// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018-2019 HiSilicon Limited. */
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/topology.h>
#include <linux/uacce.h>
#include "hpre.h"
#define HPRE_CTRL_CNT_CLR_CE_BIT BIT(0)
#define HPRE_CTRL_CNT_CLR_CE 0x301000
#define HPRE_FSM_MAX_CNT 0x301008
#define HPRE_VFG_AXQOS 0x30100c
#define HPRE_VFG_AXCACHE 0x301010
#define HPRE_RDCHN_INI_CFG 0x301014
#define HPRE_AWUSR_FP_CFG 0x301018
#define HPRE_BD_ENDIAN 0x301020
#define HPRE_ECC_BYPASS 0x301024
#define HPRE_RAS_WIDTH_CFG 0x301028
#define HPRE_POISON_BYPASS 0x30102c
#define HPRE_BD_ARUSR_CFG 0x301030
#define HPRE_BD_AWUSR_CFG 0x301034
#define HPRE_TYPES_ENB 0x301038
#define HPRE_RSA_ENB BIT(0)
#define HPRE_ECC_ENB BIT(1)
#define HPRE_DATA_RUSER_CFG 0x30103c
#define HPRE_DATA_WUSER_CFG 0x301040
#define HPRE_INT_MASK 0x301400
#define HPRE_INT_STATUS 0x301800
#define HPRE_HAC_INT_MSK 0x301400
#define HPRE_HAC_RAS_CE_ENB 0x301410
#define HPRE_HAC_RAS_NFE_ENB 0x301414
#define HPRE_HAC_RAS_FE_ENB 0x301418
#define HPRE_HAC_INT_SET 0x301500
#define HPRE_RNG_TIMEOUT_NUM 0x301A34
#define HPRE_CORE_INT_ENABLE 0
#define HPRE_RDCHN_INI_ST 0x301a00
#define HPRE_CLSTR_BASE 0x302000
#define HPRE_CORE_EN_OFFSET 0x04
#define HPRE_CORE_INI_CFG_OFFSET 0x20
#define HPRE_CORE_INI_STATUS_OFFSET 0x80
#define HPRE_CORE_HTBT_WARN_OFFSET 0x8c
#define HPRE_CORE_IS_SCHD_OFFSET 0x90
#define HPRE_RAS_CE_ENB 0x301410
#define HPRE_RAS_NFE_ENB 0x301414
#define HPRE_RAS_FE_ENB 0x301418
#define HPRE_OOO_SHUTDOWN_SEL 0x301a3c
#define HPRE_HAC_RAS_FE_ENABLE 0
#define HPRE_CORE_ENB (HPRE_CLSTR_BASE + HPRE_CORE_EN_OFFSET)
#define HPRE_CORE_INI_CFG (HPRE_CLSTR_BASE + HPRE_CORE_INI_CFG_OFFSET)
#define HPRE_CORE_INI_STATUS (HPRE_CLSTR_BASE + HPRE_CORE_INI_STATUS_OFFSET)
#define HPRE_HAC_ECC1_CNT 0x301a04
#define HPRE_HAC_ECC2_CNT 0x301a08
#define HPRE_HAC_SOURCE_INT 0x301600
#define HPRE_CLSTR_ADDR_INTRVL 0x1000
#define HPRE_CLUSTER_INQURY 0x100
#define HPRE_CLSTR_ADDR_INQRY_RSLT 0x104
#define HPRE_PASID_EN_BIT 9
#define HPRE_REG_RD_INTVRL_US 10
#define HPRE_REG_RD_TMOUT_US 1000
#define HPRE_DBGFS_VAL_MAX_LEN 20
#define PCI_DEVICE_ID_HUAWEI_HPRE_PF 0xa258
#define HPRE_QM_USR_CFG_MASK GENMASK(31, 1)
#define HPRE_QM_AXI_CFG_MASK GENMASK(15, 0)
#define HPRE_QM_VFG_AX_MASK GENMASK(7, 0)
#define HPRE_BD_USR_MASK GENMASK(1, 0)
#define HPRE_PREFETCH_CFG 0x301130
#define HPRE_SVA_PREFTCH_DFX 0x30115C
#define HPRE_PREFETCH_ENABLE (~(BIT(0) | BIT(30)))
#define HPRE_PREFETCH_DISABLE BIT(30)
#define HPRE_SVA_DISABLE_READY (BIT(4) | BIT(8))
/* clock gate */
#define HPRE_CLKGATE_CTL 0x301a10
#define HPRE_PEH_CFG_AUTO_GATE 0x301a2c
#define HPRE_CLUSTER_DYN_CTL 0x302010
#define HPRE_CORE_SHB_CFG 0x302088
#define HPRE_CLKGATE_CTL_EN BIT(0)
#define HPRE_PEH_CFG_AUTO_GATE_EN BIT(0)
#define HPRE_CLUSTER_DYN_CTL_EN BIT(0)
#define HPRE_CORE_GATE_EN (BIT(30) | BIT(31))
#define HPRE_AM_OOO_SHUTDOWN_ENB 0x301044
#define HPRE_AM_OOO_SHUTDOWN_ENABLE BIT(0)
#define HPRE_WR_MSI_PORT BIT(2)
#define HPRE_CORE_ECC_2BIT_ERR BIT(1)
#define HPRE_OOO_ECC_2BIT_ERR BIT(5)
#define HPRE_QM_BME_FLR BIT(7)
#define HPRE_QM_PM_FLR BIT(11)
#define HPRE_QM_SRIOV_FLR BIT(12)
#define HPRE_SHAPER_TYPE_RATE 640
#define HPRE_VIA_MSI_DSM 1
#define HPRE_SQE_MASK_OFFSET 8
#define HPRE_SQE_MASK_LEN 44
#define HPRE_CTX_Q_NUM_DEF 1
#define HPRE_DFX_BASE 0x301000
#define HPRE_DFX_COMMON1 0x301400
#define HPRE_DFX_COMMON2 0x301A00
#define HPRE_DFX_CORE 0x302000
#define HPRE_DFX_BASE_LEN 0x55
#define HPRE_DFX_COMMON1_LEN 0x41
#define HPRE_DFX_COMMON2_LEN 0xE
#define HPRE_DFX_CORE_LEN 0x43
static const char hpre_name[] = "hisi_hpre";
static struct dentry *hpre_debugfs_root;
static const struct pci_device_id hpre_dev_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_PF) },
{ PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_VF) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, hpre_dev_ids);
struct hpre_hw_error {
u32 int_msk;
const char *msg;
};
static const struct qm_dev_alg hpre_dev_algs[] = {
{
.alg_msk = BIT(0),
.alg = "rsa\n"
}, {
.alg_msk = BIT(1),
.alg = "dh\n"
}, {
.alg_msk = BIT(2),
.alg = "ecdh\n"
}, {
.alg_msk = BIT(3),
.alg = "ecdsa\n"
}, {
.alg_msk = BIT(4),
.alg = "sm2\n"
}, {
.alg_msk = BIT(5),
.alg = "x25519\n"
}, {
.alg_msk = BIT(6),
.alg = "x448\n"
}, {
/* sentinel */
}
};
static struct hisi_qm_list hpre_devices = {
.register_to_crypto = hpre_algs_register,
.unregister_from_crypto = hpre_algs_unregister,
};
static const char * const hpre_debug_file_name[] = {
[HPRE_CLEAR_ENABLE] = "rdclr_en",
[HPRE_CLUSTER_CTRL] = "cluster_ctrl",
};
enum hpre_cap_type {
HPRE_QM_NFE_MASK_CAP,
HPRE_QM_RESET_MASK_CAP,
HPRE_QM_OOO_SHUTDOWN_MASK_CAP,
HPRE_QM_CE_MASK_CAP,
HPRE_NFE_MASK_CAP,
HPRE_RESET_MASK_CAP,
HPRE_OOO_SHUTDOWN_MASK_CAP,
HPRE_CE_MASK_CAP,
HPRE_CLUSTER_NUM_CAP,
HPRE_CORE_TYPE_NUM_CAP,
HPRE_CORE_NUM_CAP,
HPRE_CLUSTER_CORE_NUM_CAP,
HPRE_CORE_ENABLE_BITMAP_CAP,
HPRE_DRV_ALG_BITMAP_CAP,
HPRE_DEV_ALG_BITMAP_CAP,
HPRE_CORE1_ALG_BITMAP_CAP,
HPRE_CORE2_ALG_BITMAP_CAP,
HPRE_CORE3_ALG_BITMAP_CAP,
HPRE_CORE4_ALG_BITMAP_CAP,
HPRE_CORE5_ALG_BITMAP_CAP,
HPRE_CORE6_ALG_BITMAP_CAP,
HPRE_CORE7_ALG_BITMAP_CAP,
HPRE_CORE8_ALG_BITMAP_CAP,
HPRE_CORE9_ALG_BITMAP_CAP,
HPRE_CORE10_ALG_BITMAP_CAP
};
static const struct hisi_qm_cap_info hpre_basic_info[] = {
{HPRE_QM_NFE_MASK_CAP, 0x3124, 0, GENMASK(31, 0), 0x0, 0x1C37, 0x7C37},
{HPRE_QM_RESET_MASK_CAP, 0x3128, 0, GENMASK(31, 0), 0x0, 0xC37, 0x6C37},
{HPRE_QM_OOO_SHUTDOWN_MASK_CAP, 0x3128, 0, GENMASK(31, 0), 0x0, 0x4, 0x6C37},
{HPRE_QM_CE_MASK_CAP, 0x312C, 0, GENMASK(31, 0), 0x0, 0x8, 0x8},
{HPRE_NFE_MASK_CAP, 0x3130, 0, GENMASK(31, 0), 0x0, 0x3FFFFE, 0x1FFFC3E},
{HPRE_RESET_MASK_CAP, 0x3134, 0, GENMASK(31, 0), 0x0, 0x3FFFFE, 0xBFFC3E},
{HPRE_OOO_SHUTDOWN_MASK_CAP, 0x3134, 0, GENMASK(31, 0), 0x0, 0x22, 0xBFFC3E},
{HPRE_CE_MASK_CAP, 0x3138, 0, GENMASK(31, 0), 0x0, 0x1, 0x1},
{HPRE_CLUSTER_NUM_CAP, 0x313c, 20, GENMASK(3, 0), 0x0, 0x4, 0x1},
{HPRE_CORE_TYPE_NUM_CAP, 0x313c, 16, GENMASK(3, 0), 0x0, 0x2, 0x2},
{HPRE_CORE_NUM_CAP, 0x313c, 8, GENMASK(7, 0), 0x0, 0x8, 0xA},
{HPRE_CLUSTER_CORE_NUM_CAP, 0x313c, 0, GENMASK(7, 0), 0x0, 0x2, 0xA},
{HPRE_CORE_ENABLE_BITMAP_CAP, 0x3140, 0, GENMASK(31, 0), 0x0, 0xF, 0x3FF},
{HPRE_DRV_ALG_BITMAP_CAP, 0x3144, 0, GENMASK(31, 0), 0x0, 0x03, 0x27},
{HPRE_DEV_ALG_BITMAP_CAP, 0x3148, 0, GENMASK(31, 0), 0x0, 0x03, 0x7F},
{HPRE_CORE1_ALG_BITMAP_CAP, 0x314c, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE2_ALG_BITMAP_CAP, 0x3150, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE3_ALG_BITMAP_CAP, 0x3154, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE4_ALG_BITMAP_CAP, 0x3158, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE5_ALG_BITMAP_CAP, 0x315c, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE6_ALG_BITMAP_CAP, 0x3160, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE7_ALG_BITMAP_CAP, 0x3164, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE8_ALG_BITMAP_CAP, 0x3168, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
{HPRE_CORE9_ALG_BITMAP_CAP, 0x316c, 0, GENMASK(31, 0), 0x0, 0x10, 0x10},
{HPRE_CORE10_ALG_BITMAP_CAP, 0x3170, 0, GENMASK(31, 0), 0x0, 0x10, 0x10}
};
enum hpre_pre_store_cap_idx {
HPRE_CLUSTER_NUM_CAP_IDX = 0x0,
HPRE_CORE_ENABLE_BITMAP_CAP_IDX,
HPRE_DRV_ALG_BITMAP_CAP_IDX,
HPRE_DEV_ALG_BITMAP_CAP_IDX,
};
static const u32 hpre_pre_store_caps[] = {
HPRE_CLUSTER_NUM_CAP,
HPRE_CORE_ENABLE_BITMAP_CAP,
HPRE_DRV_ALG_BITMAP_CAP,
HPRE_DEV_ALG_BITMAP_CAP,
};
static const struct hpre_hw_error hpre_hw_errors[] = {
{
.int_msk = BIT(0),
.msg = "core_ecc_1bit_err_int_set"
}, {
.int_msk = BIT(1),
.msg = "core_ecc_2bit_err_int_set"
}, {
