ib_cq.cqe);
owner_bit = hr_reg_read(dest, CQE_OWNER);
memcpy(dest, cqe, hr_cq->cqe_size);
hr_reg_write(dest, CQE_OWNER, owner_bit);
}
}
if (nfreed) {
hr_cq->cons_index += nfreed;
update_cq_db(hr_dev, hr_cq);
}
}
static void hns_roce_v2_cq_clean(struct hns_roce_cq *hr_cq, u32 qpn,
struct hns_roce_srq *srq)
{
spin_lock_irq(&hr_cq->lock);
__hns_roce_v2_cq_clean(hr_cq, qpn, srq);
spin_unlock_irq(&hr_cq->lock);
}
static void hns_roce_v2_write_cqc(struct hns_roce_dev *hr_dev,
struct hns_roce_cq *hr_cq, void *mb_buf,
u64 *mtts, dma_addr_t dma_handle)
{
struct hns_roce_v2_cq_context *cq_context;
cq_context = mb_buf;
memset(cq_context, 0, sizeof(*cq_context));
hr_reg_write(cq_context, CQC_CQ_ST, V2_CQ_STATE_VALID);
hr_reg_write(cq_context, CQC_ARM_ST, NO_ARMED);
hr_reg_write(cq_context, CQC_SHIFT, ilog2(hr_cq->cq_depth));
hr_reg_write(cq_context, CQC_CEQN, hr_cq->vector);
hr_reg_write(cq_context, CQC_CQN, hr_cq->cqn);
if (hr_cq->cqe_size == HNS_ROCE_V3_CQE_SIZE)
hr_reg_write(cq_context, CQC_CQE_SIZE, CQE_SIZE_64B);
if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_STASH)
hr_reg_enable(cq_context, CQC_STASH);
hr_reg_write(cq_context, CQC_CQE_CUR_BLK_ADDR_L,
to_hr_hw_page_addr(mtts[0]));
hr_reg_write(cq_context, CQC_CQE_CUR_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(mtts[0])));
hr_reg_write(cq_context, CQC_CQE_HOP_NUM, hr_dev->caps.cqe_hop_num ==
HNS_ROCE_HOP_NUM_0 ? 0 : hr_dev->caps.cqe_hop_num);
hr_reg_write(cq_context, CQC_CQE_NEX_BLK_ADDR_L,
to_hr_hw_page_addr(mtts[1]));
hr_reg_write(cq_context, CQC_CQE_NEX_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(mtts[1])));
hr_reg_write(cq_context, CQC_CQE_BAR_PG_SZ,
to_hr_hw_page_shift(hr_cq->mtr.hem_cfg.ba_pg_shift));
hr_reg_write(cq_context, CQC_CQE_BUF_PG_SZ,
to_hr_hw_page_shift(hr_cq->mtr.hem_cfg.buf_pg_shift));
hr_reg_write(cq_context, CQC_CQE_BA_L, dma_handle >> CQC_CQE_BA_L_S);
hr_reg_write(cq_context, CQC_CQE_BA_H, dma_handle >> CQC_CQE_BA_H_S);
hr_reg_write_bool(cq_context, CQC_DB_RECORD_EN,
hr_cq->flags & HNS_ROCE_CQ_FLAG_RECORD_DB);
hr_reg_write(cq_context, CQC_CQE_DB_RECORD_ADDR_L,
((u32)hr_cq->db.dma) >> 1);
hr_reg_write(cq_context, CQC_CQE_DB_RECORD_ADDR_H,
hr_cq->db.dma >> CQC_CQE_DB_RECORD_ADDR_H_S);
hr_reg_write(cq_context, CQC_CQ_MAX_CNT,
HNS_ROCE_V2_CQ_DEFAULT_BURST_NUM);
hr_reg_write(cq_context, CQC_CQ_PERIOD,
HNS_ROCE_V2_CQ_DEFAULT_INTERVAL);
}
static int hns_roce_v2_req_notify_cq(struct ib_cq *ibcq,
enum ib_cq_notify_flags flags)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibcq->device);
struct hns_roce_cq *hr_cq = to_hr_cq(ibcq);
struct hns_roce_v2_db cq_db = {};
u32 notify_flag;
/*
* flags = 0, then notify_flag : next
* flags = 1, then notify flag : solocited
*/
notify_flag = (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED ?
V2_CQ_DB_REQ_NOT : V2_CQ_DB_REQ_NOT_SOL;
hr_reg_write(&cq_db, DB_TAG, hr_cq->cqn);
hr_reg_write(&cq_db, DB_CMD, HNS_ROCE_V2_CQ_DB_NOTIFY);
hr_reg_write(&cq_db, DB_CQ_CI, hr_cq->cons_index);
hr_reg_write(&cq_db, DB_CQ_CMD_SN, hr_cq->arm_sn);
hr_reg_write(&cq_db, DB_CQ_NOTIFY, notify_flag);
hns_roce_write64(hr_dev, (__le32 *)&cq_db, hr_cq->db_reg);
return 0;
}
static int sw_comp(struct hns_roce_qp *hr_qp, struct hns_roce_wq *wq,
int num_entries, struct ib_wc *wc)
{
unsigned int left;
int npolled = 0;
left = wq->head - wq->tail;
if (left == 0)
return 0;
left = min_t(unsigned int, (unsigned int)num_entries, left);
while (npolled < left) {
wc->wr_id = wq->wrid[wq->tail & (wq->wqe_cnt - 1)];
wc->status = IB_WC_WR_FLUSH_ERR;
wc->vendor_err = 0;
wc->qp = &hr_qp->ibqp;
wq->tail++;
wc++;
npolled++;
}
return npolled;
}
static int hns_roce_v2_sw_poll_cq(struct hns_roce_cq *hr_cq, int num_entries,
struct ib_wc *wc)
{
struct hns_roce_qp *hr_qp;
int npolled = 0;
list_for_each_entry(hr_qp, &hr_cq->sq_list, sq_node) {
npolled += sw_comp(hr_qp, &hr_qp->sq,
num_entries - npolled, wc + npolled);
if (npolled >= num_entries)
goto out;
}
list_for_each_entry(hr_qp, &hr_cq->rq_list, rq_node) {
npolled += sw_comp(hr_qp, &hr_qp->rq,
num_entries - npolled, wc + npolled);
if (npolled >= num_entries)
goto out;
}
out:
return npolled;
}
static void get_cqe_status(struct hns_roce_dev *hr_dev, struct hns_roce_qp *qp,
struct hns_roce_cq *cq, struct hns_roce_v2_cqe *cqe,
struct ib_wc *wc)
{
static const struct {
u32 cqe_status;
enum ib_wc_status wc_status;
} map[] = {
{ HNS_ROCE_CQE_V2_SUCCESS, IB_WC_SUCCESS },
{ HNS_ROCE_CQE_V2_LOCAL_LENGTH_ERR, IB_WC_LOC_LEN_ERR },
{ HNS_ROCE_CQE_V2_LOCAL_QP_OP_ERR, IB_WC_LOC_QP_OP_ERR },
{ HNS_ROCE_CQE_V2_LOCAL_PROT_ERR, IB_WC_LOC_PROT_ERR },
{ HNS_ROCE_CQE_V2_WR_FLUSH_ERR, IB_WC_WR_FLUSH_ERR },
{ HNS_ROCE_CQE_V2_MW_BIND_ERR, IB_WC_MW_BIND_ERR },
{ HNS_ROCE_CQE_V2_BAD_RESP_ERR, IB_WC_BAD_RESP_ERR },
{ HNS_ROCE_CQE_V2_LOCAL_ACCESS_ERR, IB_WC_LOC_ACCESS_ERR },
{ HNS_ROCE_CQE_V2_REMOTE_INVAL_REQ_ERR, IB_WC_REM_INV_REQ_ERR },
{ HNS_ROCE_CQE_V2_REMOTE_ACCESS_ERR, IB_WC_REM_ACCESS_ERR },
{ HNS_ROCE_CQE_V2_REMOTE_OP_ERR, IB_WC_REM_OP_ERR },
{ HNS_ROCE_CQE_V2_TRANSPORT_RETRY_EXC_ERR,
IB_WC_RETRY_EXC_ERR },
{ HNS_ROCE_CQE_V2_RNR_RETRY_EXC_ERR, IB_WC_RNR_RETRY_EXC_ERR },
{ HNS_ROCE_CQE_V2_REMOTE_ABORT_ERR, IB_WC_REM_ABORT_ERR },
{ HNS_ROCE_CQE_V2_GENERAL_ERR, IB_WC_GENERAL_ERR}
};
u32 cqe_status = hr_reg_read(cqe, CQE_STATUS);
int i;
wc->status = IB_WC_GENERAL_ERR;
for (i = 0; i < ARRAY_SIZE(map); i++)
if (cqe_status == map[i].cqe_status) {
wc->status = map[i].wc_status;
break;
}
if (likely(wc->status == IB_WC_SUCCESS ||
wc->status == IB_WC_WR_FLUSH_ERR))
return;
ibdev_err_ratelimited(&hr_dev->ib_dev, "error cqe status 0x%x:\n",
cqe_status);
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 16, 4, cqe,
cq->cqe_size, false);
wc->vendor_err = hr_reg_read(cqe, CQE_SUB_STATUS);
/*
* For hns ROCEE, GENERAL_ERR is an error type that is not defined in
* the standard protocol, the driver must ignore it and needn't to set
* the QP to an error state.
*/
if (cqe_status == HNS_ROCE_CQE_V2_GENERAL_ERR)
return;
flush_cqe(hr_dev, qp);
}
static int get_cur_qp(struct hns_roce_cq *hr_cq, struct hns_roce_v2_cqe *cqe,
struct hns_roce_qp **cur_qp)
{
struct hns_roce_dev *hr_dev = to_hr_dev(hr_cq->ib_cq.device);
struct hns_roce_qp *hr_qp = *cur_qp;
u32 qpn;
qpn = hr_reg_read(cqe, CQE_LCL_QPN);
if (!hr_qp || qpn != hr_qp->qpn) {
hr_qp = __hns_roce_qp_lookup(hr_dev, qpn);
if (unlikely(!hr_qp)) {
ibdev_err(&hr_dev->ib_dev,
"CQ %06lx with entry for unknown QPN %06x\n",
hr_cq->cqn, qpn);
return -EINVAL;
}
*cur_qp = hr_qp;
}
return 0;
}
/*
* mapped-value = 1 + real-value
* The ib wc opcode's real value is start from 0, In order to distinguish
* between initialized and uninitialized map values, we plus 1 to the actual
* value when defining the mapping, so that the validity can be identified by
* checking whether the mapped value is greater than 0.
*/
#define HR_WC_OP_MAP(hr_key, ib_key) \
[HNS_ROCE_V2_WQE_OP_ ## hr_key] = 1 + IB_WC_ ## ib_key
static const u32 wc_send_op_map[] = {
HR_WC_OP_MAP(SEND, SEND),
HR_WC_OP_MAP(SEND_WITH_INV, SEND),
HR_WC_OP_MAP(SEND_WITH_IMM, SEND),
HR_WC_OP_MAP(RDMA_READ, RDMA_READ),
HR_WC_OP_MAP(RDMA_WRITE, RDMA_WRITE),
HR_WC_OP_MAP(RDMA_WRITE_WITH_IMM, RDMA_WRITE),
HR_WC_OP_MAP(ATOM_CMP_AND_SWAP, COMP_SWAP),
HR_WC_OP_MAP(ATOM_FETCH_AND_ADD, FETCH_ADD),
HR_WC_OP_MAP(ATOM_MSK_CMP_AND_SWAP, MASKED_COMP_SWAP),
HR_WC_OP_MAP(ATOM_MSK_FETCH_AND_ADD, MASKED_FETCH_ADD),
HR_WC_OP_MAP(FAST_REG_PMR, REG_MR),
HR_WC_OP_MAP(BIND_MW, REG_MR),
};
static int to_ib_wc_send_op(u32 hr_opcode)
{
if (hr_opcode >= ARRAY_SIZE(wc_send_op_map))
return -EINVAL;
return wc_send_op_map[hr_opcode] ? wc_send_op_map[hr_opcode] - 1 :
-EINVAL;
}
static const u32 wc_recv_op_map[] = {
HR_WC_OP_MAP(RDMA_WRITE_WITH_IMM, WITH_IMM),
HR_WC_OP_MAP(SEND, RECV),
HR_WC_OP_MAP(SEND_WITH_IMM, WITH_IMM),
HR_WC_OP_MAP(SEND_WITH_INV, RECV),
};
static int to_ib_wc_recv_op(u32 hr_opcode)
{
if (hr_opcode >= ARRAY_SIZE(wc_recv_op_map))
return -EINVAL;
return wc_recv_op_map[hr_opcode] ? wc_recv_op_map[hr_opcode] - 1 :
-EINVAL;
}
static void fill_send_wc(struct ib_wc *wc, struct hns_roce_v2_cqe *cqe)
{
u32 hr_opcode;
int ib_opcode;
wc->wc_flags = 0;
hr_opcode = hr_reg_read(cqe, CQE_OPCODE);
switch (hr_opcode) {
case HNS_ROCE_V2_WQE_OP_RDMA_READ:
wc->byte_len = le32_to_cpu(cqe->byte_cnt);
break;
case HNS_ROCE_V2_WQE_OP_SEND_WITH_IMM:
case HNS_ROCE_V2_WQE_OP_RDMA_WRITE_WITH_IMM:
wc->wc_flags |= IB_WC_WITH_IMM;
break;
case HNS_ROCE_V2_WQE_OP_ATOM_CMP_AND_SWAP:
case HNS_ROCE_V2_WQE_OP_ATOM_FETCH_AND_ADD:
case HNS_ROCE_V2_WQE_OP_ATOM_MSK_CMP_AND_SWAP:
case HNS_ROCE_V2_WQE_OP_ATOM_MSK_FETCH_AND_ADD:
wc->byte_len = 8;
break;
default:
break;
}
ib_opcode = to_ib_wc_send_op(hr_opcode);
if (ib_opcode < 0)
wc->status = IB_WC_GENERAL_ERR;
else
wc->opcode = ib_opcode;
}
static int fill_recv_wc(struct ib_wc *wc, struct hns_roce_v2_cqe *cqe)
{
u32 hr_opcode;
int ib_opcode;
wc->byte_len = le32_to_cpu(cqe->byte_cnt);
hr_opcode = hr_reg_read(cqe, CQE_OPCODE);
switch (hr_opcode) {
case HNS_ROCE_V2_OPCODE_RDMA_WRITE_IMM:
case HNS_ROCE_V2_OPCODE_SEND_WITH_IMM:
wc->wc_flags = IB_WC_WITH_IMM;
wc->ex.imm_data = cpu_to_be32(le32_to_cpu(cqe->immtdata));
break;
case HNS_ROCE_V2_OPCODE_SEND_WITH_INV:
wc->wc_flags = IB_WC_WITH_INVALIDATE;
wc->ex.invalidate_rkey = le32_to_cpu(cqe->rkey);
break;
default:
wc->wc_flags = 0;
}
ib_opcode = to_ib_wc_recv_op(hr_opcode);
if (ib_opcode < 0)
wc->status = IB_WC_GENERAL_ERR;
else
wc->opcode = ib_opcode;
wc->sl = hr_reg_read(cqe, CQE_SL);
wc->src_qp = hr_reg_read(cqe, CQE_RMT_QPN);
wc->slid = 0;
wc->wc_flags |= hr_reg_read(cqe, CQE_GRH) ? IB_WC_GRH : 0;
wc->port_num = hr_reg_read(cqe, CQE_PORTN);
wc->pkey_index = 0;
if (hr_reg_read(cqe, CQE_VID_VLD)) {
wc->vlan_id = hr_reg_read(cqe, CQE_VID);
wc->wc_flags |= IB_WC_WITH_VLAN;
} else {
wc->vlan_id = 0xffff;
}
wc->network_hdr_type = hr_reg_read(cqe, CQE_PORT_TYPE);
return 0;
}
static int hns_roce_v2_poll_one(struct hns_roce_cq *hr_cq,
struct hns_roce_qp **cur_qp, struct ib_wc *wc)
{
struct hns_roce_dev *hr_dev = to_hr_dev(hr_cq->ib_cq.device);
struct hns_roce_qp *qp = *cur_qp;
struct hns_roce_srq *srq = NULL;
struct hns_roce_v2_cqe *cqe;
struct hns_roce_wq *wq;
int is_send;
u16 wqe_idx;
int ret;
cqe = get_sw_cqe_v2(hr_cq, hr_cq->cons_index);
if (!cqe)
return -EAGAIN;
++hr_cq->cons_index;
/* Memory barrier */
rmb();
ret = get_cur_qp(hr_cq, cqe, &qp);
if (ret)
return ret;
wc->qp = &qp->ibqp;
wc->vendor_err = 0;
wqe_idx = hr_reg_read(cqe, CQE_WQE_IDX);
is_send = !hr_reg_read(cqe, CQE_S_R);
if (is_send) {
wq = &qp->sq;
/* If sg_signal_bit is set, tail pointer will be updated to
* the WQE corresponding to the current CQE.
