/* SPDX-License-Identifier: GPL-2.0
* Marvell OcteonTX CPT driver
*
* Copyright (C) 2019 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __OTX_CPT_HW_TYPES_H
#define __OTX_CPT_HW_TYPES_H
#include <linux/types.h>
/* Device IDs */
#define OTX_CPT_PCI_PF_DEVICE_ID 0xa040
#define OTX_CPT_PCI_VF_DEVICE_ID 0xa041
#define OTX_CPT_PCI_PF_SUBSYS_ID 0xa340
#define OTX_CPT_PCI_VF_SUBSYS_ID 0xa341
/* Configuration and status registers are in BAR0 on OcteonTX platform */
#define OTX_CPT_PF_PCI_CFG_BAR 0
#define OTX_CPT_VF_PCI_CFG_BAR 0
#define OTX_CPT_BAR_E_CPTX_VFX_BAR0_OFFSET(a, b) \
(0x000020000000ll + 0x1000000000ll * (a) + 0x100000ll * (b))
#define OTX_CPT_BAR_E_CPTX_VFX_BAR0_SIZE 0x400000
/* Mailbox interrupts offset */
#define OTX_CPT_PF_MBOX_INT 3
#define OTX_CPT_PF_INT_VEC_E_MBOXX(x, a) ((x) + (a))
/* Number of MSIX supported in PF */
#define OTX_CPT_PF_MSIX_VECTORS 4
/* Maximum supported microcode groups */
#define OTX_CPT_MAX_ENGINE_GROUPS 8
/* CPT instruction size in bytes */
#define OTX_CPT_INST_SIZE 64
/* CPT queue next chunk pointer size in bytes */
#define OTX_CPT_NEXT_CHUNK_PTR_SIZE 8
/* OcteonTX CPT VF MSIX vectors and their offsets */
#define OTX_CPT_VF_MSIX_VECTORS 2
#define OTX_CPT_VF_INTR_MBOX_MASK BIT(0)
#define OTX_CPT_VF_INTR_DOVF_MASK BIT(1)
#define OTX_CPT_VF_INTR_IRDE_MASK BIT(2)
#define OTX_CPT_VF_INTR_NWRP_MASK BIT(3)
#define OTX_CPT_VF_INTR_SERR_MASK BIT(4)
/* OcteonTX CPT PF registers */
#define OTX_CPT_PF_CONSTANTS (0x0ll)
#define OTX_CPT_PF_RESET (0x100ll)
#define OTX_CPT_PF_DIAG (0x120ll)
#define OTX_CPT_PF_BIST_STATUS (0x160ll)
#define OTX_CPT_PF_ECC0_CTL (0x200ll)
#define OTX_CPT_PF_ECC0_FLIP (0x210ll)
#define OTX_CPT_PF_ECC0_INT (0x220ll)
#define OTX_CPT_PF_ECC0_INT_W1S (0x230ll)
#define OTX_CPT_PF_ECC0_ENA_W1S (0x240ll)
#define OTX_CPT_PF_ECC0_ENA_W1C (0x250ll)
#define OTX_CPT_PF_MBOX_INTX(b) (0x400ll | (u64)(b) << 3)
#define OTX_CPT_PF_MBOX_INT_W1SX(b) (0x420ll | (u64)(b) << 3)
#define OTX_CPT_PF_MBOX_ENA_W1CX(b) (0x440ll | (u64)(b) << 3)
#define OTX_CPT_PF_MBOX_ENA_W1SX(b) (0x460ll | (u64)(b) << 3)
#define OTX_CPT_PF_EXEC_INT (0x500ll)
#define OTX_CPT_PF_EXEC_INT_W1S (0x520ll)
#define OTX_CPT_PF_EXEC_ENA_W1C (0x540ll)
#define OTX_CPT_PF_EXEC_ENA_W1S (0x560ll)
#define OTX_CPT_PF_GX_EN(b) (0x600ll | (u64)(b) << 3)
#define OTX_CPT_PF_EXEC_INFO (0x700ll)
#define OTX_CPT_PF_EXEC_BUSY (0x800ll)
#define OTX_CPT_PF_EXEC_INFO0 (0x900ll)
#define OTX_CPT_PF_EXEC_INFO1 (0x910ll)
#define OTX_CPT_PF_INST_REQ_PC (0x10000ll)
#define OTX_CPT_PF_INST_LATENCY_PC (0x10020ll)
#define OTX_CPT_PF_RD_REQ_PC (0x10040ll)
#define OTX_CPT_PF_RD_LATENCY_PC (0x10060ll)