.int_msk = BIT(2),
.msg = "dat_wb_poison_int_set"
}, {
.int_msk = BIT(3),
.msg = "dat_rd_poison_int_set"
}, {
.int_msk = BIT(4),
.msg = "bd_rd_poison_int_set"
}, {
.int_msk = BIT(5),
.msg = "ooo_ecc_2bit_err_int_set"
}, {
.int_msk = BIT(6),
.msg = "cluster1_shb_timeout_int_set"
}, {
.int_msk = BIT(7),
.msg = "cluster2_shb_timeout_int_set"
}, {
.int_msk = BIT(8),
.msg = "cluster3_shb_timeout_int_set"
}, {
.int_msk = BIT(9),
.msg = "cluster4_shb_timeout_int_set"
}, {
.int_msk = GENMASK(15, 10),
.msg = "ooo_rdrsp_err_int_set"
}, {
.int_msk = GENMASK(21, 16),
.msg = "ooo_wrrsp_err_int_set"
}, {
.int_msk = BIT(22),
.msg = "pt_rng_timeout_int_set"
}, {
.int_msk = BIT(23),
.msg = "sva_fsm_timeout_int_set"
}, {
.int_msk = BIT(24),
.msg = "sva_int_set"
}, {
/* sentinel */
}
};
static const u64 hpre_cluster_offsets[] = {
[HPRE_CLUSTER0] =
HPRE_CLSTR_BASE + HPRE_CLUSTER0 * HPRE_CLSTR_ADDR_INTRVL,
[HPRE_CLUSTER1] =
HPRE_CLSTR_BASE + HPRE_CLUSTER1 * HPRE_CLSTR_ADDR_INTRVL,
[HPRE_CLUSTER2] =
HPRE_CLSTR_BASE + HPRE_CLUSTER2 * HPRE_CLSTR_ADDR_INTRVL,
[HPRE_CLUSTER3] =
HPRE_CLSTR_BASE + HPRE_CLUSTER3 * HPRE_CLSTR_ADDR_INTRVL,
};
static const struct debugfs_reg32 hpre_cluster_dfx_regs[] = {
{"CORES_EN_STATUS ", HPRE_CORE_EN_OFFSET},
{"CORES_INI_CFG ", HPRE_CORE_INI_CFG_OFFSET},
{"CORES_INI_STATUS ", HPRE_CORE_INI_STATUS_OFFSET},
{"CORES_HTBT_WARN ", HPRE_CORE_HTBT_WARN_OFFSET},
{"CORES_IS_SCHD ", HPRE_CORE_IS_SCHD_OFFSET},
};
static const struct debugfs_reg32 hpre_com_dfx_regs[] = {
{"READ_CLR_EN ", HPRE_CTRL_CNT_CLR_CE},
{"AXQOS ", HPRE_VFG_AXQOS},
{"AWUSR_CFG ", HPRE_AWUSR_FP_CFG},
{"BD_ENDIAN ", HPRE_BD_ENDIAN},
{"ECC_CHECK_CTRL ", HPRE_ECC_BYPASS},
{"RAS_INT_WIDTH ", HPRE_RAS_WIDTH_CFG},
{"POISON_BYPASS ", HPRE_POISON_BYPASS},
{"BD_ARUSER ", HPRE_BD_ARUSR_CFG},
{"BD_AWUSER ", HPRE_BD_AWUSR_CFG},
{"DATA_ARUSER ", HPRE_DATA_RUSER_CFG},
{"DATA_AWUSER ", HPRE_DATA_WUSER_CFG},
{"INT_STATUS ", HPRE_INT_STATUS},
{"INT_MASK ", HPRE_HAC_INT_MSK},
{"RAS_CE_ENB ", HPRE_HAC_RAS_CE_ENB},
{"RAS_NFE_ENB ", HPRE_HAC_RAS_NFE_ENB},
{"RAS_FE_ENB ", HPRE_HAC_RAS_FE_ENB},
{"INT_SET ", HPRE_HAC_INT_SET},
{"RNG_TIMEOUT_NUM ", HPRE_RNG_TIMEOUT_NUM},
};
static const char *hpre_dfx_files[HPRE_DFX_FILE_NUM] = {
"send_cnt",
"recv_cnt",
"send_fail_cnt",
"send_busy_cnt",
"over_thrhld_cnt",
"overtime_thrhld",
"invalid_req_cnt"
};
/* define the HPRE's dfx regs region and region length */
static struct dfx_diff_registers hpre_diff_regs[] = {
{
.reg_offset = HPRE_DFX_BASE,
.reg_len = HPRE_DFX_BASE_LEN,
}, {
.reg_offset = HPRE_DFX_COMMON1,
.reg_len = HPRE_DFX_COMMON1_LEN,
}, {
.reg_offset = HPRE_DFX_COMMON2,
.reg_len = HPRE_DFX_COMMON2_LEN,
}, {
.reg_offset = HPRE_DFX_CORE,
.reg_len = HPRE_DFX_CORE_LEN,
},
};
static const struct hisi_qm_err_ini hpre_err_ini;
bool hpre_check_alg_support(struct hisi_qm *qm, u32 alg)
{
u32 cap_val;
cap_val = qm->cap_tables.dev_cap_table[HPRE_DRV_ALG_BITMAP_CAP_IDX].cap_val;
if (alg & cap_val)
return true;
return false;
}
static int hpre_diff_regs_show(struct seq_file *s, void *unused)
{
struct hisi_qm *qm = s->private;
hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.acc_diff_regs,
ARRAY_SIZE(hpre_diff_regs));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(hpre_diff_regs);
static int hpre_com_regs_show(struct seq_file *s, void *unused)
{
hisi_qm_regs_dump(s, s->private);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(hpre_com_regs);
static int hpre_cluster_regs_show(struct seq_file *s, void *unused)
{
hisi_qm_regs_dump(s, s->private);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(hpre_cluster_regs);
static const struct kernel_param_ops hpre_uacce_mode_ops = {
.set = uacce_mode_set,
.get = param_get_int,
};
/*
* uacce_mode = 0 means hpre only register to crypto,
* uacce_mode = 1 means hpre both register to crypto and uacce.