*/
if (qp->sq_signal_bits)
wq->tail += (wqe_idx - (u16)wq->tail) &
(wq->wqe_cnt - 1);
wc->wr_id = wq->wrid[wq->tail & (wq->wqe_cnt - 1)];
++wq->tail;
fill_send_wc(wc, cqe);
} else {
if (qp->ibqp.srq) {
srq = to_hr_srq(qp->ibqp.srq);
wc->wr_id = srq->wrid[wqe_idx];
hns_roce_free_srq_wqe(srq, wqe_idx);
} else {
wq = &qp->rq;
wc->wr_id = wq->wrid[wq->tail & (wq->wqe_cnt - 1)];
++wq->tail;
}
ret = fill_recv_wc(wc, cqe);
}
get_cqe_status(hr_dev, qp, hr_cq, cqe, wc);
if (unlikely(wc->status != IB_WC_SUCCESS))
return 0;
return ret;
}
static int hns_roce_v2_poll_cq(struct ib_cq *ibcq, int num_entries,
struct ib_wc *wc)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibcq->device);
struct hns_roce_cq *hr_cq = to_hr_cq(ibcq);
struct hns_roce_qp *cur_qp = NULL;
unsigned long flags;
int npolled;
spin_lock_irqsave(&hr_cq->lock, flags);
/*
* When the device starts to reset, the state is RST_DOWN. At this time,
* there may still be some valid CQEs in the hardware that are not
* polled. Therefore, it is not allowed to switch to the software mode
* immediately. When the state changes to UNINIT, CQE no longer exists
* in the hardware, and then switch to software mode.
*/
if (hr_dev->state == HNS_ROCE_DEVICE_STATE_UNINIT) {
npolled = hns_roce_v2_sw_poll_cq(hr_cq, num_entries, wc);
goto out;
}
for (npolled = 0; npolled < num_entries; ++npolled) {
if (hns_roce_v2_poll_one(hr_cq, &cur_qp, wc + npolled))
break;
}
if (npolled)
update_cq_db(hr_dev, hr_cq);
out:
spin_unlock_irqrestore(&hr_cq->lock, flags);
return npolled;
}
static int get_op_for_set_hem(struct hns_roce_dev *hr_dev, u32 type,
u32 step_idx, u8 *mbox_cmd)
{
u8 cmd;
switch (type) {
case HEM_TYPE_QPC:
cmd = HNS_ROCE_CMD_WRITE_QPC_BT0;
break;
case HEM_TYPE_MTPT:
cmd = HNS_ROCE_CMD_WRITE_MPT_BT0;
break;
case HEM_TYPE_CQC:
cmd = HNS_ROCE_CMD_WRITE_CQC_BT0;
break;
case HEM_TYPE_SRQC:
cmd = HNS_ROCE_CMD_WRITE_SRQC_BT0;
break;
case HEM_TYPE_SCCC:
cmd = HNS_ROCE_CMD_WRITE_SCCC_BT0;
break;
case HEM_TYPE_QPC_TIMER:
cmd = HNS_ROCE_CMD_WRITE_QPC_TIMER_BT0;
break;
case HEM_TYPE_CQC_TIMER:
cmd = HNS_ROCE_CMD_WRITE_CQC_TIMER_BT0;
break;
default:
dev_warn(hr_dev->dev, "failed to check hem type %u.\n", type);
return -EINVAL;
}
*mbox_cmd = cmd + step_idx;
return 0;
}
static int config_gmv_ba_to_hw(struct hns_roce_dev *hr_dev, unsigned long obj,
dma_addr_t base_addr)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data;
u32 idx = obj / (HNS_HW_PAGE_SIZE / hr_dev->caps.gmv_entry_sz);
u64 addr = to_hr_hw_page_addr(base_addr);
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GMV_BT, false);
hr_reg_write(req, CFG_GMV_BT_BA_L, lower_32_bits(addr));
hr_reg_write(req, CFG_GMV_BT_BA_H, upper_32_bits(addr));
hr_reg_write(req, CFG_GMV_BT_IDX, idx);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static int set_hem_to_hw(struct hns_roce_dev *hr_dev, int obj,
dma_addr_t base_addr, u32 hem_type, u32 step_idx)
{
int ret;
u8 cmd;
if (unlikely(hem_type == HEM_TYPE_GMV))
return config_gmv_ba_to_hw(hr_dev, obj, base_addr);
if (unlikely(hem_type == HEM_TYPE_SCCC && step_idx))
return 0;
ret = get_op_for_set_hem(hr_dev, hem_type, step_idx, &cmd);
if (ret < 0)
return ret;
return config_hem_ba_to_hw(hr_dev, base_addr, cmd, obj);
}
static int hns_roce_v2_set_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, int obj,
u32 step_idx)
{
struct hns_roce_hem_mhop mhop;
struct hns_roce_hem *hem;
unsigned long mhop_obj = obj;
int i, j, k;
int ret = 0;
u64 hem_idx = 0;
u64 l1_idx = 0;
u64 bt_ba = 0;
u32 chunk_ba_num;
u32 hop_num;
if (!hns_roce_check_whether_mhop(hr_dev, table->type))
return 0;
hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, &mhop);
i = mhop.l0_idx;
j = mhop.l1_idx;
k = mhop.l2_idx;
hop_num = mhop.hop_num;
chunk_ba_num = mhop.bt_chunk_size / 8;
if (hop_num == 2) {
hem_idx = i * chunk_ba_num * chunk_ba_num + j * chunk_ba_num +
k;
l1_idx = i * chunk_ba_num + j;
} else if (hop_num == 1) {
hem_idx = i * chunk_ba_num + j;
} else if (hop_num == HNS_ROCE_HOP_NUM_0) {
hem_idx = i;
}
if (table->type == HEM_TYPE_SCCC)
obj = mhop.l0_idx;
if (check_whether_last_step(hop_num, step_idx)) {
hem = table->hem[hem_idx];
ret = set_hem_to_hw(hr_dev, obj, hem->dma, table->type, step_idx);
} else {
if (step_idx == 0)
bt_ba = table->bt_l0_dma_addr[i];
else if (step_idx == 1 && hop_num == 2)
bt_ba = table->bt_l1_dma_addr[l1_idx];
ret = set_hem_to_hw(hr_dev, obj, bt_ba, table->type, step_idx);
}
return ret;
}
static int hns_roce_v2_clear_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
int tag, u32 step_idx)
{
struct hns_roce_cmd_mailbox *mailbox;
struct device *dev = hr_dev->dev;
u8 cmd = 0xff;
int ret;
if (!hns_roce_check_whether_mhop(hr_dev, table->type))
return 0;
switch (table->type) {
case HEM_TYPE_QPC:
cmd = HNS_ROCE_CMD_DESTROY_QPC_BT0;
break;
case HEM_TYPE_MTPT:
cmd = HNS_ROCE_CMD_DESTROY_MPT_BT0;
break;
case HEM_TYPE_CQC:
cmd = HNS_ROCE_CMD_DESTROY_CQC_BT0;
break;
case HEM_TYPE_SRQC:
cmd = HNS_ROCE_CMD_DESTROY_SRQC_BT0;
break;
case HEM_TYPE_SCCC:
case HEM_TYPE_QPC_TIMER:
case HEM_TYPE_CQC_TIMER:
case HEM_TYPE_GMV:
return 0;
default:
dev_warn(dev, "table %u not to be destroyed by mailbox!\n",
table->type);
return 0;
}
cmd += step_idx;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, cmd, tag);
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static int hns_roce_v2_qp_modify(struct hns_roce_dev *hr_dev,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask,
struct hns_roce_qp *hr_qp)
{
struct hns_roce_cmd_mailbox *mailbox;
int qpc_size;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
/* The qpc size of HIP08 is only 256B, which is half of HIP09 */
qpc_size = hr_dev->caps.qpc_sz;
memcpy(mailbox->buf, context, qpc_size);
memcpy(mailbox->buf + qpc_size, qpc_mask, qpc_size);
ret = hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0,
HNS_ROCE_CMD_MODIFY_QPC, hr_qp->qpn);
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static void set_access_flags(struct hns_roce_qp *hr_qp,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask,
const struct ib_qp_attr *attr, int attr_mask)
{
u8 dest_rd_atomic;
u32 access_flags;
dest_rd_atomic = (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) ?
attr->max_dest_rd_atomic : hr_qp->resp_depth;
access_flags = (attr_mask & IB_QP_ACCESS_FLAGS) ?
attr->qp_access_flags : hr_qp->atomic_rd_en;
if (!dest_rd_atomic)
access_flags &= IB_ACCESS_REMOTE_WRITE;
hr_reg_write_bool(context, QPC_RRE,
access_flags & IB_ACCESS_REMOTE_READ);
hr_reg_clear(qpc_mask, QPC_RRE);
hr_reg_write_bool(context, QPC_RWE,
access_flags & IB_ACCESS_REMOTE_WRITE);
hr_reg_clear(qpc_mask, QPC_RWE);
hr_reg_write_bool(context, QPC_ATE,
access_flags & IB_ACCESS_REMOTE_ATOMIC);
hr_reg_clear(qpc_mask, QPC_ATE);
hr_reg_write_bool(context, QPC_EXT_ATE,
access_flags & IB_ACCESS_REMOTE_ATOMIC);
hr_reg_clear(qpc_mask, QPC_EXT_ATE);
}
static void set_qpc_wqe_cnt(struct hns_roce_qp *hr_qp,
struct hns_roce_v2_qp_context *context)
{
hr_reg_write(context, QPC_SGE_SHIFT,
to_hr_hem_entries_shift(hr_qp->sge.sge_cnt,
hr_qp->sge.sge_shift));
hr_reg_write(context, QPC_SQ_SHIFT, ilog2(hr_qp->sq.wqe_cnt));
hr_reg_write(context, QPC_RQ_SHIFT, ilog2(hr_qp->rq.wqe_cnt));
}
static inline int get_cqn(struct ib_cq *ib_cq)
{
return ib_cq ? to_hr_cq(ib_cq)->cqn : 0;
}
static inline int get_pdn(struct ib_pd *ib_pd)
{
return ib_pd ? to_hr_pd(ib_pd)->pdn : 0;
}
static void modify_qp_reset_to_init(struct ib_qp *ibqp,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
/*
* In v2 engine, software pass context and context mask to hardware
* when modifying qp. If software need modify some fields in context,
* we should set all bits of the relevant fields in context mask to
* 0 at the same time, else set them to 0x1.
*/
hr_reg_write(context, QPC_TST, to_hr_qp_type(ibqp->qp_type));
hr_reg_write(context, QPC_PD, get_pdn(ibqp->pd));
hr_reg_write(context, QPC_RQWS, ilog2(hr_qp->rq.max_gs));
set_qpc_wqe_cnt(hr_qp, context);
/* No VLAN need to set 0xFFF */
hr_reg_write(context, QPC_VLAN_ID, 0xfff);
if (ibqp->qp_type == IB_QPT_XRC_TGT) {
context->qkey_xrcd = cpu_to_le32(hr_qp->xrcdn);
hr_reg_enable(context, QPC_XRC_QP_TYPE);
}
if (hr_qp->en_flags & HNS_ROCE_QP_CAP_RQ_RECORD_DB)
hr_reg_enable(context, QPC_RQ_RECORD_EN);
if (hr_qp->en_flags & HNS_ROCE_QP_CAP_OWNER_DB)
hr_reg_enable(context, QPC_OWNER_MODE);
hr_reg_write(context, QPC_RQ_DB_RECORD_ADDR_L,
lower_32_bits(hr_qp->rdb.dma) >> 1);
hr_reg_write(context, QPC_RQ_DB_RECORD_ADDR_H,
upper_32_bits(hr_qp->rdb.dma));
hr_reg_write(context, QPC_RX_CQN, get_cqn(ibqp->recv_cq));
if (ibqp->srq) {
hr_reg_enable(context, QPC_SRQ_EN);
hr_reg_write(context, QPC_SRQN, to_hr_srq(ibqp->srq)->srqn);
}
hr_reg_enable(context, QPC_FRE);
hr_reg_write(context, QPC_TX_CQN, get_cqn(ibqp->send_cq));
if (hr_dev->caps.qpc_sz < HNS_ROCE_V3_QPC_SZ)
return;
if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_STASH)
hr_reg_enable(&context->ext, QPCEX_STASH);
}
static void modify_qp_init_to_init(struct ib_qp *ibqp,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
/*
* In v2 engine, software pass context and context mask to hardware
* when modifying qp. If software need modify some fields in context,
* we should set all bits of the relevant fields in context mask to
* 0 at the same time, else set them to 0x1.
*/
hr_reg_write(context, QPC_TST, to_hr_qp_type(ibqp->qp_type));
hr_reg_clear(qpc_mask, QPC_TST);
hr_reg_write(context, QPC_PD, get_pdn(ibqp->pd));
hr_reg_clear(qpc_mask, QPC_PD);
hr_reg_write(context, QPC_RX_CQN, get_cqn(ibqp->recv_cq));
hr_reg_clear(qpc_mask, QPC_RX_CQN);
hr_reg_write(context, QPC_TX_CQN, get_cqn(ibqp->send_cq));
hr_reg_clear(qpc_mask, QPC_TX_CQN);
if (ibqp->srq) {
hr_reg_enable(context, QPC_SRQ_EN);
hr_reg_clear(qpc_mask, QPC_SRQ_EN);
hr_reg_write(context, QPC_SRQN, to_hr_srq(ibqp->srq)->srqn);
hr_reg_clear(qpc_mask, QPC_SRQN);
}
}
static int config_qp_rq_buf(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *hr_qp,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
u64 mtts[MTT_MIN_COUNT] = { 0 };
u64 wqe_sge_ba;
int ret;
/* Search qp buf's mtts */
ret = hns_roce_mtr_find(hr_dev, &hr_qp->mtr, hr_qp->rq.offset, mtts,
MTT_MIN_COUNT);
if (hr_qp->rq.wqe_cnt && ret) {
ibdev_err(&hr_dev->ib_dev,
"failed to find QP(0x%lx) RQ WQE buf, ret = %d.\n",
hr_qp->qpn, ret);
return ret;
}
wqe_sge_ba = hns_roce_get_mtr_ba(&hr_qp->mtr);
context->wqe_sge_ba = cpu_to_le32(wqe_sge_ba >> 3);
qpc_mask->wqe_sge_ba = 0;
/*
* In v2 engine, software pass context and context mask to hardware
* when modifying qp. If software need modify some fields in context,
* we should set all bits of the relevant fields in context mask to
* 0 at the same time, else set them to 0x1.
*/
hr_reg_write(context, QPC_WQE_SGE_BA_H, wqe_sge_ba >> (32 + 3));
hr_reg_clear(qpc_mask, QPC_WQE_SGE_BA_H);
hr_reg_write(context, QPC_SQ_HOP_NUM,
to_hr_hem_hopnum(hr_dev->caps.wqe_sq_hop_num,
hr_qp->sq.wqe_cnt));
hr_reg_clear(qpc_mask, QPC_SQ_HOP_NUM);
hr_reg_write(context, QPC_SGE_HOP_NUM,
to_hr_hem_hopnum(hr_dev->caps.wqe_sge_hop_num,
hr_qp->sge.sge_cnt));
hr_reg_clear(qpc_mask, QPC_SGE_HOP_NUM);
hr_reg_write(context, QPC_RQ_HOP_NUM,
to_hr_hem_hopnum(hr_dev->caps.wqe_rq_hop_num,
hr_qp->rq.wqe_cnt));
hr_reg_clear(qpc_mask, QPC_RQ_HOP_NUM);
hr_reg_write(context, QPC_WQE_SGE_BA_PG_SZ,
to_hr_hw_page_shift(hr_qp->mtr.hem_cfg.ba_pg_shift));
hr_reg_clear(qpc_mask, QPC_WQE_SGE_BA_PG_SZ);
hr_reg_write(context, QPC_WQE_SGE_BUF_PG_SZ,
to_hr_hw_page_shift(hr_qp->mtr.hem_cfg.buf_pg_shift));
hr_reg_clear(qpc_mask, QPC_WQE_SGE_BUF_PG_SZ);
context->rq_cur_blk_addr = cpu_to_le32(to_hr_hw_page_addr(mtts[0]));
qpc_mask->rq_cur_blk_addr = 0;
hr_reg_write(context, QPC_RQ_CUR_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(mtts[0])));
hr_reg_clear(qpc_mask, QPC_RQ_CUR_BLK_ADDR_H);
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) {
context->rq_nxt_blk_addr =
cpu_to_le32(to_hr_hw_page_addr(mtts[1]));
qpc_mask->rq_nxt_blk_addr = 0;
hr_reg_write(context, QPC_RQ_NXT_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(mtts[1])));
hr_reg_clear(qpc_mask, QPC_RQ_NXT_BLK_ADDR_H);
}
return 0;
}
static int config_qp_sq_buf(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *hr_qp,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
u64 sge_cur_blk = 0;
u64 sq_cur_blk = 0;
int ret;
/* search qp buf's mtts */
ret = hns_roce_mtr_find(hr_dev, &hr_qp->mtr, hr_qp->sq.offset,
&sq_cur_blk, 1);
if (ret) {
ibdev_err(ibdev, "failed to find QP(0x%lx) SQ WQE buf, ret = %d.\n",
hr_qp->qpn, ret);
return ret;
}
if (hr_qp->sge.sge_cnt > 0) {
ret = hns_roce_mtr_find(hr_dev, &hr_qp->mtr,
hr_qp->sge.offset, &sge_cur_blk, 1);
if (ret) {
ibdev_err(ibdev, "failed to find QP(0x%lx) SGE buf, ret = %d.\n",
hr_qp->qpn, ret);
return ret;
}
}
/*
* In v2 engine, software pass context and context mask to hardware
* when modifying qp. If software need modify some fields in context,
* we should set all bits of the relevant fields in context mask to
* 0 at the same time, else set them to 0x1.