#define OTX_CPT_PF_RD_UC_PC (0x10080ll)
#define OTX_CPT_PF_ACTIVE_CYCLES_PC (0x10100ll)
#define OTX_CPT_PF_EXE_CTL (0x4000000ll)
#define OTX_CPT_PF_EXE_STATUS (0x4000008ll)
#define OTX_CPT_PF_EXE_CLK (0x4000010ll)
#define OTX_CPT_PF_EXE_DBG_CTL (0x4000018ll)
#define OTX_CPT_PF_EXE_DBG_DATA (0x4000020ll)
#define OTX_CPT_PF_EXE_BIST_STATUS (0x4000028ll)
#define OTX_CPT_PF_EXE_REQ_TIMER (0x4000030ll)
#define OTX_CPT_PF_EXE_MEM_CTL (0x4000038ll)
#define OTX_CPT_PF_EXE_PERF_CTL (0x4001000ll)
#define OTX_CPT_PF_EXE_DBG_CNTX(b) (0x4001100ll | (u64)(b) << 3)
#define OTX_CPT_PF_EXE_PERF_EVENT_CNT (0x4001180ll)
#define OTX_CPT_PF_EXE_EPCI_INBX_CNT(b) (0x4001200ll | (u64)(b) << 3)
#define OTX_CPT_PF_EXE_EPCI_OUTBX_CNT(b) (0x4001240ll | (u64)(b) << 3)
#define OTX_CPT_PF_ENGX_UCODE_BASE(b) (0x4002000ll | (u64)(b) << 3)
#define OTX_CPT_PF_QX_CTL(b) (0x8000000ll | (u64)(b) << 20)
#define OTX_CPT_PF_QX_GMCTL(b) (0x8000020ll | (u64)(b) << 20)
#define OTX_CPT_PF_QX_CTL2(b) (0x8000100ll | (u64)(b) << 20)
#define OTX_CPT_PF_VFX_MBOXX(b, c) (0x8001000ll | (u64)(b) << 20 | \
(u64)(c) << 8)
/* OcteonTX CPT VF registers */
#define OTX_CPT_VQX_CTL(b) (0x100ll | (u64)(b) << 20)
#define OTX_CPT_VQX_SADDR(b) (0x200ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DONE_WAIT(b) (0x400ll | (u64)(b) << 20)
#define OTX_CPT_VQX_INPROG(b) (0x410ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DONE(b) (0x420ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DONE_ACK(b) (0x440ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DONE_INT_W1S(b) (0x460ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DONE_INT_W1C(b) (0x468ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DONE_ENA_W1S(b) (0x470ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DONE_ENA_W1C(b) (0x478ll | (u64)(b) << 20)
#define OTX_CPT_VQX_MISC_INT(b) (0x500ll | (u64)(b) << 20)
#define OTX_CPT_VQX_MISC_INT_W1S(b) (0x508ll | (u64)(b) << 20)
#define OTX_CPT_VQX_MISC_ENA_W1S(b) (0x510ll | (u64)(b) << 20)
#define OTX_CPT_VQX_MISC_ENA_W1C(b) (0x518ll | (u64)(b) << 20)
#define OTX_CPT_VQX_DOORBELL(b) (0x600ll | (u64)(b) << 20)
#define OTX_CPT_VFX_PF_MBOXX(b, c) (0x1000ll | ((b) << 20) | ((c) << 3))
/*
* Enumeration otx_cpt_ucode_error_code_e
*
* Enumerates ucode errors
*/
enum otx_cpt_ucode_error_code_e {
CPT_NO_UCODE_ERROR = 0x00,
ERR_OPCODE_UNSUPPORTED = 0x01,
/* Scatter gather */
ERR_SCATTER_GATHER_WRITE_LENGTH = 0x02,
ERR_SCATTER_GATHER_LIST = 0x03,
ERR_SCATTER_GATHER_NOT_SUPPORTED = 0x04,
};
/*
* Enumeration otx_cpt_comp_e
*
* CPT OcteonTX Completion Enumeration
* Enumerates the values of CPT_RES_S[COMPCODE].