*/
static u32 uacce_mode = UACCE_MODE_NOUACCE;
module_param_cb(uacce_mode, &hpre_uacce_mode_ops, &uacce_mode, 0444);
MODULE_PARM_DESC(uacce_mode, UACCE_MODE_DESC);
static bool pf_q_num_flag;
static int pf_q_num_set(const char *val, const struct kernel_param *kp)
{
pf_q_num_flag = true;
return q_num_set(val, kp, PCI_DEVICE_ID_HUAWEI_HPRE_PF);
}
static const struct kernel_param_ops hpre_pf_q_num_ops = {
.set = pf_q_num_set,
.get = param_get_int,
};
static u32 pf_q_num = HPRE_PF_DEF_Q_NUM;
module_param_cb(pf_q_num, &hpre_pf_q_num_ops, &pf_q_num, 0444);
MODULE_PARM_DESC(pf_q_num, "Number of queues in PF of CS(2-1024)");
static const struct kernel_param_ops vfs_num_ops = {
.set = vfs_num_set,
.get = param_get_int,
};
static u32 vfs_num;
module_param_cb(vfs_num, &vfs_num_ops, &vfs_num, 0444);
MODULE_PARM_DESC(vfs_num, "Number of VFs to enable(1-63), 0(default)");
struct hisi_qp *hpre_create_qp(u8 type)
{
int node = cpu_to_node(raw_smp_processor_id());
struct hisi_qp *qp = NULL;
int ret;
if (type != HPRE_V2_ALG_TYPE && type != HPRE_V3_ECC_ALG_TYPE)
return NULL;
/*
* type: 0 - RSA/DH. algorithm supported in V2,
* 1 - ECC algorithm in V3.
*/
ret = hisi_qm_alloc_qps_node(&hpre_devices, 1, type, node, &qp);
if (!ret)
return qp;
return NULL;
}
static void hpre_config_pasid(struct hisi_qm *qm)
{
u32 val1, val2;
if (qm->ver >= QM_HW_V3)
return;
val1 = readl_relaxed(qm->io_base + HPRE_DATA_RUSER_CFG);
val2 = readl_relaxed(qm->io_base + HPRE_DATA_WUSER_CFG);
if (qm->use_sva) {
val1 |= BIT(HPRE_PASID_EN_BIT);
val2 |= BIT(HPRE_PASID_EN_BIT);
} else {
val1 &= ~BIT(HPRE_PASID_EN_BIT);
val2 &= ~BIT(HPRE_PASID_EN_BIT);
}
writel_relaxed(val1, qm->io_base + HPRE_DATA_RUSER_CFG);
writel_relaxed(val2, qm->io_base + HPRE_DATA_WUSER_CFG);
}
static int hpre_cfg_by_dsm(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
union acpi_object *obj;
guid_t guid;
if (guid_parse("b06b81ab-0134-4a45-9b0c-483447b95fa7", &guid)) {
dev_err(dev, "Hpre GUID failed\n");
return -EINVAL;
}
/* Switch over to MSI handling due to non-standard PCI implementation */
obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &guid,
0, HPRE_VIA_MSI_DSM, NULL);
if (!obj) {
dev_err(dev, "ACPI handle failed!\n");
return -EIO;
}
ACPI_FREE(obj);
return 0;
}
static int hpre_set_cluster(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
unsigned long offset;
u32 cluster_core_mask;
u8 clusters_num;
u32 val = 0;
int ret, i;
cluster_core_mask = qm->cap_tables.dev_cap_table[HPRE_CORE_ENABLE_BITMAP_CAP_IDX].cap_val;
clusters_num = qm->cap_tables.dev_cap_table[HPRE_CLUSTER_NUM_CAP_IDX].cap_val;
for (i = 0; i < clusters_num; i++) {
offset = i * HPRE_CLSTR_ADDR_INTRVL;
/* clusters initiating */
writel(cluster_core_mask,
qm->io_base + offset + HPRE_CORE_ENB);
writel(0x1, qm->io_base + offset + HPRE_CORE_INI_CFG);
ret = readl_relaxed_poll_timeout(qm->io_base + offset +
HPRE_CORE_INI_STATUS, val,
((val & cluster_core_mask) ==
cluster_core_mask),
HPRE_REG_RD_INTVRL_US,
HPRE_REG_RD_TMOUT_US);
if (ret) {
dev_err(dev,
"cluster %d int st status timeout!\n", i);
return -ETIMEDOUT;
}
}
return 0;
}
/*
* For Kunpeng 920, we should disable FLR triggered by hardware (BME/PM/SRIOV).
* Or it may stay in D3 state when we bind and unbind hpre quickly,
* as it does FLR triggered by hardware.