*/
hr_reg_write(context, QPC_SQ_CUR_BLK_ADDR_L,
lower_32_bits(to_hr_hw_page_addr(sq_cur_blk)));
hr_reg_write(context, QPC_SQ_CUR_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(sq_cur_blk)));
hr_reg_clear(qpc_mask, QPC_SQ_CUR_BLK_ADDR_L);
hr_reg_clear(qpc_mask, QPC_SQ_CUR_BLK_ADDR_H);
hr_reg_write(context, QPC_SQ_CUR_SGE_BLK_ADDR_L,
lower_32_bits(to_hr_hw_page_addr(sge_cur_blk)));
hr_reg_write(context, QPC_SQ_CUR_SGE_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(sge_cur_blk)));
hr_reg_clear(qpc_mask, QPC_SQ_CUR_SGE_BLK_ADDR_L);
hr_reg_clear(qpc_mask, QPC_SQ_CUR_SGE_BLK_ADDR_H);
hr_reg_write(context, QPC_RX_SQ_CUR_BLK_ADDR_L,
lower_32_bits(to_hr_hw_page_addr(sq_cur_blk)));
hr_reg_write(context, QPC_RX_SQ_CUR_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(sq_cur_blk)));
hr_reg_clear(qpc_mask, QPC_RX_SQ_CUR_BLK_ADDR_L);
hr_reg_clear(qpc_mask, QPC_RX_SQ_CUR_BLK_ADDR_H);
return 0;
}
static inline enum ib_mtu get_mtu(struct ib_qp *ibqp,
const struct ib_qp_attr *attr)
{
if (ibqp->qp_type == IB_QPT_GSI || ibqp->qp_type == IB_QPT_UD)
return IB_MTU_4096;
return attr->path_mtu;
}
static int modify_qp_init_to_rtr(struct ib_qp *ibqp,
const struct ib_qp_attr *attr, int attr_mask,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask,
struct ib_udata *udata)
{
struct hns_roce_ucontext *uctx = rdma_udata_to_drv_context(udata,
struct hns_roce_ucontext, ibucontext);
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
struct ib_device *ibdev = &hr_dev->ib_dev;
dma_addr_t trrl_ba;
dma_addr_t irrl_ba;
enum ib_mtu ib_mtu;
const u8 *smac;
u8 lp_pktn_ini;
u64 *mtts;
u8 *dmac;
u32 port;
int mtu;
int ret;
ret = config_qp_rq_buf(hr_dev, hr_qp, context, qpc_mask);
if (ret) {
ibdev_err(ibdev, "failed to config rq buf, ret = %d.\n", ret);
return ret;
}
/* Search IRRL's mtts */
mtts = hns_roce_table_find(hr_dev, &hr_dev->qp_table.irrl_table,
hr_qp->qpn, &irrl_ba);
if (!mtts) {
ibdev_err(ibdev, "failed to find qp irrl_table.\n");
return -EINVAL;
}
/* Search TRRL's mtts */
mtts = hns_roce_table_find(hr_dev, &hr_dev->qp_table.trrl_table,
hr_qp->qpn, &trrl_ba);
if (!mtts) {
ibdev_err(ibdev, "failed to find qp trrl_table.\n");
return -EINVAL;
}
if (attr_mask & IB_QP_ALT_PATH) {
ibdev_err(ibdev, "INIT2RTR attr_mask (0x%x) error.\n",
attr_mask);
return -EINVAL;
}
hr_reg_write(context, QPC_TRRL_BA_L, trrl_ba >> QPC_TRRL_BA_L_S);
hr_reg_clear(qpc_mask, QPC_TRRL_BA_L);
context->trrl_ba = cpu_to_le32(trrl_ba >> QPC_TRRL_BA_M_S);
qpc_mask->trrl_ba = 0;
hr_reg_write(context, QPC_TRRL_BA_H, trrl_ba >> QPC_TRRL_BA_H_S);
hr_reg_clear(qpc_mask, QPC_TRRL_BA_H);
context->irrl_ba = cpu_to_le32(irrl_ba >> QPC_IRRL_BA_L_S);
qpc_mask->irrl_ba = 0;
hr_reg_write(context, QPC_IRRL_BA_H, irrl_ba >> QPC_IRRL_BA_H_S);
hr_reg_clear(qpc_mask, QPC_IRRL_BA_H);
hr_reg_enable(context, QPC_RMT_E2E);
hr_reg_clear(qpc_mask, QPC_RMT_E2E);
hr_reg_write(context, QPC_SIG_TYPE, hr_qp->sq_signal_bits);
hr_reg_clear(qpc_mask, QPC_SIG_TYPE);
port = (attr_mask & IB_QP_PORT) ? (attr->port_num - 1) : hr_qp->port;
smac = (const u8 *)hr_dev->dev_addr[port];
dmac = (u8 *)attr->ah_attr.roce.dmac;
/* when dmac equals smac or loop_idc is 1, it should loopback */
if (ether_addr_equal_unaligned(dmac, smac) ||
hr_dev->loop_idc == 0x1) {
hr_reg_write(context, QPC_LBI, hr_dev->loop_idc);
hr_reg_clear(qpc_mask, QPC_LBI);
}
if (attr_mask & IB_QP_DEST_QPN) {
hr_reg_write(context, QPC_DQPN, attr->dest_qp_num);
hr_reg_clear(qpc_mask, QPC_DQPN);
}
memcpy(&context->dmac, dmac, sizeof(u32));
hr_reg_write(context, QPC_DMAC_H, *((u16 *)(&dmac[4])));
qpc_mask->dmac = 0;
hr_reg_clear(qpc_mask, QPC_DMAC_H);
ib_mtu = get_mtu(ibqp, attr);
hr_qp->path_mtu = ib_mtu;
mtu = ib_mtu_enum_to_int(ib_mtu);
if (WARN_ON(mtu <= 0))
return -EINVAL;
#define MIN_LP_MSG_LEN 1024
/* mtu * (2 ^ lp_pktn_ini) should be in the range of 1024 to mtu */
lp_pktn_ini = ilog2(max(mtu, MIN_LP_MSG_LEN) / mtu);
if (attr_mask & IB_QP_PATH_MTU) {
hr_reg_write(context, QPC_MTU, ib_mtu);
hr_reg_clear(qpc_mask, QPC_MTU);
}
hr_reg_write(context, QPC_LP_PKTN_INI, lp_pktn_ini);
hr_reg_clear(qpc_mask, QPC_LP_PKTN_INI);
/* ACK_REQ_FREQ should be larger than or equal to LP_PKTN_INI */
hr_reg_write(context, QPC_ACK_REQ_FREQ, lp_pktn_ini);
hr_reg_clear(qpc_mask, QPC_ACK_REQ_FREQ);
hr_reg_clear(qpc_mask, QPC_RX_REQ_PSN_ERR);
hr_reg_clear(qpc_mask, QPC_RX_REQ_MSN);
hr_reg_clear(qpc_mask, QPC_RX_REQ_LAST_OPTYPE);
context->rq_rnr_timer = 0;
qpc_mask->rq_rnr_timer = 0;
hr_reg_clear(qpc_mask, QPC_TRRL_HEAD_MAX);
hr_reg_clear(qpc_mask, QPC_TRRL_TAIL_MAX);
#define MAX_LP_SGEN 3
/* rocee send 2^lp_sgen_ini segs every time */
hr_reg_write(context, QPC_LP_SGEN_INI, MAX_LP_SGEN);
hr_reg_clear(qpc_mask, QPC_LP_SGEN_INI);
if (udata && ibqp->qp_type == IB_QPT_RC &&
(uctx->config & HNS_ROCE_RQ_INLINE_FLAGS)) {
hr_reg_write_bool(context, QPC_RQIE,
hr_dev->caps.flags &
HNS_ROCE_CAP_FLAG_RQ_INLINE);
hr_reg_clear(qpc_mask, QPC_RQIE);
}
if (udata &&
(ibqp->qp_type == IB_QPT_RC || ibqp->qp_type == IB_QPT_XRC_TGT) &&
(uctx->config & HNS_ROCE_CQE_INLINE_FLAGS)) {
hr_reg_write_bool(context, QPC_CQEIE,
hr_dev->caps.flags &
HNS_ROCE_CAP_FLAG_CQE_INLINE);
hr_reg_clear(qpc_mask, QPC_CQEIE);
hr_reg_write(context, QPC_CQEIS, 0);
hr_reg_clear(qpc_mask, QPC_CQEIS);
}
return 0;
}
static int modify_qp_rtr_to_rts(struct ib_qp *ibqp, int attr_mask,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
struct ib_device *ibdev = &hr_dev->ib_dev;
int ret;
/* Not support alternate path and path migration */
if (attr_mask & (IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE)) {
ibdev_err(ibdev, "RTR2RTS attr_mask (0x%x)error\n", attr_mask);
return -EINVAL;
}
ret = config_qp_sq_buf(hr_dev, hr_qp, context, qpc_mask);
if (ret) {
ibdev_err(ibdev, "failed to config sq buf, ret = %d.\n", ret);
return ret;
}
/*
* Set some fields in context to zero, Because the default values
* of all fields in context are zero, we need not set them to 0 again.
* but we should set the relevant fields of context mask to 0.
*/
hr_reg_clear(qpc_mask, QPC_IRRL_SGE_IDX);
hr_reg_clear(qpc_mask, QPC_RX_ACK_MSN);
hr_reg_clear(qpc_mask, QPC_ACK_LAST_OPTYPE);
hr_reg_clear(qpc_mask, QPC_IRRL_PSN_VLD);
hr_reg_clear(qpc_mask, QPC_IRRL_PSN);
hr_reg_clear(qpc_mask, QPC_IRRL_TAIL_REAL);
hr_reg_clear(qpc_mask, QPC_RETRY_MSG_MSN);
hr_reg_clear(qpc_mask, QPC_RNR_RETRY_FLAG);
hr_reg_clear(qpc_mask, QPC_CHECK_FLG);
hr_reg_clear(qpc_mask, QPC_V2_IRRL_HEAD);
return 0;
}
static int get_dip_ctx_idx(struct ib_qp *ibqp, const struct ib_qp_attr *attr,
u32 *dip_idx)
{
const struct ib_global_route *grh = rdma_ah_read_grh(&attr->ah_attr);
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
u32 *spare_idx = hr_dev->qp_table.idx_table.spare_idx;
u32 *head = &hr_dev->qp_table.idx_table.head;
u32 *tail = &hr_dev->qp_table.idx_table.tail;
struct hns_roce_dip *hr_dip;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&hr_dev->dip_list_lock, flags);
spare_idx[*tail] = ibqp->qp_num;
*tail = (*tail == hr_dev->caps.num_qps - 1) ? 0 : (*tail + 1);
list_for_each_entry(hr_dip, &hr_dev->dip_list, node) {
if (!memcmp(grh->dgid.raw, hr_dip->dgid, GID_LEN_V2)) {
*dip_idx = hr_dip->dip_idx;
goto out;
}
}
/* If no dgid is found, a new dip and a mapping between dgid and
* dip_idx will be created.
*/
hr_dip = kzalloc(sizeof(*hr_dip), GFP_ATOMIC);
if (!hr_dip) {
ret = -ENOMEM;
goto out;
}
memcpy(hr_dip->dgid, grh->dgid.raw, sizeof(grh->dgid.raw));
hr_dip->dip_idx = *dip_idx = spare_idx[*head];
*head = (*head == hr_dev->caps.num_qps - 1) ? 0 : (*head + 1);
list_add_tail(&hr_dip->node, &hr_dev->dip_list);
out:
spin_unlock_irqrestore(&hr_dev->dip_list_lock, flags);
return ret;
}
enum {
CONG_DCQCN,
CONG_WINDOW,
};
enum {
UNSUPPORT_CONG_LEVEL,
SUPPORT_CONG_LEVEL,
};
enum {
CONG_LDCP,
CONG_HC3,
};
enum {
DIP_INVALID,
DIP_VALID,
};
enum {
WND_LIMIT,
WND_UNLIMIT,
};
static int check_cong_type(struct ib_qp *ibqp,
struct hns_roce_congestion_algorithm *cong_alg)
{
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
/* different congestion types match different configurations */
switch (hr_qp->cong_type) {
case CONG_TYPE_DCQCN:
cong_alg->alg_sel = CONG_DCQCN;
cong_alg->alg_sub_sel = UNSUPPORT_CONG_LEVEL;
cong_alg->dip_vld = DIP_INVALID;
cong_alg->wnd_mode_sel = WND_LIMIT;
break;
case CONG_TYPE_LDCP:
cong_alg->alg_sel = CONG_WINDOW;
cong_alg->alg_sub_sel = CONG_LDCP;
cong_alg->dip_vld = DIP_INVALID;
cong_alg->wnd_mode_sel = WND_UNLIMIT;
break;
case CONG_TYPE_HC3:
cong_alg->alg_sel = CONG_WINDOW;
cong_alg->alg_sub_sel = CONG_HC3;
cong_alg->dip_vld = DIP_INVALID;
cong_alg->wnd_mode_sel = WND_LIMIT;
break;
case CONG_TYPE_DIP:
cong_alg->alg_sel = CONG_DCQCN;
cong_alg->alg_sub_sel = UNSUPPORT_CONG_LEVEL;
cong_alg->dip_vld = DIP_VALID;
cong_alg->wnd_mode_sel = WND_LIMIT;
break;
default:
hr_qp->cong_type = CONG_TYPE_DCQCN;
cong_alg->alg_sel = CONG_DCQCN;
cong_alg->alg_sub_sel = UNSUPPORT_CONG_LEVEL;
cong_alg->dip_vld = DIP_INVALID;
cong_alg->wnd_mode_sel = WND_LIMIT;
break;
}
return 0;
}
static int fill_cong_field(struct ib_qp *ibqp, const struct ib_qp_attr *attr,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
const struct ib_global_route *grh = rdma_ah_read_grh(&attr->ah_attr);
struct hns_roce_congestion_algorithm cong_field;
struct ib_device *ibdev = ibqp->device;
struct hns_roce_dev *hr_dev = to_hr_dev(ibdev);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
u32 dip_idx = 0;
int ret;
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08 ||
grh->sgid_attr->gid_type == IB_GID_TYPE_ROCE)
return 0;
ret = check_cong_type(ibqp, &cong_field);
if (ret)
return ret;
hr_reg_write(context, QPC_CONG_ALGO_TMPL_ID, hr_dev->cong_algo_tmpl_id +
hr_qp->cong_type * HNS_ROCE_CONG_SIZE);
hr_reg_clear(qpc_mask, QPC_CONG_ALGO_TMPL_ID);
hr_reg_write(&context->ext, QPCEX_CONG_ALG_SEL, cong_field.alg_sel);
hr_reg_clear(&qpc_mask->ext, QPCEX_CONG_ALG_SEL);
hr_reg_write(&context->ext, QPCEX_CONG_ALG_SUB_SEL,
cong_field.alg_sub_sel);
hr_reg_clear(&qpc_mask->ext, QPCEX_CONG_ALG_SUB_SEL);
hr_reg_write(&context->ext, QPCEX_DIP_CTX_IDX_VLD, cong_field.dip_vld);
hr_reg_clear(&qpc_mask->ext, QPCEX_DIP_CTX_IDX_VLD);
hr_reg_write(&context->ext, QPCEX_SQ_RQ_NOT_FORBID_EN,
cong_field.wnd_mode_sel);
hr_reg_clear(&qpc_mask->ext, QPCEX_SQ_RQ_NOT_FORBID_EN);
/* if dip is disabled, there is no need to set dip idx */
if (cong_field.dip_vld == 0)
return 0;
ret = get_dip_ctx_idx(ibqp, attr, &dip_idx);
if (ret) {
ibdev_err(ibdev, "failed to fill cong field, ret = %d.\n", ret);
return ret;
}
hr_reg_write(&context->ext, QPCEX_DIP_CTX_IDX, dip_idx);
hr_reg_write(&qpc_mask->ext, QPCEX_DIP_CTX_IDX, 0);
return 0;
}
static int hns_roce_hw_v2_get_dscp(struct hns_roce_dev *hr_dev, u8 dscp,
u8 *tc_mode, u8 *priority)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
struct hnae3_handle *handle = priv->handle;
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
if (!ops->get_dscp_prio)
return -EOPNOTSUPP;
return ops->get_dscp_prio(handle, dscp, tc_mode, priority);
}
bool check_sl_valid(struct hns_roce_dev *hr_dev, u8 sl)
{
u32 max_sl;
max_sl = min_t(u32, MAX_SERVICE_LEVEL, hr_dev->caps.sl_num - 1);
if (unlikely(sl > max_sl)) {
ibdev_err_ratelimited(&hr_dev->ib_dev,
"failed to set SL(%u). Shouldn't be larger than %u.\n",
sl, max_sl);
return false;
}
return true;
}
static int hns_roce_set_sl(struct ib_qp *ibqp,
const struct ib_qp_attr *attr,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
const struct ib_global_route *grh = rdma_ah_read_grh(&attr->ah_attr);
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
struct ib_device *ibdev = &hr_dev->ib_dev;
int ret;
ret = hns_roce_hw_v2_get_dscp(hr_dev, get_tclass(&attr->ah_attr.grh),
&hr_qp->tc_mode, &hr_qp->priority);
if (ret && ret != -EOPNOTSUPP &&
grh->sgid_attr->gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
ibdev_err_ratelimited(ibdev,
"failed to get dscp, ret = %d.\n", ret);
return ret;
}
if (hr_qp->tc_mode == HNAE3_TC_MAP_MODE_DSCP &&
grh->sgid_attr->gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
hr_qp->sl = hr_qp->priority;
else
hr_qp->sl = rdma_ah_get_sl(&attr->ah_attr);
if (!check_sl_valid(hr_dev, hr_qp->sl))
return -EINVAL;
hr_reg_write(context, QPC_SL, hr_qp->sl);
hr_reg_clear(qpc_mask, QPC_SL);
return 0;
}
static int hns_roce_v2_set_path(struct ib_qp *ibqp,
const struct ib_qp_attr *attr,
int attr_mask,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
const struct ib_global_route *grh = rdma_ah_read_grh(&attr->ah_attr);
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
struct ib_device *ibdev = &hr_dev->ib_dev;
const struct ib_gid_attr *gid_attr = NULL;
u8 sl = rdma_ah_get_sl(&attr->ah_attr);
int is_roce_protocol;
u16 vlan_id = 0xffff;
bool is_udp = false;
u8 ib_port;
u8 hr_port;
int ret;
/*
* If free_mr_en of qp is set, it means that this qp comes from
* free mr. This qp will perform the loopback operation.