*/
enum otx_cpt_comp_e {
CPT_COMP_E_NOTDONE = 0x00,
CPT_COMP_E_GOOD = 0x01,
CPT_COMP_E_FAULT = 0x02,
CPT_COMP_E_SWERR = 0x03,
CPT_COMP_E_HWERR = 0x04,
CPT_COMP_E_LAST_ENTRY = 0x05
};
/*
* Enumeration otx_cpt_vf_int_vec_e
*
* CPT OcteonTX VF MSI-X Vector Enumeration
* Enumerates the MSI-X interrupt vectors.
*/
enum otx_cpt_vf_int_vec_e {
CPT_VF_INT_VEC_E_MISC = 0x00,
CPT_VF_INT_VEC_E_DONE = 0x01
};
/*
* Structure cpt_inst_s
*
* CPT Instruction Structure
* This structure specifies the instruction layout. Instructions are
* stored in memory as little-endian unless CPT()_PF_Q()_CTL[INST_BE] is set.
* cpt_inst_s_s
* Word 0
* doneint:1 Done interrupt.
* 0 = No interrupts related to this instruction.
* 1 = When the instruction completes, CPT()_VQ()_DONE[DONE] will be
* incremented,and based on the rules described there an interrupt may
* occur.
* Word 1
* res_addr [127: 64] Result IOVA.
* If nonzero, specifies where to write CPT_RES_S.
* If zero, no result structure will be written.
* Address must be 16-byte aligned.
* Bits <63:49> are ignored by hardware; software should use a
* sign-extended bit <48> for forward compatibility.
* Word 2
* grp:10 [171:162] If [WQ_PTR] is nonzero, the SSO guest-group to use when
* CPT submits work SSO.
* For the SSO to not discard the add-work request, FPA_PF_MAP() must map
* [GRP] and CPT()_PF_Q()_GMCTL[GMID] as valid.
* tt:2 [161:160] If [WQ_PTR] is nonzero, the SSO tag type to use when CPT
* submits work to SSO
* tag:32 [159:128] If [WQ_PTR] is nonzero, the SSO tag to use when CPT
* submits work to SSO.
* Word 3
* wq_ptr [255:192] If [WQ_PTR] is nonzero, it is a pointer to a
* work-queue entry that CPT submits work to SSO after all context,
* output data, and result write operations are visible to other
* CNXXXX units and the cores. Bits <2:0> must be zero.
* Bits <63:49> are ignored by hardware; software should
* use a sign-extended bit <48> for forward compatibility.
* Internal:
* Bits <63:49>, <2:0> are ignored by hardware, treated as always 0x0.
* Word 4
* ei0; [319:256] Engine instruction word 0. Passed to the AE/SE.
* Word 5
* ei1; [383:320] Engine instruction word 1. Passed to the AE/SE.
* Word 6
* ei2; [447:384] Engine instruction word 1. Passed to the AE/SE.
* Word 7
* ei3; [511:448] Engine instruction word 1. Passed to the AE/SE.
*
*/
union otx_cpt_inst_s {
u64 u[8];
struct {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_17_63:47;
u64 doneint:1;
u64 reserved_0_15:16;
#else /* Word 0 - Little Endian */
u64 reserved_0_15:16;
u64 doneint:1;
u64 reserved_17_63:47;
#endif /* Word 0 - End */
u64 res_addr;
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 2 - Big Endian */
u64 reserved_172_191:20;
u64 grp:10;
u64 tt:2;
u64 tag:32;
#else /* Word 2 - Little Endian */
u64 tag:32;
u64 tt:2;
u64 grp:10;
u64 reserved_172_191:20;
#endif /* Word 2 - End */
u64 wq_ptr;
u64 ei0;
u64 ei1;
u64 ei2;
u64 ei3;
} s;
};
/*
* Structure cpt_res_s
*
* CPT Result Structure
* The CPT coprocessor writes the result structure after it completes a
* CPT_INST_S instruction. The result structure is exactly 16 bytes, and
* each instruction completion produces exactly one result structure.