*/
static void disable_flr_of_bme(struct hisi_qm *qm)
{
u32 val;
val = readl(qm->io_base + QM_PEH_AXUSER_CFG);
val &= ~(HPRE_QM_BME_FLR | HPRE_QM_SRIOV_FLR);
val |= HPRE_QM_PM_FLR;
writel(val, qm->io_base + QM_PEH_AXUSER_CFG);
writel(PEH_AXUSER_CFG_ENABLE, qm->io_base + QM_PEH_AXUSER_CFG_ENABLE);
}
static void hpre_open_sva_prefetch(struct hisi_qm *qm)
{
u32 val;
int ret;
if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
return;
/* Enable prefetch */
val = readl_relaxed(qm->io_base + HPRE_PREFETCH_CFG);
val &= HPRE_PREFETCH_ENABLE;
writel(val, qm->io_base + HPRE_PREFETCH_CFG);
ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_PREFETCH_CFG,
val, !(val & HPRE_PREFETCH_DISABLE),
HPRE_REG_RD_INTVRL_US,
HPRE_REG_RD_TMOUT_US);
if (ret)
pci_err(qm->pdev, "failed to open sva prefetch\n");
}
static void hpre_close_sva_prefetch(struct hisi_qm *qm)
{
u32 val;
int ret;
if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
return;
val = readl_relaxed(qm->io_base + HPRE_PREFETCH_CFG);
val |= HPRE_PREFETCH_DISABLE;
writel(val, qm->io_base + HPRE_PREFETCH_CFG);
ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_SVA_PREFTCH_DFX,
val, !(val & HPRE_SVA_DISABLE_READY),
HPRE_REG_RD_INTVRL_US,
HPRE_REG_RD_TMOUT_US);
if (ret)
pci_err(qm->pdev, "failed to close sva prefetch\n");
}
static void hpre_enable_clock_gate(struct hisi_qm *qm)
{
u32 val;
if (qm->ver < QM_HW_V3)
return;
val = readl(qm->io_base + HPRE_CLKGATE_CTL);
val |= HPRE_CLKGATE_CTL_EN;
writel(val, qm->io_base + HPRE_CLKGATE_CTL);
val = readl(qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
val |= HPRE_PEH_CFG_AUTO_GATE_EN;
writel(val, qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
val = readl(qm->io_base + HPRE_CLUSTER_DYN_CTL);
val |= HPRE_CLUSTER_DYN_CTL_EN;
writel(val, qm->io_base + HPRE_CLUSTER_DYN_CTL);
val = readl_relaxed(qm->io_base + HPRE_CORE_SHB_CFG);
val |= HPRE_CORE_GATE_EN;
writel(val, qm->io_base + HPRE_CORE_SHB_CFG);
}
static void hpre_disable_clock_gate(struct hisi_qm *qm)
{
u32 val;
if (qm->ver < QM_HW_V3)
return;
val = readl(qm->io_base + HPRE_CLKGATE_CTL);
val &= ~HPRE_CLKGATE_CTL_EN;
writel(val, qm->io_base + HPRE_CLKGATE_CTL);
val = readl(qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
val &= ~HPRE_PEH_CFG_AUTO_GATE_EN;
writel(val, qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
val = readl(qm->io_base + HPRE_CLUSTER_DYN_CTL);
val &= ~HPRE_CLUSTER_DYN_CTL_EN;
writel(val, qm->io_base + HPRE_CLUSTER_DYN_CTL);
val = readl_relaxed(qm->io_base + HPRE_CORE_SHB_CFG);
val &= ~HPRE_CORE_GATE_EN;
writel(val, qm->io_base + HPRE_CORE_SHB_CFG);
}
static int hpre_set_user_domain_and_cache(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u32 val;
int ret;
/* disabel dynamic clock gate before sram init */
hpre_disable_clock_gate(qm);
writel(HPRE_QM_USR_CFG_MASK, qm->io_base + QM_ARUSER_M_CFG_ENABLE);
writel(HPRE_QM_USR_CFG_MASK, qm->io_base + QM_AWUSER_M_CFG_ENABLE);
writel_relaxed(HPRE_QM_AXI_CFG_MASK, qm->io_base + QM_AXI_M_CFG);
if (qm->ver >= QM_HW_V3)
writel(HPRE_RSA_ENB | HPRE_ECC_ENB,
qm->io_base + HPRE_TYPES_ENB);
else
writel(HPRE_RSA_ENB, qm->io_base + HPRE_TYPES_ENB);
writel(HPRE_QM_VFG_AX_MASK, qm->io_base + HPRE_VFG_AXCACHE);
writel(0x0, qm->io_base + HPRE_BD_ENDIAN);
writel(0x0, qm->io_base + HPRE_POISON_BYPASS);
writel(0x0, qm->io_base + HPRE_ECC_BYPASS);
writel(HPRE_BD_USR_MASK, qm->io_base + HPRE_BD_ARUSR_CFG);
writel(HPRE_BD_USR_MASK, qm->io_base + HPRE_BD_AWUSR_CFG);
writel(0x1, qm->io_base + HPRE_RDCHN_INI_CFG);
ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_RDCHN_INI_ST, val,
val & BIT(0),
HPRE_REG_RD_INTVRL_US,
HPRE_REG_RD_TMOUT_US);
if (ret) {
dev_err(dev, "read rd channel timeout fail!\n");
return -ETIMEDOUT;
}
ret = hpre_set_cluster(qm);
if (ret)
return -ETIMEDOUT;
/* This setting is only needed by Kunpeng 920. */
if (qm->ver == QM_HW_V2) {
ret = hpre_cfg_by_dsm(qm);
if (ret)
return ret;
disable_flr_of_bme(qm);
}
/* Config data buffer pasid needed by Kunpeng 920 */
hpre_config_pasid(qm);
hpre_enable_clock_gate(qm);
return ret;
}
static void hpre_cnt_regs_clear(struct hisi_qm *qm)
{
unsigned long offset;
u8 clusters_num;
int i;
/* clear clusterX/cluster_ctrl */
clusters_num = qm->cap_tables.dev_cap_table[HPRE_CLUSTER_NUM_CAP_IDX].cap_val;
for (i = 0; i < clusters_num; i++) {
offset = HPRE_CLSTR_BASE + i * HPRE_CLSTR_ADDR_INTRVL;
writel(0x0, qm->io_base + offset + HPRE_CLUSTER_INQURY);
}
/* clear rdclr_en */
writel(0x0, qm->io_base + HPRE_CTRL_CNT_CLR_CE);
hisi_qm_debug_regs_clear(qm);
}
static void hpre_master_ooo_ctrl(struct hisi_qm *qm, bool enable)
{
u32 val1, val2;
val1 = readl(qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
if (enable) {
val1 |= HPRE_AM_OOO_SHUTDOWN_ENABLE;
val2 = hisi_qm_get_hw_info(qm, hpre_basic_info,
HPRE_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver);
} else {
val1 &= ~HPRE_AM_OOO_SHUTDOWN_ENABLE;
val2 = 0x0;
}
if (qm->ver > QM_HW_V2)
writel(val2, qm->io_base + HPRE_OOO_SHUTDOWN_SEL);
