// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/*
* Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
*/
#include <linux/skbuff.h>
#include <crypto/hash.h>
#include "rxe.h"
#include "rxe_loc.h"
#include "rxe_queue.h"
static int next_opcode(struct rxe_qp *qp, struct rxe_send_wqe *wqe,
u32 opcode);
static inline void retry_first_write_send(struct rxe_qp *qp,
struct rxe_send_wqe *wqe, int npsn)
{
int i;
for (i = 0; i < npsn; i++) {
int to_send = (wqe->dma.resid > qp->mtu) ?
qp->mtu : wqe->dma.resid;
qp->req.opcode = next_opcode(qp, wqe,
wqe->wr.opcode);
if (wqe->wr.send_flags & IB_SEND_INLINE) {
wqe->dma.resid -= to_send;
wqe->dma.sge_offset += to_send;
} else {
advance_dma_data(&wqe->dma, to_send);
}
}
}
static void req_retry(struct rxe_qp *qp)
{
struct rxe_send_wqe *wqe;
unsigned int wqe_index;
unsigned int mask;
int npsn;
int first = 1;
struct rxe_queue *q = qp->sq.queue;
unsigned int cons;
unsigned int prod;
cons = queue_get_consumer(q, QUEUE_TYPE_FROM_CLIENT);
prod = queue_get_producer(q, QUEUE_TYPE_FROM_CLIENT);
qp->req.wqe_index = cons;
qp->req.psn = qp->comp.psn;
qp->req.opcode = -1;
for (wqe_index = cons; wqe_index != prod;
wqe_index = queue_next_index(q, wqe_index)) {
wqe = queue_addr_from_index(qp->sq.queue, wqe_index);
mask = wr_opcode_mask(wqe->wr.opcode, qp);
if (wqe->state == wqe_state_posted)
break;
if (wqe->state == wqe_state_done)
continue;
wqe->iova = (mask & WR_ATOMIC_MASK) ?
wqe->wr.wr.atomic.remote_addr :
(mask & WR_READ_OR_WRITE_MASK) ?
wqe->wr.wr.rdma.remote_addr :
0;
if (!first || (mask & WR_READ_MASK) == 0) {
wqe->dma.resid = wqe->dma.length;
wqe->dma.cur_sge = 0;
wqe->dma.sge_offset = 0;
}
if (first) {
first = 0;
if (mask & WR_WRITE_OR_SEND_MASK) {
npsn = (qp->comp.psn - wqe->first_psn) &
BTH_PSN_MASK;
retry_first_write_send(qp, wqe, npsn);
}
if (mask & WR_READ_MASK) {
npsn = (wqe->dma.length - wqe->dma.resid) /
qp->mtu;
wqe->iova += npsn * qp->mtu;
}
}
wqe->state = wqe_state_posted;
}
}
void rnr_nak_timer(struct timer_list *t)
{
struct rxe_qp *qp = from_timer(qp, t, rnr_nak_timer);
unsigned long flags;
rxe_dbg_qp(qp, "nak timer fired\n");
spin_lock_irqsave(&qp->state_lock, flags);
if (qp->valid) {
/* request a send queue retry */
qp->req.need_retry = 1;
qp->req.wait_for_rnr_timer = 0;
rxe_sched_task(&qp->send_task);
}
spin_unlock_irqrestore(&qp->state_lock, flags);
}
static void req_check_sq_drain_done(struct rxe_qp *qp)
{
struct rxe_queue *q;
unsigned int index;
unsigned int cons;
struct rxe_send_wqe *wqe;
unsigned long flags;
spin_lock_irqsave(&qp->state_lock, flags);
if (qp_state(qp) == IB_QPS_SQD) {
q = qp->sq.queue;
index = qp->req.wqe_index;
cons = queue_get_consumer(q, QUEUE_TYPE_FROM_CLIENT);
wqe = queue_addr_from_index(q, cons);
/* check to see if we are drained;
* state_lock used by requester and completer
*/
do {
if (!qp->attr.sq_draining)
/* comp just finished */
break;
if (wqe && ((index != cons) ||
(wqe->state != wqe_state_posted)))
/* comp not done yet */
break;
qp->attr.sq_draining = 0;
spin_unlock_irqrestore(&qp->state_lock, flags);
if (qp->ibqp.event_handler) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_SQ_DRAINED;
qp->ibqp.event_handler(&ev,
qp->ibqp.qp_context);
}
return;
} while (0);
}
spin_unlock_irqrestore(&qp->state_lock, flags);
}
static struct rxe_send_wqe *__req_next_wqe(struct rxe_qp *qp)
{
struct rxe_queue *q = qp->sq.queue;
unsigned int index = qp->req.wqe_index;
unsigned int prod;
prod = queue_get_producer(q, QUEUE_TYPE_FROM_CLIENT);
if (index == prod)
return NULL;
else