*
* This structure is stored in memory as little-endian unless
* CPT()_PF_Q()_CTL[INST_BE] is set.
* cpt_res_s_s
* Word 0
* doneint:1 [16:16] Done interrupt. This bit is copied from the
* corresponding instruction's CPT_INST_S[DONEINT].
* compcode:8 [7:0] Indicates completion/error status of the CPT coprocessor
* for the associated instruction, as enumerated by CPT_COMP_E.
* Core software may write the memory location containing [COMPCODE] to
* 0x0 before ringing the doorbell, and then poll for completion by
* checking for a nonzero value.
* Once the core observes a nonzero [COMPCODE] value in this case,the CPT
* coprocessor will have also completed L2/DRAM write operations.
* Word 1
* reserved
*
*/
union otx_cpt_res_s {
u64 u[2];
struct {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_17_63:47;
u64 doneint:1;
u64 reserved_8_15:8;
u64 compcode:8;
#else /* Word 0 - Little Endian */
u64 compcode:8;
u64 reserved_8_15:8;
u64 doneint:1;
u64 reserved_17_63:47;
#endif /* Word 0 - End */
u64 reserved_64_127;
} s;
};
/*
* Register (NCB) otx_cpt#_pf_bist_status
*
* CPT PF Control Bist Status Register
* This register has the BIST status of memories. Each bit is the BIST result
* of an individual memory (per bit, 0 = pass and 1 = fail).
* otx_cptx_pf_bist_status_s
* Word0
* bstatus [29:0](RO/H) BIST status. One bit per memory, enumerated by
* CPT_RAMS_E.
*/
union otx_cptx_pf_bist_status {
u64 u;
struct otx_cptx_pf_bist_status_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_30_63:34;
u64 bstatus:30;
#else /* Word 0 - Little Endian */
u64 bstatus:30;
u64 reserved_30_63:34;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_pf_constants
*
* CPT PF Constants Register
* This register contains implementation-related parameters of CPT in CNXXXX.
* otx_cptx_pf_constants_s
* Word 0
* reserved_40_63:24 [63:40] Reserved.
* epcis:8 [39:32](RO) Number of EPCI busses.
* grps:8 [31:24](RO) Number of engine groups implemented.
* ae:8 [23:16](RO/H) Number of AEs. In CNXXXX, for CPT0 returns 0x0,
* for CPT1 returns 0x18, or less if there are fuse-disables.
* se:8 [15:8](RO/H) Number of SEs. In CNXXXX, for CPT0 returns 0x30,
* or less if there are fuse-disables, for CPT1 returns 0x0.
* vq:8 [7:0](RO) Number of VQs.
*/
union otx_cptx_pf_constants {
u64 u;
struct otx_cptx_pf_constants_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_40_63:24;
u64 epcis:8;
u64 grps:8;
u64 ae:8;
u64 se:8;
u64 vq:8;
#else /* Word 0 - Little Endian */
u64 vq:8;
u64 se:8;
u64 ae:8;
u64 grps:8;
u64 epcis:8;
u64 reserved_40_63:24;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_pf_exe_bist_status
*
* CPT PF Engine Bist Status Register
* This register has the BIST status of each engine. Each bit is the
* BIST result of an individual engine (per bit, 0 = pass and 1 = fail).
* otx_cptx_pf_exe_bist_status_s
* Word0
* reserved_48_63:16 [63:48] reserved
* bstatus:48 [47:0](RO/H) BIST status. One bit per engine.
*
*/
union otx_cptx_pf_exe_bist_status {
u64 u;
struct otx_cptx_pf_exe_bist_status_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_48_63:16;
u64 bstatus:48;
#else /* Word 0 - Little Endian */
u64 bstatus:48;
u64 reserved_48_63:16;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_pf_q#_ctl
*
* CPT Queue Control Register
* This register configures queues. This register should be changed only
* when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]).