* In the loopback scenario, only sl needs to be set.
*/
if (hr_qp->free_mr_en) {
if (!check_sl_valid(hr_dev, sl))
return -EINVAL;
hr_reg_write(context, QPC_SL, sl);
hr_reg_clear(qpc_mask, QPC_SL);
hr_qp->sl = sl;
return 0;
}
ib_port = (attr_mask & IB_QP_PORT) ? attr->port_num : hr_qp->port + 1;
hr_port = ib_port - 1;
is_roce_protocol = rdma_cap_eth_ah(&hr_dev->ib_dev, ib_port) &&
rdma_ah_get_ah_flags(&attr->ah_attr) & IB_AH_GRH;
if (is_roce_protocol) {
gid_attr = attr->ah_attr.grh.sgid_attr;
ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
if (ret)
return ret;
is_udp = (gid_attr->gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP);
}
/* Only HIP08 needs to set the vlan_en bits in QPC */
if (vlan_id < VLAN_N_VID &&
hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) {
hr_reg_enable(context, QPC_RQ_VLAN_EN);
hr_reg_clear(qpc_mask, QPC_RQ_VLAN_EN);
hr_reg_enable(context, QPC_SQ_VLAN_EN);
hr_reg_clear(qpc_mask, QPC_SQ_VLAN_EN);
}
hr_reg_write(context, QPC_VLAN_ID, vlan_id);
hr_reg_clear(qpc_mask, QPC_VLAN_ID);
if (grh->sgid_index >= hr_dev->caps.gid_table_len[hr_port]) {
ibdev_err(ibdev, "sgid_index(%u) too large. max is %d\n",
grh->sgid_index, hr_dev->caps.gid_table_len[hr_port]);
return -EINVAL;
}
if (attr->ah_attr.type != RDMA_AH_ATTR_TYPE_ROCE) {
ibdev_err(ibdev, "ah attr is not RDMA roce type\n");
return -EINVAL;
}
hr_reg_write(context, QPC_UDPSPN,
is_udp ? rdma_get_udp_sport(grh->flow_label, ibqp->qp_num,
attr->dest_qp_num) :
0);
hr_reg_clear(qpc_mask, QPC_UDPSPN);
hr_reg_write(context, QPC_GMV_IDX, grh->sgid_index);
hr_reg_clear(qpc_mask, QPC_GMV_IDX);
hr_reg_write(context, QPC_HOPLIMIT, grh->hop_limit);
hr_reg_clear(qpc_mask, QPC_HOPLIMIT);
ret = fill_cong_field(ibqp, attr, context, qpc_mask);
if (ret)
return ret;
hr_reg_write(context, QPC_TC, get_tclass(&attr->ah_attr.grh));
hr_reg_clear(qpc_mask, QPC_TC);
hr_reg_write(context, QPC_FL, grh->flow_label);
hr_reg_clear(qpc_mask, QPC_FL);
memcpy(context->dgid, grh->dgid.raw, sizeof(grh->dgid.raw));
memset(qpc_mask->dgid, 0, sizeof(grh->dgid.raw));
return hns_roce_set_sl(ibqp, attr, context, qpc_mask);
}
static bool check_qp_state(enum ib_qp_state cur_state,
enum ib_qp_state new_state)
{
static const bool sm[][IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = { [IB_QPS_RESET] = true,
[IB_QPS_INIT] = true },
[IB_QPS_INIT] = { [IB_QPS_RESET] = true,
[IB_QPS_INIT] = true,
[IB_QPS_RTR] = true,
[IB_QPS_ERR] = true },
[IB_QPS_RTR] = { [IB_QPS_RESET] = true,
[IB_QPS_RTS] = true,
[IB_QPS_ERR] = true },
[IB_QPS_RTS] = { [IB_QPS_RESET] = true,
[IB_QPS_RTS] = true,
[IB_QPS_ERR] = true },
[IB_QPS_SQD] = {},
[IB_QPS_SQE] = {},
[IB_QPS_ERR] = { [IB_QPS_RESET] = true,
[IB_QPS_ERR] = true }
};
return sm[cur_state][new_state];
}
static int hns_roce_v2_set_abs_fields(struct ib_qp *ibqp,
const struct ib_qp_attr *attr,
int attr_mask,
enum ib_qp_state cur_state,
enum ib_qp_state new_state,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask,
struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
int ret = 0;
if (!check_qp_state(cur_state, new_state)) {
ibdev_err(&hr_dev->ib_dev, "Illegal state for QP!\n");
return -EINVAL;
}
if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) {
memset(qpc_mask, 0, hr_dev->caps.qpc_sz);
modify_qp_reset_to_init(ibqp, context, qpc_mask);
} else if (cur_state == IB_QPS_INIT && new_state == IB_QPS_INIT) {
modify_qp_init_to_init(ibqp, context, qpc_mask);
} else if (cur_state == IB_QPS_INIT && new_state == IB_QPS_RTR) {
ret = modify_qp_init_to_rtr(ibqp, attr, attr_mask, context,
qpc_mask, udata);
} else if (cur_state == IB_QPS_RTR && new_state == IB_QPS_RTS) {
ret = modify_qp_rtr_to_rts(ibqp, attr_mask, context, qpc_mask);
}
return ret;
}
static bool check_qp_timeout_cfg_range(struct hns_roce_dev *hr_dev, u8 *timeout)
{
#define QP_ACK_TIMEOUT_MAX_HIP08 20
#define QP_ACK_TIMEOUT_MAX 31
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) {
if (*timeout > QP_ACK_TIMEOUT_MAX_HIP08) {
ibdev_warn(&hr_dev->ib_dev,
"local ACK timeout shall be 0 to 20.\n");
return false;
}
*timeout += HNS_ROCE_V2_QP_ACK_TIMEOUT_OFS_HIP08;
} else if (hr_dev->pci_dev->revision > PCI_REVISION_ID_HIP08) {
if (*timeout > QP_ACK_TIMEOUT_MAX) {
ibdev_warn(&hr_dev->ib_dev,
"local ACK timeout shall be 0 to 31.\n");
return false;
}
}
return true;
}
static int hns_roce_v2_set_opt_fields(struct ib_qp *ibqp,
const struct ib_qp_attr *attr,
int attr_mask,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
int ret = 0;
u8 timeout;
if (attr_mask & IB_QP_AV) {
ret = hns_roce_v2_set_path(ibqp, attr, attr_mask, context,
qpc_mask);
if (ret)
return ret;
}
if (attr_mask & IB_QP_TIMEOUT) {
timeout = attr->timeout;
if (check_qp_timeout_cfg_range(hr_dev, &timeout)) {
hr_reg_write(context, QPC_AT, timeout);
hr_reg_clear(qpc_mask, QPC_AT);
}
}
if (attr_mask & IB_QP_RETRY_CNT) {
hr_reg_write(context, QPC_RETRY_NUM_INIT, attr->retry_cnt);
hr_reg_clear(qpc_mask, QPC_RETRY_NUM_INIT);
hr_reg_write(context, QPC_RETRY_CNT, attr->retry_cnt);
hr_reg_clear(qpc_mask, QPC_RETRY_CNT);
}
if (attr_mask & IB_QP_RNR_RETRY) {
hr_reg_write(context, QPC_RNR_NUM_INIT, attr->rnr_retry);
hr_reg_clear(qpc_mask, QPC_RNR_NUM_INIT);
hr_reg_write(context, QPC_RNR_CNT, attr->rnr_retry);
hr_reg_clear(qpc_mask, QPC_RNR_CNT);
}
if (attr_mask & IB_QP_SQ_PSN) {
hr_reg_write(context, QPC_SQ_CUR_PSN, attr->sq_psn);
hr_reg_clear(qpc_mask, QPC_SQ_CUR_PSN);
hr_reg_write(context, QPC_SQ_MAX_PSN, attr->sq_psn);
hr_reg_clear(qpc_mask, QPC_SQ_MAX_PSN);
hr_reg_write(context, QPC_RETRY_MSG_PSN_L, attr->sq_psn);
hr_reg_clear(qpc_mask, QPC_RETRY_MSG_PSN_L);
hr_reg_write(context, QPC_RETRY_MSG_PSN_H,
attr->sq_psn >> RETRY_MSG_PSN_SHIFT);
hr_reg_clear(qpc_mask, QPC_RETRY_MSG_PSN_H);
hr_reg_write(context, QPC_RETRY_MSG_FPKT_PSN, attr->sq_psn);
hr_reg_clear(qpc_mask, QPC_RETRY_MSG_FPKT_PSN);
hr_reg_write(context, QPC_RX_ACK_EPSN, attr->sq_psn);
hr_reg_clear(qpc_mask, QPC_RX_ACK_EPSN);
}
if ((attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) &&
attr->max_dest_rd_atomic) {
hr_reg_write(context, QPC_RR_MAX,
fls(attr->max_dest_rd_atomic - 1));
hr_reg_clear(qpc_mask, QPC_RR_MAX);
}
if ((attr_mask & IB_QP_MAX_QP_RD_ATOMIC) && attr->max_rd_atomic) {
hr_reg_write(context, QPC_SR_MAX, fls(attr->max_rd_atomic - 1));
hr_reg_clear(qpc_mask, QPC_SR_MAX);
}
if (attr_mask & (IB_QP_ACCESS_FLAGS | IB_QP_MAX_DEST_RD_ATOMIC))
set_access_flags(hr_qp, context, qpc_mask, attr, attr_mask);
if (attr_mask & IB_QP_MIN_RNR_TIMER) {
hr_reg_write(context, QPC_MIN_RNR_TIME,
hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08 ?
HNS_ROCE_RNR_TIMER_10NS : attr->min_rnr_timer);
hr_reg_clear(qpc_mask, QPC_MIN_RNR_TIME);
}
if (attr_mask & IB_QP_RQ_PSN) {
hr_reg_write(context, QPC_RX_REQ_EPSN, attr->rq_psn);
hr_reg_clear(qpc_mask, QPC_RX_REQ_EPSN);
hr_reg_write(context, QPC_RAQ_PSN, attr->rq_psn - 1);
hr_reg_clear(qpc_mask, QPC_RAQ_PSN);
}
if (attr_mask & IB_QP_QKEY) {
context->qkey_xrcd = cpu_to_le32(attr->qkey);
qpc_mask->qkey_xrcd = 0;
hr_qp->qkey = attr->qkey;
}
return ret;
}
static void hns_roce_v2_record_opt_fields(struct ib_qp *ibqp,
const struct ib_qp_attr *attr,
int attr_mask)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
if (attr_mask & IB_QP_ACCESS_FLAGS)
hr_qp->atomic_rd_en = attr->qp_access_flags;
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
hr_qp->resp_depth = attr->max_dest_rd_atomic;
if (attr_mask & IB_QP_PORT) {
hr_qp->port = attr->port_num - 1;
hr_qp->phy_port = hr_dev->iboe.phy_port[hr_qp->port];
}
}
static void clear_qp(struct hns_roce_qp *hr_qp)
{
struct ib_qp *ibqp = &hr_qp->ibqp;
if (ibqp->send_cq)
hns_roce_v2_cq_clean(to_hr_cq(ibqp->send_cq),
hr_qp->qpn, NULL);
if (ibqp->recv_cq && ibqp->recv_cq != ibqp->send_cq)
hns_roce_v2_cq_clean(to_hr_cq(ibqp->recv_cq),
hr_qp->qpn, ibqp->srq ?
to_hr_srq(ibqp->srq) : NULL);
if (hr_qp->en_flags & HNS_ROCE_QP_CAP_RQ_RECORD_DB)
*hr_qp->rdb.db_record = 0;
hr_qp->rq.head = 0;
hr_qp->rq.tail = 0;
hr_qp->sq.head = 0;
hr_qp->sq.tail = 0;
hr_qp->next_sge = 0;
}
static void v2_set_flushed_fields(struct ib_qp *ibqp,
struct hns_roce_v2_qp_context *context,
struct hns_roce_v2_qp_context *qpc_mask)
{
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
unsigned long sq_flag = 0;
unsigned long rq_flag = 0;
if (ibqp->qp_type == IB_QPT_XRC_TGT)
return;
spin_lock_irqsave(&hr_qp->sq.lock, sq_flag);
hr_reg_write(context, QPC_SQ_PRODUCER_IDX, hr_qp->sq.head);
hr_reg_clear(qpc_mask, QPC_SQ_PRODUCER_IDX);
hr_qp->state = IB_QPS_ERR;
spin_unlock_irqrestore(&hr_qp->sq.lock, sq_flag);
if (ibqp->srq || ibqp->qp_type == IB_QPT_XRC_INI) /* no RQ */
return;
spin_lock_irqsave(&hr_qp->rq.lock, rq_flag);
hr_reg_write(context, QPC_RQ_PRODUCER_IDX, hr_qp->rq.head);
hr_reg_clear(qpc_mask, QPC_RQ_PRODUCER_IDX);
spin_unlock_irqrestore(&hr_qp->rq.lock, rq_flag);
}
static int hns_roce_v2_modify_qp(struct ib_qp *ibqp,
const struct ib_qp_attr *attr,
int attr_mask, enum ib_qp_state cur_state,
enum ib_qp_state new_state, struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
struct hns_roce_v2_qp_context ctx[2];
struct hns_roce_v2_qp_context *context = ctx;
struct hns_roce_v2_qp_context *qpc_mask = ctx + 1;
struct ib_device *ibdev = &hr_dev->ib_dev;
int ret;
if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
return -EOPNOTSUPP;
/*
* In v2 engine, software pass context and context mask to hardware
* when modifying qp. If software need modify some fields in context,
* we should set all bits of the relevant fields in context mask to
* 0 at the same time, else set them to 0x1.