writel(val1, qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
}
static void hpre_hw_error_disable(struct hisi_qm *qm)
{
u32 ce, nfe;
ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CE_MASK_CAP, qm->cap_ver);
nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver);
/* disable hpre hw error interrupts */
writel(ce | nfe | HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_INT_MASK);
/* disable HPRE block master OOO when nfe occurs on Kunpeng930 */
hpre_master_ooo_ctrl(qm, false);
}
static void hpre_hw_error_enable(struct hisi_qm *qm)
{
u32 ce, nfe, err_en;
ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CE_MASK_CAP, qm->cap_ver);
nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver);
/* clear HPRE hw error source if having */
writel(ce | nfe | HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_HAC_SOURCE_INT);
/* configure error type */
writel(ce, qm->io_base + HPRE_RAS_CE_ENB);
writel(nfe, qm->io_base + HPRE_RAS_NFE_ENB);
writel(HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_RAS_FE_ENB);
/* enable HPRE block master OOO when nfe occurs on Kunpeng930 */
hpre_master_ooo_ctrl(qm, true);
/* enable hpre hw error interrupts */
err_en = ce | nfe | HPRE_HAC_RAS_FE_ENABLE;
writel(~err_en, qm->io_base + HPRE_INT_MASK);
}
static inline struct hisi_qm *hpre_file_to_qm(struct hpre_debugfs_file *file)
{
struct hpre *hpre = container_of(file->debug, struct hpre, debug);
return &hpre->qm;
}
static u32 hpre_clear_enable_read(struct hpre_debugfs_file *file)
{
struct hisi_qm *qm = hpre_file_to_qm(file);
return readl(qm->io_base + HPRE_CTRL_CNT_CLR_CE) &
HPRE_CTRL_CNT_CLR_CE_BIT;
}
static int hpre_clear_enable_write(struct hpre_debugfs_file *file, u32 val)
{
struct hisi_qm *qm = hpre_file_to_qm(file);
u32 tmp;
if (val != 1 && val != 0)
return -EINVAL;
tmp = (readl(qm->io_base + HPRE_CTRL_CNT_CLR_CE) &
~HPRE_CTRL_CNT_CLR_CE_BIT) | val;
writel(tmp, qm->io_base + HPRE_CTRL_CNT_CLR_CE);
return 0;
}
static u32 hpre_cluster_inqry_read(struct hpre_debugfs_file *file)
{
struct hisi_qm *qm = hpre_file_to_qm(file);
int cluster_index = file->index - HPRE_CLUSTER_CTRL;
unsigned long offset = HPRE_CLSTR_BASE +
cluster_index * HPRE_CLSTR_ADDR_INTRVL;
return readl(qm->io_base + offset + HPRE_CLSTR_ADDR_INQRY_RSLT);
}
static void hpre_cluster_inqry_write(struct hpre_debugfs_file *file, u32 val)
{
struct hisi_qm *qm = hpre_file_to_qm(file);
int cluster_index = file->index - HPRE_CLUSTER_CTRL;
unsigned long offset = HPRE_CLSTR_BASE + cluster_index *
HPRE_CLSTR_ADDR_INTRVL;
writel(val, qm->io_base + offset + HPRE_CLUSTER_INQURY);
}
static ssize_t hpre_ctrl_debug_read(struct file *filp, char __user *buf,
size_t count, loff_t *pos)
{
struct hpre_debugfs_file *file = filp->private_data;
struct hisi_qm *qm = hpre_file_to_qm(file);
char tbuf[HPRE_DBGFS_VAL_MAX_LEN];
u32 val;
int ret;
ret = hisi_qm_get_dfx_access(qm);
if (ret)
return ret;
spin_lock_irq(&file->lock);
switch (file->type) {
case HPRE_CLEAR_ENABLE:
val = hpre_clear_enable_read(file);
break;
case HPRE_CLUSTER_CTRL:
val = hpre_cluster_inqry_read(file);
break;
default:
goto err_input;
}
spin_unlock_irq(&file->lock);
hisi_qm_put_dfx_access(qm);
ret = snprintf(tbuf, HPRE_DBGFS_VAL_MAX_LEN, "%u\n", val);
return simple_read_from_buffer(buf, count, pos, tbuf, ret);
err_input:
spin_unlock_irq(&file->lock);
hisi_qm_put_dfx_access(qm);
return -EINVAL;
}
static ssize_t hpre_ctrl_debug_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct hpre_debugfs_file *file = filp->private_data;
struct hisi_qm *qm = hpre_file_to_qm(file);
char tbuf[HPRE_DBGFS_VAL_MAX_LEN];
unsigned long val;
int len, ret;
if (*pos != 0)
return 0;
if (count >= HPRE_DBGFS_VAL_MAX_LEN)
return -ENOSPC;
len = simple_write_to_buffer(tbuf, HPRE_DBGFS_VAL_MAX_LEN - 1,
pos, buf, count);
if (len < 0)
return len;
tbuf[len] = '\0';
if (kstrtoul(tbuf, 0, &val))
return -EFAULT;
ret = hisi_qm_get_dfx_access(qm);
if (ret)
return ret;
spin_lock_irq(&file->lock);
switch (file->type) {
case HPRE_CLEAR_ENABLE:
ret = hpre_clear_enable_write(file, val);
if (ret)
goto err_input;
break;
case HPRE_CLUSTER_CTRL:
hpre_cluster_inqry_write(file, val);
break;
default:
ret = -EINVAL;
goto err_input;
}
ret = count;
err_input:
spin_unlock_irq(&file->lock);
hisi_qm_put_dfx_access(qm);
return ret;
}
static const struct file_operations hpre_ctrl_debug_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = hpre_ctrl_debug_read,
.write = hpre_ctrl_debug_write,
};
static int hpre_debugfs_atomic64_get(void *data, u64 *val)
{
struct hpre_dfx *dfx_item = data;
*val = atomic64_read(&dfx_item->value);
return 0;
}
static int hpre_debugfs_atomic64_set(void *data, u64 val)
{
struct hpre_dfx *dfx_item = data;
struct hpre_dfx *hpre_dfx = NULL;
if (dfx_item->type == HPRE_OVERTIME_THRHLD) {
hpre_dfx = dfx_item - HPRE_OVERTIME_THRHLD;
atomic64_set(&hpre_dfx[HPRE_OVER_THRHLD_CNT].value, 0);
} else if (val) {
return -EINVAL;
}