return queue_addr_from_index(q, index);
}
static struct rxe_send_wqe *req_next_wqe(struct rxe_qp *qp)
{
struct rxe_send_wqe *wqe;
unsigned long flags;
req_check_sq_drain_done(qp);
wqe = __req_next_wqe(qp);
if (wqe == NULL)
return NULL;
spin_lock_irqsave(&qp->state_lock, flags);
if (unlikely((qp_state(qp) == IB_QPS_SQD) &&
(wqe->state != wqe_state_processing))) {
spin_unlock_irqrestore(&qp->state_lock, flags);
return NULL;
}
spin_unlock_irqrestore(&qp->state_lock, flags);
wqe->mask = wr_opcode_mask(wqe->wr.opcode, qp);
return wqe;
}
/**
* rxe_wqe_is_fenced - check if next wqe is fenced
* @qp: the queue pair
* @wqe: the next wqe
*
* Returns: 1 if wqe needs to wait
* 0 if wqe is ready to go
*/
static int rxe_wqe_is_fenced(struct rxe_qp *qp, struct rxe_send_wqe *wqe)
{
/* Local invalidate fence (LIF) see IBA 10.6.5.1
* Requires ALL previous operations on the send queue
* are complete. Make mandatory for the rxe driver.
*/
if (wqe->wr.opcode == IB_WR_LOCAL_INV)
return qp->req.wqe_index != queue_get_consumer(qp->sq.queue,
QUEUE_TYPE_FROM_CLIENT);
/* Fence see IBA 10.8.3.3
* Requires that all previous read and atomic operations
* are complete.
*/
return (wqe->wr.send_flags & IB_SEND_FENCE) &&
atomic_read(&qp->req.rd_atomic) != qp->attr.max_rd_atomic;
}
static int next_opcode_rc(struct rxe_qp *qp, u32 opcode, int fits)
{
switch (opcode) {
case IB_WR_RDMA_WRITE:
if (qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_FIRST ||
qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_MIDDLE)
return fits ?
IB_OPCODE_RC_RDMA_WRITE_LAST :
IB_OPCODE_RC_RDMA_WRITE_MIDDLE;
else
return fits ?
IB_OPCODE_RC_RDMA_WRITE_ONLY :
IB_OPCODE_RC_RDMA_WRITE_FIRST;
case IB_WR_RDMA_WRITE_WITH_IMM:
if (qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_FIRST ||
qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_MIDDLE)
return fits ?
IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE :
IB_OPCODE_RC_RDMA_WRITE_MIDDLE;
else
return fits ?
IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE :
IB_OPCODE_RC_RDMA_WRITE_FIRST;
case IB_WR_SEND:
if (qp->req.opcode == IB_OPCODE_RC_SEND_FIRST ||
qp->req.opcode == IB_OPCODE_RC_SEND_MIDDLE)
return fits ?
IB_OPCODE_RC_SEND_LAST :
IB_OPCODE_RC_SEND_MIDDLE;
else
return fits ?
IB_OPCODE_RC_SEND_ONLY :
IB_OPCODE_RC_SEND_FIRST;
case IB_WR_SEND_WITH_IMM:
if (qp->req.opcode == IB_OPCODE_RC_SEND_FIRST ||
qp->req.opcode == IB_OPCODE_RC_SEND_MIDDLE)
return fits ?
IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE :
IB_OPCODE_RC_SEND_MIDDLE;
else
return fits ?
IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE :
IB_OPCODE_RC_SEND_FIRST;
case IB_WR_FLUSH:
return IB_OPCODE_RC_FLUSH;
case IB_WR_RDMA_READ:
return IB_OPCODE_RC_RDMA_READ_REQUEST;
case IB_WR_ATOMIC_CMP_AND_SWP:
return IB_OPCODE_RC_COMPARE_SWAP;
case IB_WR_ATOMIC_FETCH_AND_ADD:
return IB_OPCODE_RC_FETCH_ADD;
case IB_WR_SEND_WITH_INV:
if (qp->req.opcode == IB_OPCODE_RC_SEND_FIRST ||
qp->req.opcode == IB_OPCODE_RC_SEND_MIDDLE)
return fits ? IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE :
IB_OPCODE_RC_SEND_MIDDLE;
else
return fits ? IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE :
IB_OPCODE_RC_SEND_FIRST;
case IB_WR_ATOMIC_WRITE:
return IB_OPCODE_RC_ATOMIC_WRITE;
case IB_WR_REG_MR:
case IB_WR_LOCAL_INV:
return opcode;
}
return -EINVAL;
}
static int next_opcode_uc(struct rxe_qp *qp, u32 opcode, int fits)
{
switch (opcode) {
case IB_WR_RDMA_WRITE:
if (qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_FIRST ||
qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_MIDDLE)
return fits ?