*/
memset(context, 0, hr_dev->caps.qpc_sz);
memset(qpc_mask, 0xff, hr_dev->caps.qpc_sz);
ret = hns_roce_v2_set_abs_fields(ibqp, attr, attr_mask, cur_state,
new_state, context, qpc_mask, udata);
if (ret)
goto out;
/* When QP state is err, SQ and RQ WQE should be flushed */
if (new_state == IB_QPS_ERR)
v2_set_flushed_fields(ibqp, context, qpc_mask);
/* Configure the optional fields */
ret = hns_roce_v2_set_opt_fields(ibqp, attr, attr_mask, context,
qpc_mask);
if (ret)
goto out;
hr_reg_write_bool(context, QPC_INV_CREDIT,
to_hr_qp_type(hr_qp->ibqp.qp_type) == SERV_TYPE_XRC ||
ibqp->srq);
hr_reg_clear(qpc_mask, QPC_INV_CREDIT);
/* Every status migrate must change state */
hr_reg_write(context, QPC_QP_ST, new_state);
hr_reg_clear(qpc_mask, QPC_QP_ST);
/* SW pass context to HW */
ret = hns_roce_v2_qp_modify(hr_dev, context, qpc_mask, hr_qp);
if (ret) {
ibdev_err(ibdev, "failed to modify QP, ret = %d.\n", ret);
goto out;
}
hr_qp->state = new_state;
hns_roce_v2_record_opt_fields(ibqp, attr, attr_mask);
if (new_state == IB_QPS_RESET && !ibqp->uobject)
clear_qp(hr_qp);
out:
return ret;
}
static int to_ib_qp_st(enum hns_roce_v2_qp_state state)
{
static const enum ib_qp_state map[] = {
[HNS_ROCE_QP_ST_RST] = IB_QPS_RESET,
[HNS_ROCE_QP_ST_INIT] = IB_QPS_INIT,
[HNS_ROCE_QP_ST_RTR] = IB_QPS_RTR,
[HNS_ROCE_QP_ST_RTS] = IB_QPS_RTS,
[HNS_ROCE_QP_ST_SQD] = IB_QPS_SQD,
[HNS_ROCE_QP_ST_SQER] = IB_QPS_SQE,
[HNS_ROCE_QP_ST_ERR] = IB_QPS_ERR,
[HNS_ROCE_QP_ST_SQ_DRAINING] = IB_QPS_SQD
};
return (state < ARRAY_SIZE(map)) ? map[state] : -1;
}
static int hns_roce_v2_query_qpc(struct hns_roce_dev *hr_dev, u32 qpn,
void *buffer)
{
struct hns_roce_cmd_mailbox *mailbox;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_QPC,
qpn);
if (ret)
goto out;
memcpy(buffer, mailbox->buf, hr_dev->caps.qpc_sz);
out:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static int hns_roce_v2_query_srqc(struct hns_roce_dev *hr_dev, u32 srqn,
void *buffer)
{
struct hns_roce_srq_context *context;
struct hns_roce_cmd_mailbox *mailbox;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
context = mailbox->buf;
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_SRQC,
srqn);
if (ret)
goto out;
memcpy(buffer, context, sizeof(*context));
out:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static int hns_roce_v2_query_sccc(struct hns_roce_dev *hr_dev, u32 qpn,
void *buffer)
{
struct hns_roce_v2_scc_context *context;
struct hns_roce_cmd_mailbox *mailbox;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_SCCC,
qpn);
if (ret)
goto out;
context = mailbox->buf;
memcpy(buffer, context, sizeof(*context));
out:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static u8 get_qp_timeout_attr(struct hns_roce_dev *hr_dev,
struct hns_roce_v2_qp_context *context)
{
u8 timeout;
timeout = (u8)hr_reg_read(context, QPC_AT);
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08)
timeout -= HNS_ROCE_V2_QP_ACK_TIMEOUT_OFS_HIP08;
return timeout;
}
static int hns_roce_v2_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
struct hns_roce_v2_qp_context context = {};
struct ib_device *ibdev = &hr_dev->ib_dev;
int tmp_qp_state;
int state;
int ret;
memset(qp_attr, 0, sizeof(*qp_attr));
memset(qp_init_attr, 0, sizeof(*qp_init_attr));
mutex_lock(&hr_qp->mutex);
if (hr_qp->state == IB_QPS_RESET) {
qp_attr->qp_state = IB_QPS_RESET;
ret = 0;
goto done;
}
ret = hns_roce_v2_query_qpc(hr_dev, hr_qp->qpn, &context);
if (ret) {
ibdev_err(ibdev, "failed to query QPC, ret = %d.\n", ret);
ret = -EINVAL;
goto out;
}
state = hr_reg_read(&context, QPC_QP_ST);
tmp_qp_state = to_ib_qp_st((enum hns_roce_v2_qp_state)state);
if (tmp_qp_state == -1) {
ibdev_err(ibdev, "Illegal ib_qp_state\n");
ret = -EINVAL;
goto out;
}
hr_qp->state = (u8)tmp_qp_state;
qp_attr->qp_state = (enum ib_qp_state)hr_qp->state;
qp_attr->path_mtu = (enum ib_mtu)hr_reg_read(&context, QPC_MTU);
qp_attr->path_mig_state = IB_MIG_ARMED;
qp_attr->ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE;
if (hr_qp->ibqp.qp_type == IB_QPT_UD)
qp_attr->qkey = le32_to_cpu(context.qkey_xrcd);
qp_attr->rq_psn = hr_reg_read(&context, QPC_RX_REQ_EPSN);
qp_attr->sq_psn = (u32)hr_reg_read(&context, QPC_SQ_CUR_PSN);
qp_attr->dest_qp_num = hr_reg_read(&context, QPC_DQPN);
qp_attr->qp_access_flags =
((hr_reg_read(&context, QPC_RRE)) << V2_QP_RRE_S) |
((hr_reg_read(&context, QPC_RWE)) << V2_QP_RWE_S) |
((hr_reg_read(&context, QPC_ATE)) << V2_QP_ATE_S);
if (hr_qp->ibqp.qp_type == IB_QPT_RC ||
hr_qp->ibqp.qp_type == IB_QPT_XRC_INI ||
hr_qp->ibqp.qp_type == IB_QPT_XRC_TGT) {
struct ib_global_route *grh =
rdma_ah_retrieve_grh(&qp_attr->ah_attr);
rdma_ah_set_sl(&qp_attr->ah_attr,
hr_reg_read(&context, QPC_SL));
rdma_ah_set_port_num(&qp_attr->ah_attr, hr_qp->port + 1);
rdma_ah_set_ah_flags(&qp_attr->ah_attr, IB_AH_GRH);
grh->flow_label = hr_reg_read(&context, QPC_FL);
grh->sgid_index = hr_reg_read(&context, QPC_GMV_IDX);
grh->hop_limit = hr_reg_read(&context, QPC_HOPLIMIT);
grh->traffic_class = hr_reg_read(&context, QPC_TC);
memcpy(grh->dgid.raw, context.dgid, sizeof(grh->dgid.raw));
}
qp_attr->port_num = hr_qp->port + 1;
qp_attr->sq_draining = 0;
qp_attr->max_rd_atomic = 1 << hr_reg_read(&context, QPC_SR_MAX);
qp_attr->max_dest_rd_atomic = 1 << hr_reg_read(&context, QPC_RR_MAX);
qp_attr->min_rnr_timer = (u8)hr_reg_read(&context, QPC_MIN_RNR_TIME);
qp_attr->timeout = get_qp_timeout_attr(hr_dev, &context);
qp_attr->retry_cnt = hr_reg_read(&context, QPC_RETRY_NUM_INIT);
qp_attr->rnr_retry = hr_reg_read(&context, QPC_RNR_NUM_INIT);
done:
qp_attr->cur_qp_state = qp_attr->qp_state;
qp_attr->cap.max_recv_wr = hr_qp->rq.wqe_cnt;
qp_attr->cap.max_recv_sge = hr_qp->rq.max_gs - hr_qp->rq.rsv_sge;
qp_attr->cap.max_inline_data = hr_qp->max_inline_data;
qp_attr->cap.max_send_wr = hr_qp->sq.wqe_cnt;
qp_attr->cap.max_send_sge = hr_qp->sq.max_gs;
qp_init_attr->qp_context = ibqp->qp_context;
qp_init_attr->qp_type = ibqp->qp_type;
qp_init_attr->recv_cq = ibqp->recv_cq;
qp_init_attr->send_cq = ibqp->send_cq;
qp_init_attr->srq = ibqp->srq;
qp_init_attr->cap = qp_attr->cap;
qp_init_attr->sq_sig_type = hr_qp->sq_signal_bits;
out:
mutex_unlock(&hr_qp->mutex);
return ret;
}
static inline int modify_qp_is_ok(struct hns_roce_qp *hr_qp)
{
return ((hr_qp->ibqp.qp_type == IB_QPT_RC ||
hr_qp->ibqp.qp_type == IB_QPT_UD ||
hr_qp->ibqp.qp_type == IB_QPT_XRC_INI ||
hr_qp->ibqp.qp_type == IB_QPT_XRC_TGT) &&
hr_qp->state != IB_QPS_RESET);
}
static int hns_roce_v2_destroy_qp_common(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *hr_qp,
struct ib_udata *udata)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_cq *send_cq, *recv_cq;
unsigned long flags;
int ret = 0;
if (modify_qp_is_ok(hr_qp)) {
/* Modify qp to reset before destroying qp */
ret = hns_roce_v2_modify_qp(&hr_qp->ibqp, NULL, 0,
hr_qp->state, IB_QPS_RESET, udata);
if (ret)
ibdev_err(ibdev,
"failed to modify QP to RST, ret = %d.\n",
ret);
}
send_cq = hr_qp->ibqp.send_cq ? to_hr_cq(hr_qp->ibqp.send_cq) : NULL;
recv_cq = hr_qp->ibqp.recv_cq ? to_hr_cq(hr_qp->ibqp.recv_cq) : NULL;
spin_lock_irqsave(&hr_dev->qp_list_lock, flags);
hns_roce_lock_cqs(send_cq, recv_cq);
if (!udata) {
if (recv_cq)
__hns_roce_v2_cq_clean(recv_cq, hr_qp->qpn,
(hr_qp->ibqp.srq ?
to_hr_srq(hr_qp->ibqp.srq) :
NULL));
if (send_cq && send_cq != recv_cq)
__hns_roce_v2_cq_clean(send_cq, hr_qp->qpn, NULL);
}
hns_roce_qp_remove(hr_dev, hr_qp);
hns_roce_unlock_cqs(send_cq, recv_cq);
spin_unlock_irqrestore(&hr_dev->qp_list_lock, flags);
return ret;
}
int hns_roce_v2_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device);
struct hns_roce_qp *hr_qp = to_hr_qp(ibqp);
int ret;
ret = hns_roce_v2_destroy_qp_common(hr_dev, hr_qp, udata);
if (ret)
ibdev_err(&hr_dev->ib_dev,
"failed to destroy QP, QPN = 0x%06lx, ret = %d.\n",
hr_qp->qpn, ret);
hns_roce_qp_destroy(hr_dev, hr_qp, udata);
return 0;
}
static int hns_roce_v2_qp_flow_control_init(struct hns_roce_dev *hr_dev,
struct hns_roce_qp *hr_qp)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_sccc_clr_done *resp;
struct hns_roce_sccc_clr *clr;
struct hns_roce_cmq_desc desc;
int ret, i;
if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09)
return 0;
mutex_lock(&hr_dev->qp_table.scc_mutex);
/* set scc ctx clear done flag */
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_RESET_SCCC, false);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret) {
ibdev_err(ibdev, "failed to reset SCC ctx, ret = %d.\n", ret);
goto out;
}
/* clear scc context */
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CLR_SCCC, false);
clr = (struct hns_roce_sccc_clr *)desc.data;
clr->qpn = cpu_to_le32(hr_qp->qpn);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret) {
ibdev_err(ibdev, "failed to clear SCC ctx, ret = %d.\n", ret);
goto out;
}
/* query scc context clear is done or not */
resp = (struct hns_roce_sccc_clr_done *)desc.data;
for (i = 0; i <= HNS_ROCE_CMQ_SCC_CLR_DONE_CNT; i++) {
hns_roce_cmq_setup_basic_desc(&desc,
HNS_ROCE_OPC_QUERY_SCCC, true);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret) {
ibdev_err(ibdev, "failed to query clr cmq, ret = %d\n",
ret);
goto out;
}
if (resp->clr_done)
goto out;
msleep(20);
}
ibdev_err(ibdev, "query SCC clr done flag overtime.\n");
ret = -ETIMEDOUT;
out:
mutex_unlock(&hr_dev->qp_table.scc_mutex);
return ret;
}
#define DMA_IDX_SHIFT 3
#define DMA_WQE_SHIFT 3
static int hns_roce_v2_write_srqc_index_queue(struct hns_roce_srq *srq,
struct hns_roce_srq_context *ctx)
{
struct hns_roce_idx_que *idx_que = &srq->idx_que;
struct ib_device *ibdev = srq->ibsrq.device;
struct hns_roce_dev *hr_dev = to_hr_dev(ibdev);
u64 mtts_idx[MTT_MIN_COUNT] = {};
dma_addr_t dma_handle_idx;
int ret;
/* Get physical address of idx que buf */
ret = hns_roce_mtr_find(hr_dev, &idx_que->mtr, 0, mtts_idx,
ARRAY_SIZE(mtts_idx));
if (ret) {
ibdev_err(ibdev, "failed to find mtr for SRQ idx, ret = %d.\n",
ret);
return ret;
}
dma_handle_idx = hns_roce_get_mtr_ba(&idx_que->mtr);
hr_reg_write(ctx, SRQC_IDX_HOP_NUM,
to_hr_hem_hopnum(hr_dev->caps.idx_hop_num, srq->wqe_cnt));
hr_reg_write(ctx, SRQC_IDX_BT_BA_L, dma_handle_idx >> DMA_IDX_SHIFT);
hr_reg_write(ctx, SRQC_IDX_BT_BA_H,
upper_32_bits(dma_handle_idx >> DMA_IDX_SHIFT));
hr_reg_write(ctx, SRQC_IDX_BA_PG_SZ,
to_hr_hw_page_shift(idx_que->mtr.hem_cfg.ba_pg_shift));
hr_reg_write(ctx, SRQC_IDX_BUF_PG_SZ,
to_hr_hw_page_shift(idx_que->mtr.hem_cfg.buf_pg_shift));
hr_reg_write(ctx, SRQC_IDX_CUR_BLK_ADDR_L,
to_hr_hw_page_addr(mtts_idx[0]));
hr_reg_write(ctx, SRQC_IDX_CUR_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(mtts_idx[0])));
hr_reg_write(ctx, SRQC_IDX_NXT_BLK_ADDR_L,
to_hr_hw_page_addr(mtts_idx[1]));
hr_reg_write(ctx, SRQC_IDX_NXT_BLK_ADDR_H,
upper_32_bits(to_hr_hw_page_addr(mtts_idx[1])));
return 0;
}
static int hns_roce_v2_write_srqc(struct hns_roce_srq *srq, void *mb_buf)
{
struct ib_device *ibdev = srq->ibsrq.device;
struct hns_roce_dev *hr_dev = to_hr_dev(ibdev);
struct hns_roce_srq_context *ctx = mb_buf;
u64 mtts_wqe[MTT_MIN_COUNT] = {};
dma_addr_t dma_handle_wqe;
int ret;
memset(ctx, 0, sizeof(*ctx));
/* Get the physical address of srq buf */
ret = hns_roce_mtr_find(hr_dev, &srq->buf_mtr, 0, mtts_wqe,
ARRAY_SIZE(mtts_wqe));
if (ret) {
ibdev_err(ibdev, "failed to find mtr for SRQ WQE, ret = %d.\n",
ret);
return ret;
}
dma_handle_wqe = hns_roce_get_mtr_ba(&srq->buf_mtr);
hr_reg_write(ctx, SRQC_SRQ_ST, 1);
hr_reg_write_bool(ctx, SRQC_SRQ_TYPE,
srq->ibsrq.srq_type == IB_SRQT_XRC);
hr_reg_write(ctx, SRQC_PD, to_hr_pd(srq->ibsrq.pd)->pdn);
hr_reg_write(ctx, SRQC_SRQN, srq->srqn);
hr_reg_write(ctx, SRQC_XRCD, srq->xrcdn);
hr_reg_write(ctx, SRQC_XRC_CQN, srq->cqn);
hr_reg_write(ctx, SRQC_SHIFT, ilog2(srq->wqe_cnt));
hr_reg_write(ctx, SRQC_RQWS,
srq->max_gs <= 0 ? 0 : fls(srq->max_gs - 1));
hr_reg_write(ctx, SRQC_WQE_HOP_NUM,