* otx_cptx_pf_qx_ctl_s
* Word0
* reserved_60_63:4 [63:60] reserved.
* aura:12; [59:48](R/W) Guest-aura for returning this queue's
* instruction-chunk buffers to FPA. Only used when [INST_FREE] is set.
* For the FPA to not discard the request, FPA_PF_MAP() must map
* [AURA] and CPT()_PF_Q()_GMCTL[GMID] as valid.
* reserved_45_47:3 [47:45] reserved.
* size:13 [44:32](R/W) Command-buffer size, in number of 64-bit words per
* command buffer segment. Must be 8*n + 1, where n is the number of
* instructions per buffer segment.
* reserved_11_31:21 [31:11] Reserved.
* cont_err:1 [10:10](R/W) Continue on error.
* 0 = When CPT()_VQ()_MISC_INT[NWRP], CPT()_VQ()_MISC_INT[IRDE] or
* CPT()_VQ()_MISC_INT[DOVF] are set by hardware or software via
* CPT()_VQ()_MISC_INT_W1S, then CPT()_VQ()_CTL[ENA] is cleared. Due to
* pipelining, additional instructions may have been processed between the
* instruction causing the error and the next instruction in the disabled
* queue (the instruction at CPT()_VQ()_SADDR).
* 1 = Ignore errors and continue processing instructions.
* For diagnostic use only.
* inst_free:1 [9:9](R/W) Instruction FPA free. When set, when CPT reaches the
* end of an instruction chunk, that chunk will be freed to the FPA.
* inst_be:1 [8:8](R/W) Instruction big-endian control. When set, instructions,
* instruction next chunk pointers, and result structures are stored in
* big-endian format in memory.
* iqb_ldwb:1 [7:7](R/W) Instruction load don't write back.
* 0 = The hardware issues NCB transient load (LDT) towards the cache,
* which if the line hits and is dirty will cause the line to be
* written back before being replaced.
* 1 = The hardware issues NCB LDWB read-and-invalidate command towards
* the cache when fetching the last word of instructions; as a result the
* line will not be written back when replaced. This improves
* performance, but software must not read the instructions after they are
* posted to the hardware. Reads that do not consume the last word of a
* cache line always use LDI.
* reserved_4_6:3 [6:4] Reserved.
* grp:3; [3:1](R/W) Engine group.
* pri:1; [0:0](R/W) Queue priority.
* 1 = This queue has higher priority. Round-robin between higher
* priority queues.
* 0 = This queue has lower priority. Round-robin between lower
* priority queues.
*/
union otx_cptx_pf_qx_ctl {
u64 u;
struct otx_cptx_pf_qx_ctl_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_60_63:4;
u64 aura:12;
u64 reserved_45_47:3;
u64 size:13;
u64 reserved_11_31:21;
u64 cont_err:1;
u64 inst_free:1;
u64 inst_be:1;
u64 iqb_ldwb:1;
u64 reserved_4_6:3;
u64 grp:3;
u64 pri:1;
#else /* Word 0 - Little Endian */
u64 pri:1;
u64 grp:3;
u64 reserved_4_6:3;
u64 iqb_ldwb:1;
u64 inst_be:1;
u64 inst_free:1;
u64 cont_err:1;
u64 reserved_11_31:21;
u64 size:13;
u64 reserved_45_47:3;
u64 aura:12;
u64 reserved_60_63:4;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_saddr
*
* CPT Queue Starting Buffer Address Registers
* These registers set the instruction buffer starting address.
* otx_cptx_vqx_saddr_s
* Word0
* reserved_49_63:15 [63:49] Reserved.
* ptr:43 [48:6](R/W/H) Instruction buffer IOVA <48:6> (64-byte aligned).
* When written, it is the initial buffer starting address; when read,
* it is the next read pointer to be requested from L2C. The PTR field
* is overwritten with the next pointer each time that the command buffer
* segment is exhausted. New commands will then be read from the newly
* specified command buffer pointer.