IB_OPCODE_UC_RDMA_WRITE_LAST :
IB_OPCODE_UC_RDMA_WRITE_MIDDLE;
else
return fits ?
IB_OPCODE_UC_RDMA_WRITE_ONLY :
IB_OPCODE_UC_RDMA_WRITE_FIRST;
case IB_WR_RDMA_WRITE_WITH_IMM:
if (qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_FIRST ||
qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_MIDDLE)
return fits ?
IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE :
IB_OPCODE_UC_RDMA_WRITE_MIDDLE;
else
return fits ?
IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE :
IB_OPCODE_UC_RDMA_WRITE_FIRST;
case IB_WR_SEND:
if (qp->req.opcode == IB_OPCODE_UC_SEND_FIRST ||
qp->req.opcode == IB_OPCODE_UC_SEND_MIDDLE)
return fits ?
IB_OPCODE_UC_SEND_LAST :
IB_OPCODE_UC_SEND_MIDDLE;
else
return fits ?
IB_OPCODE_UC_SEND_ONLY :
IB_OPCODE_UC_SEND_FIRST;
case IB_WR_SEND_WITH_IMM:
if (qp->req.opcode == IB_OPCODE_UC_SEND_FIRST ||
qp->req.opcode == IB_OPCODE_UC_SEND_MIDDLE)
return fits ?
IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE :
IB_OPCODE_UC_SEND_MIDDLE;
else
return fits ?
IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE :
IB_OPCODE_UC_SEND_FIRST;
}
return -EINVAL;
}
static int next_opcode(struct rxe_qp *qp, struct rxe_send_wqe *wqe,
u32 opcode)
{
int fits = (wqe->dma.resid <= qp->mtu);
switch (qp_type(qp)) {
case IB_QPT_RC:
return next_opcode_rc(qp, opcode, fits);
case IB_QPT_UC:
return next_opcode_uc(qp, opcode, fits);
case IB_QPT_UD:
case IB_QPT_GSI:
switch (opcode) {
case IB_WR_SEND:
return IB_OPCODE_UD_SEND_ONLY;
case IB_WR_SEND_WITH_IMM:
return IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE;
}
break;
default:
break;
}
return -EINVAL;
}
static inline int check_init_depth(struct rxe_qp *qp, struct rxe_send_wqe *wqe)
{
int depth;
if (wqe->has_rd_atomic)
return 0;
qp->req.need_rd_atomic = 1;
depth = atomic_dec_return(&qp->req.rd_atomic);
if (depth >= 0) {
qp->req.need_rd_atomic = 0;
wqe->has_rd_atomic = 1;
return 0;
}
atomic_inc(&qp->req.rd_atomic);
return -EAGAIN;
}
static inline int get_mtu(struct rxe_qp *qp)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
if ((qp_type(qp) == IB_QPT_RC) || (qp_type(qp) == IB_QPT_UC))
return qp->mtu;
return rxe->port.mtu_cap;
}
static struct sk_buff *init_req_packet(struct rxe_qp *qp,
struct rxe_av *av,
struct rxe_send_wqe *wqe,
int opcode, u32 payload,
struct rxe_pkt_info *pkt)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct sk_buff *skb;
struct rxe_send_wr *ibwr = &wqe->wr;
int pad = (-payload) & 0x3;
int paylen;
int solicited;
u32 qp_num;
int ack_req = 0;
/* length from start of bth to end of icrc */
paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE;
pkt->paylen = paylen;
/* init skb */
skb = rxe_init_packet(rxe, av, paylen, pkt);
if (unlikely(!skb))
return NULL;
/* init bth */
solicited = (ibwr->send_flags & IB_SEND_SOLICITED) &&
(pkt->mask & RXE_END_MASK) &&
((pkt->mask & (RXE_SEND_MASK)) ||
(pkt->mask & (RXE_WRITE_MASK | RXE_IMMDT_MASK)) ==
(RXE_WRITE_MASK | RXE_IMMDT_MASK));
qp_num = (pkt->mask & RXE_DETH_MASK) ? ibwr->wr.ud.remote_qpn :
qp->attr.dest_qp_num;
if (qp_type(qp) != IB_QPT_UD && qp_type(qp) != IB_QPT_UC)
ack_req = ((pkt->mask & RXE_END_MASK) ||
(qp->req.noack_pkts++ > RXE_MAX_PKT_PER_ACK));
if (ack_req)
qp->req.noack_pkts = 0;