atomic64_set(&dfx_item->value, val);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hpre_atomic64_ops, hpre_debugfs_atomic64_get,
hpre_debugfs_atomic64_set, "%llu\n");
static int hpre_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
enum hpre_ctrl_dbgfs_file type, int indx)
{
struct hpre *hpre = container_of(qm, struct hpre, qm);
struct hpre_debug *dbg = &hpre->debug;
struct dentry *file_dir;
if (dir)
file_dir = dir;
else
file_dir = qm->debug.debug_root;
if (type >= HPRE_DEBUG_FILE_NUM)
return -EINVAL;
spin_lock_init(&dbg->files[indx].lock);
dbg->files[indx].debug = dbg;
dbg->files[indx].type = type;
dbg->files[indx].index = indx;
debugfs_create_file(hpre_debug_file_name[type], 0600, file_dir,
dbg->files + indx, &hpre_ctrl_debug_fops);
return 0;
}
static int hpre_pf_comm_regs_debugfs_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
struct debugfs_regset32 *regset;
regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
if (!regset)
return -ENOMEM;
regset->regs = hpre_com_dfx_regs;
regset->nregs = ARRAY_SIZE(hpre_com_dfx_regs);
regset->base = qm->io_base;
regset->dev = dev;
debugfs_create_file("regs", 0444, qm->debug.debug_root,
regset, &hpre_com_regs_fops);
return 0;
}
static int hpre_cluster_debugfs_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
char buf[HPRE_DBGFS_VAL_MAX_LEN];
struct debugfs_regset32 *regset;
struct dentry *tmp_d;
u8 clusters_num;
int i, ret;
clusters_num = qm->cap_tables.dev_cap_table[HPRE_CLUSTER_NUM_CAP_IDX].cap_val;
for (i = 0; i < clusters_num; i++) {
ret = snprintf(buf, HPRE_DBGFS_VAL_MAX_LEN, "cluster%d", i);
if (ret >= HPRE_DBGFS_VAL_MAX_LEN)
return -EINVAL;
tmp_d = debugfs_create_dir(buf, qm->debug.debug_root);
regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
if (!regset)
return -ENOMEM;
regset->regs = hpre_cluster_dfx_regs;
regset->nregs = ARRAY_SIZE(hpre_cluster_dfx_regs);
regset->base = qm->io_base + hpre_cluster_offsets[i];
regset->dev = dev;
debugfs_create_file("regs", 0444, tmp_d, regset,
&hpre_cluster_regs_fops);
ret = hpre_create_debugfs_file(qm, tmp_d, HPRE_CLUSTER_CTRL,
i + HPRE_CLUSTER_CTRL);
if (ret)
return ret;
}
return 0;
}
static int hpre_ctrl_debug_init(struct hisi_qm *qm)
{
int ret;
ret = hpre_create_debugfs_file(qm, NULL, HPRE_CLEAR_ENABLE,
HPRE_CLEAR_ENABLE);
if (ret)
return ret;
ret = hpre_pf_comm_regs_debugfs_init(qm);
if (ret)
return ret;
return hpre_cluster_debugfs_init(qm);
}
static void hpre_dfx_debug_init(struct hisi_qm *qm)
{
struct dfx_diff_registers *hpre_regs = qm->debug.acc_diff_regs;
struct hpre *hpre = container_of(qm, struct hpre, qm);
struct hpre_dfx *dfx = hpre->debug.dfx;
struct dentry *parent;
int i;
parent = debugfs_create_dir("hpre_dfx", qm->debug.debug_root);
for (i = 0; i < HPRE_DFX_FILE_NUM; i++) {
dfx[i].type = i;
debugfs_create_file(hpre_dfx_files[i], 0644, parent, &dfx[i],
&hpre_atomic64_ops);
}
if (qm->fun_type == QM_HW_PF && hpre_regs)
debugfs_create_file("diff_regs", 0444, parent,
qm, &hpre_diff_regs_fops);
}
static int hpre_debugfs_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret;
ret = hisi_qm_regs_debugfs_init(qm, hpre_diff_regs, ARRAY_SIZE(hpre_diff_regs));
if (ret) {
dev_warn(dev, "Failed to init HPRE diff regs!\n");
return ret;
}
qm->debug.debug_root = debugfs_create_dir(dev_name(dev),
hpre_debugfs_root);
qm->debug.sqe_mask_offset = HPRE_SQE_MASK_OFFSET;
qm->debug.sqe_mask_len = HPRE_SQE_MASK_LEN;
hisi_qm_debug_init(qm);
if (qm->pdev->device == PCI_DEVICE_ID_HUAWEI_HPRE_PF) {
ret = hpre_ctrl_debug_init(qm);
if (ret)
goto debugfs_remove;
}
hpre_dfx_debug_init(qm);
return 0;
debugfs_remove:
debugfs_remove_recursive(qm->debug.debug_root);
hisi_qm_regs_debugfs_uninit(qm, ARRAY_SIZE(hpre_diff_regs));
return ret;
}
static void hpre_debugfs_exit(struct hisi_qm *qm)
{
debugfs_remove_recursive(qm->debug.debug_root);
hisi_qm_regs_debugfs_uninit(qm, ARRAY_SIZE(hpre_diff_regs));
}
static int hpre_pre_store_cap_reg(struct hisi_qm *qm)
{
struct hisi_qm_cap_record *hpre_cap;
struct device *dev = &qm->pdev->dev;
size_t i, size;
size = ARRAY_SIZE(hpre_pre_store_caps);
hpre_cap = devm_kzalloc(dev, sizeof(*hpre_cap) * size, GFP_KERNEL);
if (!hpre_cap)
return -ENOMEM;
for (i = 0; i < size; i++) {
hpre_cap[i].type = hpre_pre_store_caps[i];
hpre_cap[i].cap_val = hisi_qm_get_hw_info(qm, hpre_basic_info,
hpre_pre_store_caps[i], qm->cap_ver);
}
if (hpre_cap[HPRE_CLUSTER_NUM_CAP_IDX].cap_val > HPRE_CLUSTERS_NUM_MAX) {
dev_err(dev, "Device cluster num %u is out of range for driver supports %d!\n",
hpre_cap[HPRE_CLUSTER_NUM_CAP_IDX].cap_val, HPRE_CLUSTERS_NUM_MAX);
return -EINVAL;
}
qm->cap_tables.dev_cap_table = hpre_cap;
return 0;
}
static int hpre_qm_init(struct hisi_qm *qm, struct pci_dev *pdev)
{
u64 alg_msk;
int ret;
if (pdev->revision == QM_HW_V1) {
pci_warn(pdev, "HPRE version 1 is not supported!\n");
return -EINVAL;
}
qm->mode = uacce_mode;
qm->pdev = pdev;
qm->ver = pdev->revision;
qm->sqe_size = HPRE_SQE_SIZE;
qm->dev_name = hpre_name;
qm->fun_type = (pdev->device == PCI_DEVICE_ID_HUAWEI_HPRE_PF) ?