* reserved_0_5:6 [5:0] Reserved.
*
*/
union otx_cptx_vqx_saddr {
u64 u;
struct otx_cptx_vqx_saddr_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_49_63:15;
u64 ptr:43;
u64 reserved_0_5:6;
#else /* Word 0 - Little Endian */
u64 reserved_0_5:6;
u64 ptr:43;
u64 reserved_49_63:15;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_misc_ena_w1s
*
* CPT Queue Misc Interrupt Enable Set Register
* This register sets interrupt enable bits.
* otx_cptx_vqx_misc_ena_w1s_s
* Word0
* reserved_5_63:59 [63:5] Reserved.
* swerr:1 [4:4](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[SWERR].
* nwrp:1 [3:3](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[NWRP].
* irde:1 [2:2](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[IRDE].
* dovf:1 [1:1](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[DOVF].
* mbox:1 [0:0](R/W1S/H) Reads or sets enable for
* CPT(0..1)_VQ(0..63)_MISC_INT[MBOX].
*
*/
union otx_cptx_vqx_misc_ena_w1s {
u64 u;
struct otx_cptx_vqx_misc_ena_w1s_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_5_63:59;
u64 swerr:1;
u64 nwrp:1;
u64 irde:1;
u64 dovf:1;
u64 mbox:1;
#else /* Word 0 - Little Endian */
u64 mbox:1;
u64 dovf:1;
u64 irde:1;
u64 nwrp:1;
u64 swerr:1;
u64 reserved_5_63:59;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_doorbell
*
* CPT Queue Doorbell Registers
* Doorbells for the CPT instruction queues.
* otx_cptx_vqx_doorbell_s
* Word0
* reserved_20_63:44 [63:20] Reserved.
* dbell_cnt:20 [19:0](R/W/H) Number of instruction queue 64-bit words to add
* to the CPT instruction doorbell count. Readback value is the
* current number of pending doorbell requests. If counter overflows
* CPT()_VQ()_MISC_INT[DBELL_DOVF] is set. To reset the count back to
* zero, write one to clear CPT()_VQ()_MISC_INT_ENA_W1C[DBELL_DOVF],
* then write a value of 2^20 minus the read [DBELL_CNT], then write one
* to CPT()_VQ()_MISC_INT_W1C[DBELL_DOVF] and
* CPT()_VQ()_MISC_INT_ENA_W1S[DBELL_DOVF]. Must be a multiple of 8.
* All CPT instructions are 8 words and require a doorbell count of
* multiple of 8.
*/
union otx_cptx_vqx_doorbell {
u64 u;
struct otx_cptx_vqx_doorbell_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_20_63:44;
u64 dbell_cnt:20;
#else /* Word 0 - Little Endian */
u64 dbell_cnt:20;
u64 reserved_20_63:44;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_inprog
*
* CPT Queue In Progress Count Registers
* These registers contain the per-queue instruction in flight registers.
* otx_cptx_vqx_inprog_s
* Word0
* reserved_8_63:56 [63:8] Reserved.
* inflight:8 [7:0](RO/H) Inflight count. Counts the number of instructions
* for the VF for which CPT is fetching, executing or responding to
* instructions. However this does not include any interrupts that are
* awaiting software handling (CPT()_VQ()_DONE[DONE] != 0x0).
* A queue may not be reconfigured until:
* 1. CPT()_VQ()_CTL[ENA] is cleared by software.
* 2. [INFLIGHT] is polled until equals to zero.
*/
union otx_cptx_vqx_inprog {
u64 u;
struct otx_cptx_vqx_inprog_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_8_63:56;
u64 inflight:8;
#else /* Word 0 - Little Endian */
u64 inflight:8;
u64 reserved_8_63:56;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_misc_int
*
* CPT Queue Misc Interrupt Register
* These registers contain the per-queue miscellaneous interrupts.
* otx_cptx_vqx_misc_int_s
* Word 0
* reserved_5_63:59 [63:5] Reserved.
* swerr:1 [4:4](R/W1C/H) Software error from engines.