bth_init(pkt, pkt->opcode, solicited, 0, pad, IB_DEFAULT_PKEY_FULL, qp_num,
ack_req, pkt->psn);
/* init optional headers */
if (pkt->mask & RXE_RETH_MASK) {
if (pkt->mask & RXE_FETH_MASK)
reth_set_rkey(pkt, ibwr->wr.flush.rkey);
else
reth_set_rkey(pkt, ibwr->wr.rdma.rkey);
reth_set_va(pkt, wqe->iova);
reth_set_len(pkt, wqe->dma.resid);
}
/* Fill Flush Extension Transport Header */
if (pkt->mask & RXE_FETH_MASK)
feth_init(pkt, ibwr->wr.flush.type, ibwr->wr.flush.level);
if (pkt->mask & RXE_IMMDT_MASK)
immdt_set_imm(pkt, ibwr->ex.imm_data);
if (pkt->mask & RXE_IETH_MASK)
ieth_set_rkey(pkt, ibwr->ex.invalidate_rkey);
if (pkt->mask & RXE_ATMETH_MASK) {
atmeth_set_va(pkt, wqe->iova);
if (opcode == IB_OPCODE_RC_COMPARE_SWAP) {
atmeth_set_swap_add(pkt, ibwr->wr.atomic.swap);
atmeth_set_comp(pkt, ibwr->wr.atomic.compare_add);
} else {
atmeth_set_swap_add(pkt, ibwr->wr.atomic.compare_add);
}
atmeth_set_rkey(pkt, ibwr->wr.atomic.rkey);
}
if (pkt->mask & RXE_DETH_MASK) {
if (qp->ibqp.qp_num == 1)
deth_set_qkey(pkt, GSI_QKEY);
else
deth_set_qkey(pkt, ibwr->wr.ud.remote_qkey);
deth_set_sqp(pkt, qp->ibqp.qp_num);
}
return skb;
}
static int finish_packet(struct rxe_qp *qp, struct rxe_av *av,
struct rxe_send_wqe *wqe, struct rxe_pkt_info *pkt,
struct sk_buff *skb, u32 payload)
{
int err;
err = rxe_prepare(av, pkt, skb);
if (err)
return err;
if (pkt->mask & RXE_WRITE_OR_SEND_MASK) {
if (wqe->wr.send_flags & IB_SEND_INLINE) {
u8 *tmp = &wqe->dma.inline_data[wqe->dma.sge_offset];
memcpy(payload_addr(pkt), tmp, payload);
wqe->dma.resid -= payload;
wqe->dma.sge_offset += payload;
} else {
err = copy_data(qp->pd, 0, &wqe->dma,
payload_addr(pkt), payload,
RXE_FROM_MR_OBJ);
if (err)
return err;
}
if (bth_pad(pkt)) {
u8 *pad = payload_addr(pkt) + payload;
memset(pad, 0, bth_pad(pkt));
}
} else if (pkt->mask & RXE_FLUSH_MASK) {
/* oA19-2: shall have no payload. */
wqe->dma.resid = 0;
}
if (pkt->mask & RXE_ATOMIC_WRITE_MASK) {
memcpy(payload_addr(pkt), wqe->dma.atomic_wr, payload);
wqe->dma.resid -= payload;
}
return 0;
}
static void update_wqe_state(struct rxe_qp *qp,
struct rxe_send_wqe *wqe,
struct rxe_pkt_info *pkt)
{
if (pkt->mask & RXE_END_MASK) {
if (qp_type(qp) == IB_QPT_RC)
wqe->state = wqe_state_pending;
else
wqe->state = wqe_state_done;
} else {
wqe->state = wqe_state_processing;
}
}
static void update_wqe_psn(struct rxe_qp *qp,
struct rxe_send_wqe *wqe,
struct rxe_pkt_info *pkt,
u32 payload)
{
/* number of packets left to send including current one */
int num_pkt = (wqe->dma.resid + payload + qp->mtu - 1) / qp->mtu;
/* handle zero length packet case */
if (num_pkt == 0)
num_pkt = 1;
if (pkt->mask & RXE_START_MASK) {
wqe->first_psn = qp->req.psn;
wqe->last_psn = (qp->req.psn + num_pkt - 1) & BTH_PSN_MASK;
}
if (pkt->mask & RXE_READ_MASK)
qp->req.psn = (wqe->first_psn + num_pkt) & BTH_PSN_MASK;
else
qp->req.psn = (qp->req.psn + 1) & BTH_PSN_MASK;
}
static void update_state(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
{
qp->req.opcode = pkt->opcode;
if (pkt->mask & RXE_END_MASK)
qp->req.wqe_index = queue_next_index(qp->sq.queue,
qp->req.wqe_index);
qp->need_req_skb = 0;
if (qp->qp_timeout_jiffies && !timer_pending(&qp->retrans_timer))