to_hr_hem_hopnum(hr_dev->caps.srqwqe_hop_num,
srq->wqe_cnt));
hr_reg_write(ctx, SRQC_WQE_BT_BA_L, dma_handle_wqe >> DMA_WQE_SHIFT);
hr_reg_write(ctx, SRQC_WQE_BT_BA_H,
upper_32_bits(dma_handle_wqe >> DMA_WQE_SHIFT));
hr_reg_write(ctx, SRQC_WQE_BA_PG_SZ,
to_hr_hw_page_shift(srq->buf_mtr.hem_cfg.ba_pg_shift));
hr_reg_write(ctx, SRQC_WQE_BUF_PG_SZ,
to_hr_hw_page_shift(srq->buf_mtr.hem_cfg.buf_pg_shift));
if (srq->cap_flags & HNS_ROCE_SRQ_CAP_RECORD_DB) {
hr_reg_enable(ctx, SRQC_DB_RECORD_EN);
hr_reg_write(ctx, SRQC_DB_RECORD_ADDR_L,
lower_32_bits(srq->rdb.dma) >> 1);
hr_reg_write(ctx, SRQC_DB_RECORD_ADDR_H,
upper_32_bits(srq->rdb.dma));
}
return hns_roce_v2_write_srqc_index_queue(srq, ctx);
}
static int hns_roce_v2_modify_srq(struct ib_srq *ibsrq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask,
struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibsrq->device);
struct hns_roce_srq *srq = to_hr_srq(ibsrq);
struct hns_roce_srq_context *srq_context;
struct hns_roce_srq_context *srqc_mask;
struct hns_roce_cmd_mailbox *mailbox;
int ret = 0;
/* Resizing SRQs is not supported yet */
if (srq_attr_mask & IB_SRQ_MAX_WR) {
ret = -EOPNOTSUPP;
goto out;
}
if (srq_attr_mask & IB_SRQ_LIMIT) {
if (srq_attr->srq_limit > srq->wqe_cnt) {
ret = -EINVAL;
goto out;
}
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox)) {
ret = PTR_ERR(mailbox);
goto out;
}
srq_context = mailbox->buf;
srqc_mask = (struct hns_roce_srq_context *)mailbox->buf + 1;
memset(srqc_mask, 0xff, sizeof(*srqc_mask));
hr_reg_write(srq_context, SRQC_LIMIT_WL, srq_attr->srq_limit);
hr_reg_clear(srqc_mask, SRQC_LIMIT_WL);
ret = hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0,
HNS_ROCE_CMD_MODIFY_SRQC, srq->srqn);
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
if (ret)
ibdev_err(&hr_dev->ib_dev,
"failed to handle cmd of modifying SRQ, ret = %d.\n",
ret);
}
out:
if (ret)
atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_SRQ_MODIFY_ERR_CNT]);
return ret;
}
static int hns_roce_v2_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibsrq->device);
struct hns_roce_srq *srq = to_hr_srq(ibsrq);
struct hns_roce_srq_context *srq_context;
struct hns_roce_cmd_mailbox *mailbox;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
srq_context = mailbox->buf;
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma,
HNS_ROCE_CMD_QUERY_SRQC, srq->srqn);
if (ret) {
ibdev_err(&hr_dev->ib_dev,
"failed to process cmd of querying SRQ, ret = %d.\n",
ret);
goto out;
}
attr->srq_limit = hr_reg_read(srq_context, SRQC_LIMIT_WL);
attr->max_wr = srq->wqe_cnt;
attr->max_sge = srq->max_gs - srq->rsv_sge;
out:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static int hns_roce_v2_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
{
struct hns_roce_dev *hr_dev = to_hr_dev(cq->device);
struct hns_roce_v2_cq_context *cq_context;
struct hns_roce_cq *hr_cq = to_hr_cq(cq);
struct hns_roce_v2_cq_context *cqc_mask;
struct hns_roce_cmd_mailbox *mailbox;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
ret = PTR_ERR_OR_ZERO(mailbox);
if (ret)
goto err_out;
cq_context = mailbox->buf;
cqc_mask = (struct hns_roce_v2_cq_context *)mailbox->buf + 1;
memset(cqc_mask, 0xff, sizeof(*cqc_mask));
hr_reg_write(cq_context, CQC_CQ_MAX_CNT, cq_count);
hr_reg_clear(cqc_mask, CQC_CQ_MAX_CNT);
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) {
if (cq_period * HNS_ROCE_CLOCK_ADJUST > USHRT_MAX) {
dev_info(hr_dev->dev,
"cq_period(%u) reached the upper limit, adjusted to 65.\n",
cq_period);
cq_period = HNS_ROCE_MAX_CQ_PERIOD_HIP08;
}
cq_period *= HNS_ROCE_CLOCK_ADJUST;
}
hr_reg_write(cq_context, CQC_CQ_PERIOD, cq_period);
hr_reg_clear(cqc_mask, CQC_CQ_PERIOD);
ret = hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0,
HNS_ROCE_CMD_MODIFY_CQC, hr_cq->cqn);
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
if (ret)
ibdev_err(&hr_dev->ib_dev,
"failed to process cmd when modifying CQ, ret = %d.\n",
ret);
err_out:
if (ret)
atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_CQ_MODIFY_ERR_CNT]);
return ret;
}
static int hns_roce_v2_query_cqc(struct hns_roce_dev *hr_dev, u32 cqn,
void *buffer)
{
struct hns_roce_v2_cq_context *context;
struct hns_roce_cmd_mailbox *mailbox;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
context = mailbox->buf;
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma,
HNS_ROCE_CMD_QUERY_CQC, cqn);
if (ret) {
ibdev_err(&hr_dev->ib_dev,
"failed to process cmd when querying CQ, ret = %d.\n",
ret);
goto err_mailbox;
}
memcpy(buffer, context, sizeof(*context));
err_mailbox:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static int hns_roce_v2_query_mpt(struct hns_roce_dev *hr_dev, u32 key,
void *buffer)
{
struct hns_roce_v2_mpt_entry *context;
struct hns_roce_cmd_mailbox *mailbox;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
context = mailbox->buf;
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
key_to_hw_index(key));
if (ret) {
ibdev_err(&hr_dev->ib_dev,
"failed to process cmd when querying MPT, ret = %d.\n",
ret);
goto err_mailbox;
}
memcpy(buffer, context, sizeof(*context));
err_mailbox:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static void hns_roce_irq_work_handle(struct work_struct *work)
{
struct hns_roce_work *irq_work =
container_of(work, struct hns_roce_work, work);
struct ib_device *ibdev = &irq_work->hr_dev->ib_dev;
switch (irq_work->event_type) {
case HNS_ROCE_EVENT_TYPE_PATH_MIG:
ibdev_info(ibdev, "path migrated succeeded.\n");
break;
case HNS_ROCE_EVENT_TYPE_PATH_MIG_FAILED:
ibdev_warn(ibdev, "path migration failed.\n");
break;
case HNS_ROCE_EVENT_TYPE_COMM_EST:
break;
case HNS_ROCE_EVENT_TYPE_SQ_DRAINED:
ibdev_dbg(ibdev, "send queue drained.\n");
break;
case HNS_ROCE_EVENT_TYPE_WQ_CATAS_ERROR:
ibdev_err(ibdev, "local work queue 0x%x catast error, sub_event type is: %d\n",
irq_work->queue_num, irq_work->sub_type);
break;
case HNS_ROCE_EVENT_TYPE_INV_REQ_LOCAL_WQ_ERROR:
ibdev_err(ibdev, "invalid request local work queue 0x%x error.\n",
irq_work->queue_num);
break;
case HNS_ROCE_EVENT_TYPE_LOCAL_WQ_ACCESS_ERROR:
ibdev_err(ibdev, "local access violation work queue 0x%x error, sub_event type is: %d\n",
irq_work->queue_num, irq_work->sub_type);
break;
case HNS_ROCE_EVENT_TYPE_SRQ_LIMIT_REACH:
ibdev_dbg(ibdev, "SRQ limit reach.\n");
break;
case HNS_ROCE_EVENT_TYPE_SRQ_LAST_WQE_REACH:
ibdev_dbg(ibdev, "SRQ last wqe reach.\n");
break;
case HNS_ROCE_EVENT_TYPE_SRQ_CATAS_ERROR:
ibdev_err(ibdev, "SRQ catas error.\n");
break;
case HNS_ROCE_EVENT_TYPE_CQ_ACCESS_ERROR:
ibdev_err(ibdev, "CQ 0x%x access err.\n", irq_work->queue_num);
break;
case HNS_ROCE_EVENT_TYPE_CQ_OVERFLOW:
ibdev_warn(ibdev, "CQ 0x%x overflow\n", irq_work->queue_num);
break;
case HNS_ROCE_EVENT_TYPE_DB_OVERFLOW:
ibdev_warn(ibdev, "DB overflow.\n");
break;
case HNS_ROCE_EVENT_TYPE_FLR:
ibdev_warn(ibdev, "function level reset.\n");
break;
case HNS_ROCE_EVENT_TYPE_XRCD_VIOLATION:
ibdev_err(ibdev, "xrc domain violation error.\n");
break;
case HNS_ROCE_EVENT_TYPE_INVALID_XRCETH:
ibdev_err(ibdev, "invalid xrceth error.\n");
break;
default:
break;
}
kfree(irq_work);
}
static void hns_roce_v2_init_irq_work(struct hns_roce_dev *hr_dev,
struct hns_roce_eq *eq, u32 queue_num)
{
struct hns_roce_work *irq_work;
irq_work = kzalloc(sizeof(struct hns_roce_work), GFP_ATOMIC);
if (!irq_work)
return;
INIT_WORK(&irq_work->work, hns_roce_irq_work_handle);
irq_work->hr_dev = hr_dev;
irq_work->event_type = eq->event_type;
irq_work->sub_type = eq->sub_type;
irq_work->queue_num = queue_num;
queue_work(hr_dev->irq_workq, &irq_work->work);
}
static void update_eq_db(struct hns_roce_eq *eq)
{
struct hns_roce_dev *hr_dev = eq->hr_dev;
struct hns_roce_v2_db eq_db = {};
if (eq->type_flag == HNS_ROCE_AEQ) {
hr_reg_write(&eq_db, EQ_DB_CMD,
eq->arm_st == HNS_ROCE_V2_EQ_ALWAYS_ARMED ?
HNS_ROCE_EQ_DB_CMD_AEQ :
HNS_ROCE_EQ_DB_CMD_AEQ_ARMED);
} else {
hr_reg_write(&eq_db, EQ_DB_TAG, eq->eqn);
hr_reg_write(&eq_db, EQ_DB_CMD,
eq->arm_st == HNS_ROCE_V2_EQ_ALWAYS_ARMED ?
HNS_ROCE_EQ_DB_CMD_CEQ :
HNS_ROCE_EQ_DB_CMD_CEQ_ARMED);
}
hr_reg_write(&eq_db, EQ_DB_CI, eq->cons_index);
hns_roce_write64(hr_dev, (__le32 *)&eq_db, eq->db_reg);
}
static struct hns_roce_aeqe *next_aeqe_sw_v2(struct hns_roce_eq *eq)
{
struct hns_roce_aeqe *aeqe;
aeqe = hns_roce_buf_offset(eq->mtr.kmem,
(eq->cons_index & (eq->entries - 1)) *
eq->eqe_size);
return (hr_reg_read(aeqe, AEQE_OWNER) ^
!!(eq->cons_index & eq->entries)) ? aeqe : NULL;
}
static irqreturn_t hns_roce_v2_aeq_int(struct hns_roce_dev *hr_dev,
struct hns_roce_eq *eq)
{
struct device *dev = hr_dev->dev;
struct hns_roce_aeqe *aeqe = next_aeqe_sw_v2(eq);
irqreturn_t aeqe_found = IRQ_NONE;
int event_type;
u32 queue_num;
int sub_type;
while (aeqe) {
/* Make sure we read AEQ entry after we have checked the
* ownership bit
*/
dma_rmb();
event_type = hr_reg_read(aeqe, AEQE_EVENT_TYPE);
sub_type = hr_reg_read(aeqe, AEQE_SUB_TYPE);
queue_num = hr_reg_read(aeqe, AEQE_EVENT_QUEUE_NUM);
switch (event_type) {
case HNS_ROCE_EVENT_TYPE_PATH_MIG:
case HNS_ROCE_EVENT_TYPE_PATH_MIG_FAILED:
case HNS_ROCE_EVENT_TYPE_COMM_EST:
case HNS_ROCE_EVENT_TYPE_SQ_DRAINED:
case HNS_ROCE_EVENT_TYPE_WQ_CATAS_ERROR:
case HNS_ROCE_EVENT_TYPE_SRQ_LAST_WQE_REACH:
case HNS_ROCE_EVENT_TYPE_INV_REQ_LOCAL_WQ_ERROR:
case HNS_ROCE_EVENT_TYPE_LOCAL_WQ_ACCESS_ERROR:
case HNS_ROCE_EVENT_TYPE_XRCD_VIOLATION:
case HNS_ROCE_EVENT_TYPE_INVALID_XRCETH:
hns_roce_qp_event(hr_dev, queue_num, event_type);
break;
case HNS_ROCE_EVENT_TYPE_SRQ_LIMIT_REACH:
case HNS_ROCE_EVENT_TYPE_SRQ_CATAS_ERROR:
hns_roce_srq_event(hr_dev, queue_num, event_type);
break;
case HNS_ROCE_EVENT_TYPE_CQ_ACCESS_ERROR:
case HNS_ROCE_EVENT_TYPE_CQ_OVERFLOW:
hns_roce_cq_event(hr_dev, queue_num, event_type);
break;
case HNS_ROCE_EVENT_TYPE_MB:
hns_roce_cmd_event(hr_dev,
le16_to_cpu(aeqe->event.cmd.token),
aeqe->event.cmd.status,
le64_to_cpu(aeqe->event.cmd.out_param));
break;
case HNS_ROCE_EVENT_TYPE_DB_OVERFLOW:
case HNS_ROCE_EVENT_TYPE_FLR:
break;
default:
dev_err(dev, "unhandled event %d on EQ %d at idx %u.\n",
event_type, eq->eqn, eq->cons_index);
break;
}
eq->event_type = event_type;
eq->sub_type = sub_type;
++eq->cons_index;
aeqe_found = IRQ_HANDLED;
atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_AEQE_CNT]);
hns_roce_v2_init_irq_work(hr_dev, eq, queue_num);
aeqe = next_aeqe_sw_v2(eq);
}
update_eq_db(eq);
return IRQ_RETVAL(aeqe_found);
}
static struct hns_roce_ceqe *next_ceqe_sw_v2(struct hns_roce_eq *eq)
{
struct hns_roce_ceqe *ceqe;
ceqe = hns_roce_buf_offset(eq->mtr.kmem,
(eq->cons_index & (eq->entries - 1)) *
eq->eqe_size);
return (hr_reg_read(ceqe, CEQE_OWNER) ^
!!(eq->cons_index & eq->entries)) ? ceqe : NULL;
}
static irqreturn_t hns_roce_v2_ceq_int(struct hns_roce_eq *eq)
{
queue_work(system_bh_wq, &eq->work);
return IRQ_HANDLED;
}
static irqreturn_t hns_roce_v2_msix_interrupt_eq(int irq, void *eq_ptr)
{
struct hns_roce_eq *eq = eq_ptr;
struct hns_roce_dev *hr_dev = eq->hr_dev;
irqreturn_t int_work;
if (eq->type_flag == HNS_ROCE_CEQ)
/* Completion event interrupt */
int_work = hns_roce_v2_ceq_int(eq);
else
/* Asynchronous event interrupt */
int_work = hns_roce_v2_aeq_int(hr_dev, eq);
return IRQ_RETVAL(int_work);
}
static irqreturn_t abnormal_interrupt_basic(struct hns_roce_dev *hr_dev,
u32 int_st)
{
struct pci_dev *pdev = hr_dev->pci_dev;
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
const struct hnae3_ae_ops *ops = ae_dev->ops;
enum hnae3_reset_type reset_type;
irqreturn_t int_work = IRQ_NONE;
u32 int_en;
int_en = roce_read(hr_dev, ROCEE_VF_ABN_INT_EN_REG);
if (int_st & BIT(HNS_ROCE_V2_VF_INT_ST_AEQ_OVERFLOW_S)) {
dev_err(hr_dev->dev, "AEQ overflow!\n");
roce_write(hr_dev, ROCEE_VF_ABN_INT_ST_REG,
1 << HNS_ROCE_V2_VF_INT_ST_AEQ_OVERFLOW_S);
reset_type = hr_dev->is_vf ?