* nwrp:1 [3:3](R/W1C/H) NCB result write response error.
* irde:1 [2:2](R/W1C/H) Instruction NCB read response error.
* dovf:1 [1:1](R/W1C/H) Doorbell overflow.
* mbox:1 [0:0](R/W1C/H) PF to VF mailbox interrupt. Set when
* CPT()_VF()_PF_MBOX(0) is written.
*
*/
union otx_cptx_vqx_misc_int {
u64 u;
struct otx_cptx_vqx_misc_int_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_5_63:59;
u64 swerr:1;
u64 nwrp:1;
u64 irde:1;
u64 dovf:1;
u64 mbox:1;
#else /* Word 0 - Little Endian */
u64 mbox:1;
u64 dovf:1;
u64 irde:1;
u64 nwrp:1;
u64 swerr:1;
u64 reserved_5_63:59;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_done_ack
*
* CPT Queue Done Count Ack Registers
* This register is written by software to acknowledge interrupts.
* otx_cptx_vqx_done_ack_s
* Word0
* reserved_20_63:44 [63:20] Reserved.
* done_ack:20 [19:0](R/W/H) Number of decrements to CPT()_VQ()_DONE[DONE].
* Reads CPT()_VQ()_DONE[DONE]. Written by software to acknowledge
* interrupts. If CPT()_VQ()_DONE[DONE] is still nonzero the interrupt
* will be re-sent if the conditions described in CPT()_VQ()_DONE[DONE]
* are satisfied.
*
*/
union otx_cptx_vqx_done_ack {
u64 u;
struct otx_cptx_vqx_done_ack_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_20_63:44;
u64 done_ack:20;
#else /* Word 0 - Little Endian */
u64 done_ack:20;
u64 reserved_20_63:44;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_done
*
* CPT Queue Done Count Registers
* These registers contain the per-queue instruction done count.
* cptx_vqx_done_s
* Word0
* reserved_20_63:44 [63:20] Reserved.
* done:20 [19:0](R/W/H) Done count. When CPT_INST_S[DONEINT] set and that
* instruction completes, CPT()_VQ()_DONE[DONE] is incremented when the
* instruction finishes. Write to this field are for diagnostic use only;
* instead software writes CPT()_VQ()_DONE_ACK with the number of
* decrements for this field.
* Interrupts are sent as follows:
* * When CPT()_VQ()_DONE[DONE] = 0, then no results are pending, the
* interrupt coalescing timer is held to zero, and an interrupt is not
* sent.
* * When CPT()_VQ()_DONE[DONE] != 0, then the interrupt coalescing timer
* counts. If the counter is >= CPT()_VQ()_DONE_WAIT[TIME_WAIT]*1024, or
* CPT()_VQ()_DONE[DONE] >= CPT()_VQ()_DONE_WAIT[NUM_WAIT], i.e. enough
* time has passed or enough results have arrived, then the interrupt is
* sent.
* * When CPT()_VQ()_DONE_ACK is written (or CPT()_VQ()_DONE is written
* but this is not typical), the interrupt coalescing timer restarts.
* Note after decrementing this interrupt equation is recomputed,
* for example if CPT()_VQ()_DONE[DONE] >= CPT()_VQ()_DONE_WAIT[NUM_WAIT]
* and because the timer is zero, the interrupt will be resent immediately.
* (This covers the race case between software acknowledging an interrupt
* and a result returning.)
* * When CPT()_VQ()_DONE_ENA_W1S[DONE] = 0, interrupts are not sent,
* but the counting described above still occurs.
* Since CPT instructions complete out-of-order, if software is using
* completion interrupts the suggested scheme is to request a DONEINT on
* each request, and when an interrupt arrives perform a "greedy" scan for
* completions; even if a later command is acknowledged first this will
* not result in missing a completion.
* Software is responsible for making sure [DONE] does not overflow;
* for example by insuring there are not more than 2^20-1 instructions in
* flight that may request interrupts.