mod_timer(&qp->retrans_timer,
jiffies + qp->qp_timeout_jiffies);
}
static int rxe_do_local_ops(struct rxe_qp *qp, struct rxe_send_wqe *wqe)
{
u8 opcode = wqe->wr.opcode;
u32 rkey;
int ret;
switch (opcode) {
case IB_WR_LOCAL_INV:
rkey = wqe->wr.ex.invalidate_rkey;
if (rkey_is_mw(rkey))
ret = rxe_invalidate_mw(qp, rkey);
else
ret = rxe_invalidate_mr(qp, rkey);
if (unlikely(ret)) {
wqe->status = IB_WC_LOC_QP_OP_ERR;
return ret;
}
break;
case IB_WR_REG_MR:
ret = rxe_reg_fast_mr(qp, wqe);
if (unlikely(ret)) {
wqe->status = IB_WC_LOC_QP_OP_ERR;
return ret;
}
break;
case IB_WR_BIND_MW:
ret = rxe_bind_mw(qp, wqe);
if (unlikely(ret)) {
wqe->status = IB_WC_MW_BIND_ERR;
return ret;
}
break;
default:
rxe_dbg_qp(qp, "Unexpected send wqe opcode %d\n", opcode);
wqe->status = IB_WC_LOC_QP_OP_ERR;
return -EINVAL;
}
wqe->state = wqe_state_done;
wqe->status = IB_WC_SUCCESS;
qp->req.wqe_index = queue_next_index(qp->sq.queue, qp->req.wqe_index);
return 0;
}
int rxe_requester(struct rxe_qp *qp)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct rxe_pkt_info pkt;
struct sk_buff *skb;
struct rxe_send_wqe *wqe;
enum rxe_hdr_mask mask;
u32 payload;
int mtu;
int opcode;
int err;
int ret;
struct rxe_queue *q = qp->sq.queue;
struct rxe_ah *ah;
struct rxe_av *av;
unsigned long flags;
spin_lock_irqsave(&qp->state_lock, flags);
if (unlikely(!qp->valid)) {
spin_unlock_irqrestore(&qp->state_lock, flags);
goto exit;
}
if (unlikely(qp_state(qp) == IB_QPS_ERR)) {
wqe = __req_next_wqe(qp);
spin_unlock_irqrestore(&qp->state_lock, flags);
if (wqe)
goto err;
else
goto exit;
}
if (unlikely(qp_state(qp) == IB_QPS_RESET)) {
qp->req.wqe_index = queue_get_consumer(q,
QUEUE_TYPE_FROM_CLIENT);
qp->req.opcode = -1;
qp->req.need_rd_atomic = 0;
qp->req.wait_psn = 0;
qp->req.need_retry = 0;
qp->req.wait_for_rnr_timer = 0;
spin_unlock_irqrestore(&qp->state_lock, flags);
goto exit;
}
spin_unlock_irqrestore(&qp->state_lock, flags);
/* we come here if the retransmit timer has fired
* or if the rnr timer has fired. If the retransmit
* timer fires while we are processing an RNR NAK wait
* until the rnr timer has fired before starting the
* retry flow
*/
if (unlikely(qp->req.need_retry && !qp->req.wait_for_rnr_timer)) {
req_retry(qp);
qp->req.need_retry = 0;
}
wqe = req_next_wqe(qp);
if (unlikely(!wqe))
goto exit;
if (rxe_wqe_is_fenced(qp, wqe)) {
qp->req.wait_fence = 1;
goto exit;
}
if (wqe->mask & WR_LOCAL_OP_MASK) {
err = rxe_do_local_ops(qp, wqe);
if (unlikely(err))
goto err;
else
goto done;
}
if (unlikely(qp_type(qp) == IB_QPT_RC &&
psn_compare(qp->req.psn, (qp->comp.psn +
RXE_MAX_UNACKED_PSNS)) > 0)) {
qp->req.wait_psn = 1;
goto exit;
}
/* Limit the number of inflight SKBs per QP */
if (unlikely(atomic_read(&qp->skb_out) >
RXE_INFLIGHT_SKBS_PER_QP_HIGH)) {
qp->need_req_skb = 1;
goto exit;
}
opcode = next_opcode(qp, wqe, wqe->wr.opcode);
if (unlikely(opcode < 0)) {
wqe->status = IB_WC_LOC_QP_OP_ERR;
goto err;
}
mask = rxe_opcode[opcode].mask;
if (unlikely(mask & (RXE_READ_OR_ATOMIC_MASK |
RXE_ATOMIC_WRITE_MASK))) {
if (check_init_depth(qp, wqe))
goto exit;
}
mtu = get_mtu(qp);
payload = (mask & (RXE_WRITE_OR_SEND_MASK | RXE_ATOMIC_WRITE_MASK)) ?