HNAE3_VF_FUNC_RESET : HNAE3_FUNC_RESET;
/* Set reset level for reset_event() */
if (ops->set_default_reset_request)
ops->set_default_reset_request(ae_dev, reset_type);
if (ops->reset_event)
ops->reset_event(pdev, NULL);
int_en |= 1 << HNS_ROCE_V2_VF_ABN_INT_EN_S;
roce_write(hr_dev, ROCEE_VF_ABN_INT_EN_REG, int_en);
int_work = IRQ_HANDLED;
} else {
dev_err(hr_dev->dev, "there is no basic abn irq found.\n");
}
return IRQ_RETVAL(int_work);
}
static int fmea_ram_ecc_query(struct hns_roce_dev *hr_dev,
struct fmea_ram_ecc *ecc_info)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data;
int ret;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_QUERY_RAM_ECC, true);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret)
return ret;
ecc_info->is_ecc_err = hr_reg_read(req, QUERY_RAM_ECC_1BIT_ERR);
ecc_info->res_type = hr_reg_read(req, QUERY_RAM_ECC_RES_TYPE);
ecc_info->index = hr_reg_read(req, QUERY_RAM_ECC_TAG);
return 0;
}
static int fmea_recover_gmv(struct hns_roce_dev *hr_dev, u32 idx)
{
struct hns_roce_cmq_desc desc;
struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data;
u32 addr_upper;
u32 addr_low;
int ret;
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GMV_BT, true);
hr_reg_write(req, CFG_GMV_BT_IDX, idx);
ret = hns_roce_cmq_send(hr_dev, &desc, 1);
if (ret) {
dev_err(hr_dev->dev,
"failed to execute cmd to read gmv, ret = %d.\n", ret);
return ret;
}
addr_low = hr_reg_read(req, CFG_GMV_BT_BA_L);
addr_upper = hr_reg_read(req, CFG_GMV_BT_BA_H);
hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GMV_BT, false);
hr_reg_write(req, CFG_GMV_BT_BA_L, addr_low);
hr_reg_write(req, CFG_GMV_BT_BA_H, addr_upper);
hr_reg_write(req, CFG_GMV_BT_IDX, idx);
return hns_roce_cmq_send(hr_dev, &desc, 1);
}
static u64 fmea_get_ram_res_addr(u32 res_type, __le64 *data)
{
if (res_type == ECC_RESOURCE_QPC_TIMER ||
res_type == ECC_RESOURCE_CQC_TIMER ||
res_type == ECC_RESOURCE_SCCC)
return le64_to_cpu(*data);
return le64_to_cpu(*data) << HNS_HW_PAGE_SHIFT;
}
static int fmea_recover_others(struct hns_roce_dev *hr_dev, u32 res_type,
u32 index)
{
u8 write_bt0_op = fmea_ram_res[res_type].write_bt0_op;
u8 read_bt0_op = fmea_ram_res[res_type].read_bt0_op;
struct hns_roce_cmd_mailbox *mailbox;
u64 addr;
int ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, read_bt0_op, index);
if (ret) {
dev_err(hr_dev->dev,
"failed to execute cmd to read fmea ram, ret = %d.\n",
ret);
goto out;
}
addr = fmea_get_ram_res_addr(res_type, mailbox->buf);
ret = hns_roce_cmd_mbox(hr_dev, addr, 0, write_bt0_op, index);
if (ret)
dev_err(hr_dev->dev,
"failed to execute cmd to write fmea ram, ret = %d.\n",
ret);
out:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static void fmea_ram_ecc_recover(struct hns_roce_dev *hr_dev,
struct fmea_ram_ecc *ecc_info)
{
u32 res_type = ecc_info->res_type;
u32 index = ecc_info->index;
int ret;
BUILD_BUG_ON(ARRAY_SIZE(fmea_ram_res) != ECC_RESOURCE_COUNT);
if (res_type >= ECC_RESOURCE_COUNT) {
dev_err(hr_dev->dev, "unsupported fmea ram ecc type %u.\n",
res_type);
return;
}
if (res_type == ECC_RESOURCE_GMV)
ret = fmea_recover_gmv(hr_dev, index);
else
ret = fmea_recover_others(hr_dev, res_type, index);
if (ret)
dev_err(hr_dev->dev,
"failed to recover %s, index = %u, ret = %d.\n",
fmea_ram_res[res_type].name, index, ret);
}
static void fmea_ram_ecc_work(struct work_struct *ecc_work)
{
struct hns_roce_dev *hr_dev =
container_of(ecc_work, struct hns_roce_dev, ecc_work);
struct fmea_ram_ecc ecc_info = {};
if (fmea_ram_ecc_query(hr_dev, &ecc_info)) {
dev_err(hr_dev->dev, "failed to query fmea ram ecc.\n");
return;
}
if (!ecc_info.is_ecc_err) {
dev_err(hr_dev->dev, "there is no fmea ram ecc err found.\n");
return;
}
fmea_ram_ecc_recover(hr_dev, &ecc_info);
}
static irqreturn_t hns_roce_v2_msix_interrupt_abn(int irq, void *dev_id)
{
struct hns_roce_dev *hr_dev = dev_id;
irqreturn_t int_work = IRQ_NONE;
u32 int_st;
int_st = roce_read(hr_dev, ROCEE_VF_ABN_INT_ST_REG);
if (int_st) {
int_work = abnormal_interrupt_basic(hr_dev, int_st);
} else if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) {
queue_work(hr_dev->irq_workq, &hr_dev->ecc_work);
int_work = IRQ_HANDLED;
} else {
dev_err(hr_dev->dev, "there is no abnormal irq found.\n");
}
return IRQ_RETVAL(int_work);
}
static void hns_roce_v2_int_mask_enable(struct hns_roce_dev *hr_dev,
int eq_num, u32 enable_flag)
{
int i;
for (i = 0; i < eq_num; i++)
roce_write(hr_dev, ROCEE_VF_EVENT_INT_EN_REG +
i * EQ_REG_OFFSET, enable_flag);
roce_write(hr_dev, ROCEE_VF_ABN_INT_EN_REG, enable_flag);
roce_write(hr_dev, ROCEE_VF_ABN_INT_CFG_REG, enable_flag);
}
static void free_eq_buf(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq)
{
hns_roce_mtr_destroy(hr_dev, &eq->mtr);
}
static void hns_roce_v2_destroy_eqc(struct hns_roce_dev *hr_dev,
struct hns_roce_eq *eq)
{
struct device *dev = hr_dev->dev;
int eqn = eq->eqn;
int ret;
u8 cmd;
if (eqn < hr_dev->caps.num_comp_vectors)
cmd = HNS_ROCE_CMD_DESTROY_CEQC;
else
cmd = HNS_ROCE_CMD_DESTROY_AEQC;
ret = hns_roce_destroy_hw_ctx(hr_dev, cmd, eqn & HNS_ROCE_V2_EQN_M);
if (ret)
dev_err(dev, "[mailbox cmd] destroy eqc(%d) failed.\n", eqn);
free_eq_buf(hr_dev, eq);
}
static void init_eq_config(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq)
{
eq->db_reg = hr_dev->reg_base + ROCEE_VF_EQ_DB_CFG0_REG;
eq->cons_index = 0;
eq->over_ignore = HNS_ROCE_V2_EQ_OVER_IGNORE_0;
eq->coalesce = HNS_ROCE_V2_EQ_COALESCE_0;
eq->arm_st = HNS_ROCE_V2_EQ_ALWAYS_ARMED;
eq->shift = ilog2((unsigned int)eq->entries);
}
static int config_eqc(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq,
void *mb_buf)
{
u64 eqe_ba[MTT_MIN_COUNT] = { 0 };
struct hns_roce_eq_context *eqc;
u64 bt_ba = 0;
int ret;
eqc = mb_buf;
memset(eqc, 0, sizeof(struct hns_roce_eq_context));
init_eq_config(hr_dev, eq);
/* if not multi-hop, eqe buffer only use one trunk */
ret = hns_roce_mtr_find(hr_dev, &eq->mtr, 0, eqe_ba,
ARRAY_SIZE(eqe_ba));
if (ret) {
dev_err(hr_dev->dev, "failed to find EQE mtr, ret = %d\n", ret);
return ret;
}
bt_ba = hns_roce_get_mtr_ba(&eq->mtr);
hr_reg_write(eqc, EQC_EQ_ST, HNS_ROCE_V2_EQ_STATE_VALID);
hr_reg_write(eqc, EQC_EQE_HOP_NUM, eq->hop_num);
hr_reg_write(eqc, EQC_OVER_IGNORE, eq->over_ignore);
hr_reg_write(eqc, EQC_COALESCE, eq->coalesce);
hr_reg_write(eqc, EQC_ARM_ST, eq->arm_st);
hr_reg_write(eqc, EQC_EQN, eq->eqn);
hr_reg_write(eqc, EQC_EQE_CNT, HNS_ROCE_EQ_INIT_EQE_CNT);
hr_reg_write(eqc, EQC_EQE_BA_PG_SZ,
to_hr_hw_page_shift(eq->mtr.hem_cfg.ba_pg_shift));
hr_reg_write(eqc, EQC_EQE_BUF_PG_SZ,
to_hr_hw_page_shift(eq->mtr.hem_cfg.buf_pg_shift));
hr_reg_write(eqc, EQC_EQ_PROD_INDX, HNS_ROCE_EQ_INIT_PROD_IDX);
hr_reg_write(eqc, EQC_EQ_MAX_CNT, eq->eq_max_cnt);
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) {
if (eq->eq_period * HNS_ROCE_CLOCK_ADJUST > USHRT_MAX) {
dev_info(hr_dev->dev, "eq_period(%u) reached the upper limit, adjusted to 65.\n",
eq->eq_period);
eq->eq_period = HNS_ROCE_MAX_EQ_PERIOD;
}
eq->eq_period *= HNS_ROCE_CLOCK_ADJUST;
}
hr_reg_write(eqc, EQC_EQ_PERIOD, eq->eq_period);
hr_reg_write(eqc, EQC_EQE_REPORT_TIMER, HNS_ROCE_EQ_INIT_REPORT_TIMER);
hr_reg_write(eqc, EQC_EQE_BA_L, bt_ba >> 3);
hr_reg_write(eqc, EQC_EQE_BA_H, bt_ba >> 35);
hr_reg_write(eqc, EQC_SHIFT, eq->shift);
hr_reg_write(eqc, EQC_MSI_INDX, HNS_ROCE_EQ_INIT_MSI_IDX);
hr_reg_write(eqc, EQC_CUR_EQE_BA_L, eqe_ba[0] >> 12);
hr_reg_write(eqc, EQC_CUR_EQE_BA_M, eqe_ba[0] >> 28);
hr_reg_write(eqc, EQC_CUR_EQE_BA_H, eqe_ba[0] >> 60);
hr_reg_write(eqc, EQC_EQ_CONS_INDX, HNS_ROCE_EQ_INIT_CONS_IDX);
hr_reg_write(eqc, EQC_NEX_EQE_BA_L, eqe_ba[1] >> 12);
hr_reg_write(eqc, EQC_NEX_EQE_BA_H, eqe_ba[1] >> 44);
hr_reg_write(eqc, EQC_EQE_SIZE, eq->eqe_size == HNS_ROCE_V3_EQE_SIZE);
return 0;
}
static int alloc_eq_buf(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq)
{
struct hns_roce_buf_attr buf_attr = {};
int err;
if (hr_dev->caps.eqe_hop_num == HNS_ROCE_HOP_NUM_0)
eq->hop_num = 0;
else
eq->hop_num = hr_dev->caps.eqe_hop_num;
buf_attr.page_shift = hr_dev->caps.eqe_buf_pg_sz + PAGE_SHIFT;
buf_attr.region[0].size = eq->entries * eq->eqe_size;
buf_attr.region[0].hopnum = eq->hop_num;
buf_attr.region_count = 1;
err = hns_roce_mtr_create(hr_dev, &eq->mtr, &buf_attr,
hr_dev->caps.eqe_ba_pg_sz + PAGE_SHIFT, NULL,
0);
if (err)
dev_err(hr_dev->dev, "failed to alloc EQE mtr, err %d\n", err);
return err;
}
static int hns_roce_v2_create_eq(struct hns_roce_dev *hr_dev,
struct hns_roce_eq *eq, u8 eq_cmd)
{
struct hns_roce_cmd_mailbox *mailbox;
int ret;
/* Allocate mailbox memory */
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
ret = alloc_eq_buf(hr_dev, eq);
if (ret)
goto free_cmd_mbox;
ret = config_eqc(hr_dev, eq, mailbox->buf);
if (ret)
goto err_cmd_mbox;
ret = hns_roce_create_hw_ctx(hr_dev, mailbox, eq_cmd, eq->eqn);
if (ret) {
dev_err(hr_dev->dev, "[mailbox cmd] create eqc failed.\n");
goto err_cmd_mbox;
}
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return 0;
err_cmd_mbox:
free_eq_buf(hr_dev, eq);
free_cmd_mbox:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
static void hns_roce_ceq_work(struct work_struct *work)
{
struct hns_roce_eq *eq = from_work(eq, work, work);
struct hns_roce_ceqe *ceqe = next_ceqe_sw_v2(eq);
struct hns_roce_dev *hr_dev = eq->hr_dev;
int ceqe_num = 0;
u32 cqn;
while (ceqe && ceqe_num < hr_dev->caps.ceqe_depth) {
/* Make sure we read CEQ entry after we have checked the
* ownership bit
*/
dma_rmb();
cqn = hr_reg_read(ceqe, CEQE_CQN);
hns_roce_cq_completion(hr_dev, cqn);
++eq->cons_index;
++ceqe_num;
atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_CEQE_CNT]);
ceqe = next_ceqe_sw_v2(eq);
}
update_eq_db(eq);
}
static int __hns_roce_request_irq(struct hns_roce_dev *hr_dev, int irq_num,
int comp_num, int aeq_num, int other_num)
{
struct hns_roce_eq_table *eq_table = &hr_dev->eq_table;
int i, j;
int ret;
for (i = 0; i < irq_num; i++) {
hr_dev->irq_names[i] = kzalloc(HNS_ROCE_INT_NAME_LEN,
GFP_KERNEL);
if (!hr_dev->irq_names[i]) {
ret = -ENOMEM;
goto err_kzalloc_failed;
}
}
/* irq contains: abnormal + AEQ + CEQ */
for (j = 0; j < other_num; j++)
snprintf((char *)hr_dev->irq_names[j], HNS_ROCE_INT_NAME_LEN,
"hns-%s-abn-%d", pci_name(hr_dev->pci_dev), j);
for (j = other_num; j < (other_num + aeq_num); j++)
snprintf((char *)hr_dev->irq_names[j], HNS_ROCE_INT_NAME_LEN,
"hns-%s-aeq-%d", pci_name(hr_dev->pci_dev), j - other_num);
for (j = (other_num + aeq_num); j < irq_num; j++)
snprintf((char *)hr_dev->irq_names[j], HNS_ROCE_INT_NAME_LEN,
"hns-%s-ceq-%d", pci_name(hr_dev->pci_dev),
j - other_num - aeq_num);
for (j = 0; j < irq_num; j++) {
if (j < other_num) {
ret = request_irq(hr_dev->irq[j],
hns_roce_v2_msix_interrupt_abn,
0, hr_dev->irq_names[j], hr_dev);
} else if (j < (other_num + comp_num)) {
INIT_WORK(&eq_table->eq[j - other_num].work,
hns_roce_ceq_work);
ret = request_irq(eq_table->eq[j - other_num].irq,
hns_roce_v2_msix_interrupt_eq,
0, hr_dev->irq_names[j + aeq_num],
&eq_table->eq[j - other_num]);
} else {
ret = request_irq(eq_table->eq[j - other_num].irq,
hns_roce_v2_msix_interrupt_eq,
0, hr_dev->irq_names[j - comp_num],
&eq_table->eq[j - other_num]);
}
if (ret) {
dev_err(hr_dev->dev, "request irq error!\n");
goto err_request_failed;
}
}
return 0;
err_request_failed:
for (j -= 1; j >= 0; j--) {
if (j < other_num) {
free_irq(hr_dev->irq[j], hr_dev);
continue;
}
free_irq(eq_table->eq[j - other_num].irq,
&eq_table->eq[j - other_num]);
if (j < other_num + comp_num)
cancel_work_sync(&eq_table->eq[j - other_num].work);
}
err_kzalloc_failed:
for (i -= 1; i >= 0; i--)
kfree(hr_dev->irq_names[i]);
return ret;
}
static void __hns_roce_free_irq(struct hns_roce_dev *hr_dev)
{
int irq_num;
int eq_num;