*
*/
union otx_cptx_vqx_done {
u64 u;
struct otx_cptx_vqx_done_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_20_63:44;
u64 done:20;
#else /* Word 0 - Little Endian */
u64 done:20;
u64 reserved_20_63:44;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_done_wait
*
* CPT Queue Done Interrupt Coalescing Wait Registers
* Specifies the per queue interrupt coalescing settings.
* cptx_vqx_done_wait_s
* Word0
* reserved_48_63:16 [63:48] Reserved.
* time_wait:16; [47:32](R/W) Time hold-off. When CPT()_VQ()_DONE[DONE] = 0
* or CPT()_VQ()_DONE_ACK is written a timer is cleared. When the timer
* reaches [TIME_WAIT]*1024 then interrupt coalescing ends.
* see CPT()_VQ()_DONE[DONE]. If 0x0, time coalescing is disabled.
* reserved_20_31:12 [31:20] Reserved.
* num_wait:20 [19:0](R/W) Number of messages hold-off.
* When CPT()_VQ()_DONE[DONE] >= [NUM_WAIT] then interrupt coalescing ends
* see CPT()_VQ()_DONE[DONE]. If 0x0, same behavior as 0x1.
*
*/
union otx_cptx_vqx_done_wait {
u64 u;
struct otx_cptx_vqx_done_wait_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_48_63:16;
u64 time_wait:16;
u64 reserved_20_31:12;
u64 num_wait:20;
#else /* Word 0 - Little Endian */
u64 num_wait:20;
u64 reserved_20_31:12;
u64 time_wait:16;
u64 reserved_48_63:16;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_done_ena_w1s
*
* CPT Queue Done Interrupt Enable Set Registers
* Write 1 to these registers will enable the DONEINT interrupt for the queue.
* cptx_vqx_done_ena_w1s_s
* Word0
* reserved_1_63:63 [63:1] Reserved.
* done:1 [0:0](R/W1S/H) Write 1 will enable DONEINT for this queue.
* Write 0 has no effect. Read will return the enable bit.
*/
union otx_cptx_vqx_done_ena_w1s {
u64 u;
struct otx_cptx_vqx_done_ena_w1s_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_1_63:63;
u64 done:1;
#else /* Word 0 - Little Endian */
u64 done:1;
u64 reserved_1_63:63;
#endif /* Word 0 - End */
} s;
};
/*
* Register (NCB) otx_cpt#_vq#_ctl
*
* CPT VF Queue Control Registers
* This register configures queues. This register should be changed (other than
* clearing [ENA]) only when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]).
* cptx_vqx_ctl_s
* Word0
* reserved_1_63:63 [63:1] Reserved.
* ena:1 [0:0](R/W/H) Enables the logical instruction queue.
* See also CPT()_PF_Q()_CTL[CONT_ERR] and CPT()_VQ()_INPROG[INFLIGHT].
* 1 = Queue is enabled.
* 0 = Queue is disabled.
*/
union otx_cptx_vqx_ctl {
u64 u;
struct otx_cptx_vqx_ctl_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
u64 reserved_1_63:63;
u64 ena:1;
#else /* Word 0 - Little Endian */
u64 ena:1;
u64 reserved_1_63:63;
#endif /* Word 0 - End */
} s;
};
/*
* Error Address/Error Codes
*
* In the event of a severe error, microcode writes an 8-byte Error Code
* value (ECODE) to host memory at the Rptr address specified by the host
* system (in the 64-byte request).
*
* Word0
* [63:56](R) 8-bit completion code
* [55:48](R) Number of the core that reported the severe error
* [47:0] Lower 6 bytes of M-Inst word2. Used to assist in uniquely
* identifying which specific instruction caused the error. This assumes
* that each instruction has a unique result location (RPTR), at least
* for a given period of time.
*/
union otx_cpt_error_code {
u64 u;
struct otx_cpt_error_code_s {
#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */
uint64_t ccode:8;
uint64_t coreid:8;
uint64_t rptr6:48;
#else /* Word 0 - Little Endian */
uint64_t rptr6:48;
uint64_t coreid:8;
uint64_t ccode:8;
#endif /* Word 0 - End */
} s;
};
#endif /*__OTX_CPT_HW_TYPES_H */