wqe->dma.resid : 0;
if (payload > mtu) {
if (qp_type(qp) == IB_QPT_UD) {
/* C10-93.1.1: If the total sum of all the buffer lengths specified for a
* UD message exceeds the MTU of the port as returned by QueryHCA, the CI
* shall not emit any packets for this message. Further, the CI shall not
* generate an error due to this condition.
*/
/* fake a successful UD send */
wqe->first_psn = qp->req.psn;
wqe->last_psn = qp->req.psn;
qp->req.psn = (qp->req.psn + 1) & BTH_PSN_MASK;
qp->req.opcode = IB_OPCODE_UD_SEND_ONLY;
qp->req.wqe_index = queue_next_index(qp->sq.queue,
qp->req.wqe_index);
wqe->state = wqe_state_done;
wqe->status = IB_WC_SUCCESS;
goto done;
}
payload = mtu;
}
pkt.rxe = rxe;
pkt.opcode = opcode;
pkt.qp = qp;
pkt.psn = qp->req.psn;
pkt.mask = rxe_opcode[opcode].mask;
pkt.wqe = wqe;
av = rxe_get_av(&pkt, &ah);
if (unlikely(!av)) {
rxe_dbg_qp(qp, "Failed no address vector\n");
wqe->status = IB_WC_LOC_QP_OP_ERR;
goto err;
}
skb = init_req_packet(qp, av, wqe, opcode, payload, &pkt);
if (unlikely(!skb)) {
rxe_dbg_qp(qp, "Failed allocating skb\n");
wqe->status = IB_WC_LOC_QP_OP_ERR;
if (ah)
rxe_put(ah);
goto err;
}
err = finish_packet(qp, av, wqe, &pkt, skb, payload);
if (unlikely(err)) {
rxe_dbg_qp(qp, "Error during finish packet\n");
if (err == -EFAULT)
wqe->status = IB_WC_LOC_PROT_ERR;
else
wqe->status = IB_WC_LOC_QP_OP_ERR;
kfree_skb(skb);
if (ah)
rxe_put(ah);
goto err;
}
if (ah)
rxe_put(ah);
err = rxe_xmit_packet(qp, &pkt, skb);
if (err) {
wqe->status = IB_WC_LOC_QP_OP_ERR;
goto err;
}
update_wqe_state(qp, wqe, &pkt);
update_wqe_psn(qp, wqe, &pkt, payload);
update_state(qp, &pkt);
/* A non-zero return value will cause rxe_do_task to
* exit its loop and end the work item. A zero return
* will continue looping and return to rxe_requester
*/
done:
ret = 0;
goto out;
err:
/* update wqe_index for each wqe completion */
qp->req.wqe_index = queue_next_index(qp->sq.queue, qp->req.wqe_index);
wqe->state = wqe_state_error;
rxe_qp_error(qp);
exit:
ret = -EAGAIN;
out:
return ret;
}
int rxe_sender(struct rxe_qp *qp)
{
int req_ret;
int comp_ret;
/* process the send queue */
req_ret = rxe_requester(qp);
/* process the response queue */
comp_ret = rxe_completer(qp);
/* exit the task loop if both requester and completer
* are ready
*/
return (req_ret && comp_ret) ? -EAGAIN : 0;
}