int i;
eq_num = hr_dev->caps.num_comp_vectors + hr_dev->caps.num_aeq_vectors;
irq_num = eq_num + hr_dev->caps.num_other_vectors;
for (i = 0; i < hr_dev->caps.num_other_vectors; i++)
free_irq(hr_dev->irq[i], hr_dev);
for (i = 0; i < eq_num; i++) {
free_irq(hr_dev->eq_table.eq[i].irq, &hr_dev->eq_table.eq[i]);
if (i < hr_dev->caps.num_comp_vectors)
cancel_work_sync(&hr_dev->eq_table.eq[i].work);
}
for (i = 0; i < irq_num; i++)
kfree(hr_dev->irq_names[i]);
}
static int hns_roce_v2_init_eq_table(struct hns_roce_dev *hr_dev)
{
struct hns_roce_eq_table *eq_table = &hr_dev->eq_table;
struct device *dev = hr_dev->dev;
struct hns_roce_eq *eq;
int other_num;
int comp_num;
int aeq_num;
int irq_num;
int eq_num;
u8 eq_cmd;
int ret;
int i;
other_num = hr_dev->caps.num_other_vectors;
comp_num = hr_dev->caps.num_comp_vectors;
aeq_num = hr_dev->caps.num_aeq_vectors;
eq_num = comp_num + aeq_num;
irq_num = eq_num + other_num;
eq_table->eq = kcalloc(eq_num, sizeof(*eq_table->eq), GFP_KERNEL);
if (!eq_table->eq)
return -ENOMEM;
/* create eq */
for (i = 0; i < eq_num; i++) {
eq = &eq_table->eq[i];
eq->hr_dev = hr_dev;
eq->eqn = i;
if (i < comp_num) {
/* CEQ */
eq_cmd = HNS_ROCE_CMD_CREATE_CEQC;
eq->type_flag = HNS_ROCE_CEQ;
eq->entries = hr_dev->caps.ceqe_depth;
eq->eqe_size = hr_dev->caps.ceqe_size;
eq->irq = hr_dev->irq[i + other_num + aeq_num];
eq->eq_max_cnt = HNS_ROCE_CEQ_DEFAULT_BURST_NUM;
eq->eq_period = HNS_ROCE_CEQ_DEFAULT_INTERVAL;
} else {
/* AEQ */
eq_cmd = HNS_ROCE_CMD_CREATE_AEQC;
eq->type_flag = HNS_ROCE_AEQ;
eq->entries = hr_dev->caps.aeqe_depth;
eq->eqe_size = hr_dev->caps.aeqe_size;
eq->irq = hr_dev->irq[i - comp_num + other_num];
eq->eq_max_cnt = HNS_ROCE_AEQ_DEFAULT_BURST_NUM;
eq->eq_period = HNS_ROCE_AEQ_DEFAULT_INTERVAL;
}
ret = hns_roce_v2_create_eq(hr_dev, eq, eq_cmd);
if (ret) {
dev_err(dev, "failed to create eq.\n");
goto err_create_eq_fail;
}
}
INIT_WORK(&hr_dev->ecc_work, fmea_ram_ecc_work);
hr_dev->irq_workq = alloc_ordered_workqueue("hns_roce_irq_workq", 0);
if (!hr_dev->irq_workq) {
dev_err(dev, "failed to create irq workqueue.\n");
ret = -ENOMEM;
goto err_create_eq_fail;
}
ret = __hns_roce_request_irq(hr_dev, irq_num, comp_num, aeq_num,
other_num);
if (ret) {
dev_err(dev, "failed to request irq.\n");
goto err_request_irq_fail;
}
/* enable irq */
hns_roce_v2_int_mask_enable(hr_dev, eq_num, EQ_ENABLE);
return 0;
err_request_irq_fail:
destroy_workqueue(hr_dev->irq_workq);
err_create_eq_fail:
for (i -= 1; i >= 0; i--)
hns_roce_v2_destroy_eqc(hr_dev, &eq_table->eq[i]);
kfree(eq_table->eq);
return ret;
}
static void hns_roce_v2_cleanup_eq_table(struct hns_roce_dev *hr_dev)
{
struct hns_roce_eq_table *eq_table = &hr_dev->eq_table;
int eq_num;
int i;
eq_num = hr_dev->caps.num_comp_vectors + hr_dev->caps.num_aeq_vectors;
/* Disable irq */
hns_roce_v2_int_mask_enable(hr_dev, eq_num, EQ_DISABLE);
__hns_roce_free_irq(hr_dev);
destroy_workqueue(hr_dev->irq_workq);
for (i = 0; i < eq_num; i++)
hns_roce_v2_destroy_eqc(hr_dev, &eq_table->eq[i]);
kfree(eq_table->eq);
}
static const struct ib_device_ops hns_roce_v2_dev_ops = {
.destroy_qp = hns_roce_v2_destroy_qp,
.modify_cq = hns_roce_v2_modify_cq,
.poll_cq = hns_roce_v2_poll_cq,
.post_recv = hns_roce_v2_post_recv,
.post_send = hns_roce_v2_post_send,
.query_qp = hns_roce_v2_query_qp,
.req_notify_cq = hns_roce_v2_req_notify_cq,
};
static const struct ib_device_ops hns_roce_v2_dev_srq_ops = {
.modify_srq = hns_roce_v2_modify_srq,
.post_srq_recv = hns_roce_v2_post_srq_recv,
.query_srq = hns_roce_v2_query_srq,
};
static const struct hns_roce_hw hns_roce_hw_v2 = {
.cmq_init = hns_roce_v2_cmq_init,
.cmq_exit = hns_roce_v2_cmq_exit,
.hw_profile = hns_roce_v2_profile,
.hw_init = hns_roce_v2_init,
.hw_exit = hns_roce_v2_exit,
.post_mbox = v2_post_mbox,
.poll_mbox_done = v2_poll_mbox_done,
.chk_mbox_avail = v2_chk_mbox_is_avail,
.set_gid = hns_roce_v2_set_gid,
.set_mac = hns_roce_v2_set_mac,
.write_mtpt = hns_roce_v2_write_mtpt,
.rereg_write_mtpt = hns_roce_v2_rereg_write_mtpt,
.frmr_write_mtpt = hns_roce_v2_frmr_write_mtpt,
.mw_write_mtpt = hns_roce_v2_mw_write_mtpt,
.write_cqc = hns_roce_v2_write_cqc,
.set_hem = hns_roce_v2_set_hem,
.clear_hem = hns_roce_v2_clear_hem,
.modify_qp = hns_roce_v2_modify_qp,
.dereg_mr = hns_roce_v2_dereg_mr,
.qp_flow_control_init = hns_roce_v2_qp_flow_control_init,
.init_eq = hns_roce_v2_init_eq_table,
.cleanup_eq = hns_roce_v2_cleanup_eq_table,
.write_srqc = hns_roce_v2_write_srqc,
.query_cqc = hns_roce_v2_query_cqc,
.query_qpc = hns_roce_v2_query_qpc,
.query_mpt = hns_roce_v2_query_mpt,
.query_srqc = hns_roce_v2_query_srqc,
.query_sccc = hns_roce_v2_query_sccc,
.query_hw_counter = hns_roce_hw_v2_query_counter,
.get_dscp = hns_roce_hw_v2_get_dscp,
.hns_roce_dev_ops = &hns_roce_v2_dev_ops,
.hns_roce_dev_srq_ops = &hns_roce_v2_dev_srq_ops,
};
static const struct pci_device_id hns_roce_hw_v2_pci_tbl[] = {
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, hns_roce_hw_v2_pci_tbl);
static void hns_roce_hw_v2_get_cfg(struct hns_roce_dev *hr_dev,
struct hnae3_handle *handle)
{
struct hns_roce_v2_priv *priv = hr_dev->priv;
const struct pci_device_id *id;
int i;
hr_dev->pci_dev = handle->pdev;
id = pci_match_id(hns_roce_hw_v2_pci_tbl, hr_dev->pci_dev);
hr_dev->is_vf = id->driver_data;
hr_dev->dev = &handle->pdev->dev;
hr_dev->hw = &hns_roce_hw_v2;
hr_dev->sdb_offset = ROCEE_DB_SQ_L_0_REG;
hr_dev->odb_offset = hr_dev->sdb_offset;
/* Get info from NIC driver. */
hr_dev->reg_base = handle->rinfo.roce_io_base;
hr_dev->mem_base = handle->rinfo.roce_mem_base;
hr_dev->caps.num_ports = 1;
hr_dev->iboe.netdevs[0] = handle->rinfo.netdev;
hr_dev->iboe.phy_port[0] = 0;
addrconf_addr_eui48((u8 *)&hr_dev->ib_dev.node_guid,
hr_dev->iboe.netdevs[0]->dev_addr);
for (i = 0; i < handle->rinfo.num_vectors; i++)
hr_dev->irq[i] = pci_irq_vector(handle->pdev,
i + handle->rinfo.base_vector);
/* cmd issue mode: 0 is poll, 1 is event */
hr_dev->cmd_mod = 1;
hr_dev->loop_idc = 0;
hr_dev->reset_cnt = handle->ae_algo->ops->ae_dev_reset_cnt(handle);
priv->handle = handle;
}
static int __hns_roce_hw_v2_init_instance(struct hnae3_handle *handle)
{
struct hns_roce_dev *hr_dev;
int ret;
hr_dev = ib_alloc_device(hns_roce_dev, ib_dev);
if (!hr_dev)
return -ENOMEM;
hr_dev->priv = kzalloc(sizeof(struct hns_roce_v2_priv), GFP_KERNEL);
if (!hr_dev->priv) {
ret = -ENOMEM;
goto error_failed_kzalloc;
}
hns_roce_hw_v2_get_cfg(hr_dev, handle);
ret = hns_roce_init(hr_dev);
if (ret) {
dev_err(hr_dev->dev, "RoCE Engine init failed!\n");
goto error_failed_roce_init;
}
if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) {
ret = free_mr_init(hr_dev);
if (ret) {
dev_err(hr_dev->dev, "failed to init free mr!\n");
goto error_failed_free_mr_init;
}
}
handle->priv = hr_dev;
return 0;
error_failed_free_mr_init:
hns_roce_exit(hr_dev);
error_failed_roce_init:
kfree(hr_dev->priv);
error_failed_kzalloc:
ib_dealloc_device(&hr_dev->ib_dev);
return ret;
}
static void __hns_roce_hw_v2_uninit_instance(struct hnae3_handle *handle,
bool reset)
{
struct hns_roce_dev *hr_dev = handle->priv;
if (!hr_dev)
return;
handle->priv = NULL;
hr_dev->state = HNS_ROCE_DEVICE_STATE_UNINIT;
hns_roce_handle_device_err(hr_dev);
hns_roce_exit(hr_dev);
kfree(hr_dev->priv);
ib_dealloc_device(&hr_dev->ib_dev);
}
static int hns_roce_hw_v2_init_instance(struct hnae3_handle *handle)
{
const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
const struct pci_device_id *id;
struct device *dev = &handle->pdev->dev;
int ret;
handle->rinfo.instance_state = HNS_ROCE_STATE_INIT;
if (ops->ae_dev_resetting(handle) || ops->get_hw_reset_stat(handle)) {
handle->rinfo.instance_state = HNS_ROCE_STATE_NON_INIT;
goto reset_chk_err;
}
id = pci_match_id(hns_roce_hw_v2_pci_tbl, handle->pdev);
if (!id)
return 0;
if (id->driver_data && handle->pdev->revision == PCI_REVISION_ID_HIP08)
return 0;
ret = __hns_roce_hw_v2_init_instance(handle);
if (ret) {
handle->rinfo.instance_state = HNS_ROCE_STATE_NON_INIT;
dev_err(dev, "RoCE instance init failed! ret = %d\n", ret);
if (ops->ae_dev_resetting(handle) ||
ops->get_hw_reset_stat(handle))
goto reset_chk_err;
else
return ret;
}
handle->rinfo.instance_state = HNS_ROCE_STATE_INITED;
return 0;
reset_chk_err:
dev_err(dev, "Device is busy in resetting state.\n"
"please retry later.\n");
return -EBUSY;
}
static void hns_roce_hw_v2_uninit_instance(struct hnae3_handle *handle,
bool reset)
{
if (handle->rinfo.instance_state != HNS_ROCE_STATE_INITED)
return;
handle->rinfo.instance_state = HNS_ROCE_STATE_UNINIT;
__hns_roce_hw_v2_uninit_instance(handle, reset);
handle->rinfo.instance_state = HNS_ROCE_STATE_NON_INIT;
}
static int hns_roce_hw_v2_reset_notify_down(struct hnae3_handle *handle)
{
struct hns_roce_dev *hr_dev;
if (handle->rinfo.instance_state != HNS_ROCE_STATE_INITED) {
set_bit(HNS_ROCE_RST_DIRECT_RETURN, &handle->rinfo.state);
return 0;
}
handle->rinfo.reset_state = HNS_ROCE_STATE_RST_DOWN;
clear_bit(HNS_ROCE_RST_DIRECT_RETURN, &handle->rinfo.state);
hr_dev = handle->priv;
if (!hr_dev)
return 0;
hr_dev->active = false;
hr_dev->dis_db = true;
hr_dev->state = HNS_ROCE_DEVICE_STATE_RST_DOWN;
return 0;
}
static int hns_roce_hw_v2_reset_notify_init(struct hnae3_handle *handle)
{
struct device *dev = &handle->pdev->dev;
int ret;
if (test_and_clear_bit(HNS_ROCE_RST_DIRECT_RETURN,
&handle->rinfo.state)) {
handle->rinfo.reset_state = HNS_ROCE_STATE_RST_INITED;
return 0;
}
handle->rinfo.reset_state = HNS_ROCE_STATE_RST_INIT;
dev_info(&handle->pdev->dev, "In reset process RoCE client reinit.\n");
ret = __hns_roce_hw_v2_init_instance(handle);
if (ret) {
/* when reset notify type is HNAE3_INIT_CLIENT In reset notify
* callback function, RoCE Engine reinitialize. If RoCE reinit
* failed, we should inform NIC driver.
*/
handle->priv = NULL;
dev_err(dev, "In reset process RoCE reinit failed %d.\n", ret);
} else {
handle->rinfo.reset_state = HNS_ROCE_STATE_RST_INITED;
dev_info(dev, "reset done, RoCE client reinit finished.\n");
}
return ret;
}
static int hns_roce_hw_v2_reset_notify_uninit(struct hnae3_handle *handle)
{
if (test_bit(HNS_ROCE_RST_DIRECT_RETURN, &handle->rinfo.state))
return 0;
handle->rinfo.reset_state = HNS_ROCE_STATE_RST_UNINIT;
dev_info(&handle->pdev->dev, "In reset process RoCE client uninit.\n");
msleep(HNS_ROCE_V2_HW_RST_UNINT_DELAY);
__hns_roce_hw_v2_uninit_instance(handle, false);
return 0;
}
static int hns_roce_hw_v2_reset_notify(struct hnae3_handle *handle,
enum hnae3_reset_notify_type type)
{
int ret = 0;
switch (type) {
case HNAE3_DOWN_CLIENT:
ret = hns_roce_hw_v2_reset_notify_down(handle);
break;
case HNAE3_INIT_CLIENT:
ret = hns_roce_hw_v2_reset_notify_init(handle);
break;
case HNAE3_UNINIT_CLIENT:
ret = hns_roce_hw_v2_reset_notify_uninit(handle);
break;
default:
break;
}
return ret;
}
static const struct hnae3_client_ops hns_roce_hw_v2_ops = {
.init_instance = hns_roce_hw_v2_init_instance,
.uninit_instance = hns_roce_hw_v2_uninit_instance,
.reset_notify = hns_roce_hw_v2_reset_notify,
};
static struct hnae3_client hns_roce_hw_v2_client = {
.name = "hns_roce_hw_v2",
.type = HNAE3_CLIENT_ROCE,
.ops = &hns_roce_hw_v2_ops,
};
static int __init hns_roce_hw_v2_init(void)
{
hns_roce_init_debugfs();
return hnae3_register_client(&hns_roce_hw_v2_client);
}
static void __exit hns_roce_hw_v2_exit(void)
{
hnae3_unregister_client(&hns_roce_hw_v2_client);
hns_roce_cleanup_debugfs();
}
module_init(hns_roce_hw_v2_init);
module_exit(hns_roce_hw_v2_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Wei Hu <[email protected]>");
MODULE_AUTHOR("Lijun Ou <[email protected]>");
MODULE_AUTHOR("Shaobo Xu <[email protected]>");
MODULE_DESCRIPTION("Hisilicon Hip08 Family RoCE Driver");