QM_HW_PF : QM_HW_VF;
if (qm->fun_type == QM_HW_PF) {
qm->qp_base = HPRE_PF_DEF_Q_BASE;
qm->qp_num = pf_q_num;
qm->debug.curr_qm_qp_num = pf_q_num;
qm->qm_list = &hpre_devices;
qm->err_ini = &hpre_err_ini;
if (pf_q_num_flag)
set_bit(QM_MODULE_PARAM, &qm->misc_ctl);
}
ret = hisi_qm_init(qm);
if (ret) {
pci_err(pdev, "Failed to init hpre qm configures!\n");
return ret;
}
/* Fetch and save the value of capability registers */
ret = hpre_pre_store_cap_reg(qm);
if (ret) {
pci_err(pdev, "Failed to pre-store capability registers!\n");
hisi_qm_uninit(qm);
return ret;
}
alg_msk = qm->cap_tables.dev_cap_table[HPRE_DEV_ALG_BITMAP_CAP_IDX].cap_val;
ret = hisi_qm_set_algs(qm, alg_msk, hpre_dev_algs, ARRAY_SIZE(hpre_dev_algs));
if (ret) {
pci_err(pdev, "Failed to set hpre algs!\n");
hisi_qm_uninit(qm);
}
return ret;
}
static int hpre_show_last_regs_init(struct hisi_qm *qm)
{
int cluster_dfx_regs_num = ARRAY_SIZE(hpre_cluster_dfx_regs);
int com_dfx_regs_num = ARRAY_SIZE(hpre_com_dfx_regs);
struct qm_debug *debug = &qm->debug;
void __iomem *io_base;
u8 clusters_num;
int i, j, idx;
clusters_num = qm->cap_tables.dev_cap_table[HPRE_CLUSTER_NUM_CAP_IDX].cap_val;
debug->last_words = kcalloc(cluster_dfx_regs_num * clusters_num +
com_dfx_regs_num, sizeof(unsigned int), GFP_KERNEL);
if (!debug->last_words)
return -ENOMEM;
for (i = 0; i < com_dfx_regs_num; i++)
debug->last_words[i] = readl_relaxed(qm->io_base +
hpre_com_dfx_regs[i].offset);
for (i = 0; i < clusters_num; i++) {
io_base = qm->io_base + hpre_cluster_offsets[i];
for (j = 0; j < cluster_dfx_regs_num; j++) {
idx = com_dfx_regs_num + i * cluster_dfx_regs_num + j;
debug->last_words[idx] = readl_relaxed(
io_base + hpre_cluster_dfx_regs[j].offset);
}
}
return 0;
}
static void hpre_show_last_regs_uninit(struct hisi_qm *qm)
{
struct qm_debug *debug = &qm->debug;
if (qm->fun_type == QM_HW_VF || !debug->last_words)
return;
kfree(debug->last_words);
debug->last_words = NULL;
}
static void hpre_show_last_dfx_regs(struct hisi_qm *qm)
{
int cluster_dfx_regs_num = ARRAY_SIZE(hpre_cluster_dfx_regs);
int com_dfx_regs_num = ARRAY_SIZE(hpre_com_dfx_regs);
struct qm_debug *debug = &qm->debug;
struct pci_dev *pdev = qm->pdev;
void __iomem *io_base;
u8 clusters_num;
int i, j, idx;
u32 val;
if (qm->fun_type == QM_HW_VF || !debug->last_words)
return;
/* dumps last word of the debugging registers during controller reset */
for (i = 0; i < com_dfx_regs_num; i++) {
val = readl_relaxed(qm->io_base + hpre_com_dfx_regs[i].offset);
if (debug->last_words[i] != val)
pci_info(pdev, "Common_core:%s \t= 0x%08x => 0x%08x\n",
hpre_com_dfx_regs[i].name, debug->last_words[i], val);
}
clusters_num = qm->cap_tables.dev_cap_table[HPRE_CLUSTER_NUM_CAP_IDX].cap_val;
for (i = 0; i < clusters_num; i++) {
io_base = qm->io_base + hpre_cluster_offsets[i];
for (j = 0; j < cluster_dfx_regs_num; j++) {
val = readl_relaxed(io_base +
hpre_cluster_dfx_regs[j].offset);
idx = com_dfx_regs_num + i * cluster_dfx_regs_num + j;
if (debug->last_words[idx] != val)
pci_info(pdev, "cluster-%d:%s \t= 0x%08x => 0x%08x\n",
i, hpre_cluster_dfx_regs[j].name, debug->last_words[idx], val);
}
}
}
static void hpre_log_hw_error(struct hisi_qm *qm, u32 err_sts)
{
const struct hpre_hw_error *err = hpre_hw_errors;
struct device *dev = &qm->pdev->dev;
while (err->msg) {
if (err->int_msk & err_sts)
dev_warn(dev, "%s [error status=0x%x] found\n",
err->msg, err->int_msk);
err++;
}
}
static u32 hpre_get_hw_err_status(struct hisi_qm *qm)
{
return readl(qm->io_base + HPRE_INT_STATUS);
}
static void hpre_clear_hw_err_status(struct hisi_qm *qm, u32 err_sts)
{
u32 nfe;
writel(err_sts, qm->io_base + HPRE_HAC_SOURCE_INT);
nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver);
writel(nfe, qm->io_base + HPRE_RAS_NFE_ENB);
}
static void hpre_open_axi_master_ooo(struct hisi_qm *qm)
{
u32 value;
value = readl(qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
writel(value & ~HPRE_AM_OOO_SHUTDOWN_ENABLE,
qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
writel(value | HPRE_AM_OOO_SHUTDOWN_ENABLE,
qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
}
static void hpre_err_info_init(struct hisi_qm *qm)
{
struct hisi_qm_err_info *err_info = &qm->err_info;
err_info->fe = HPRE_HAC_RAS_FE_ENABLE;
err_info->ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_CE_MASK_CAP, qm->cap_ver);
err_info->nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_NFE_MASK_CAP, qm->cap_ver);
err_info->ecc_2bits_mask = HPRE_CORE_ECC_2BIT_ERR | HPRE_OOO_ECC_2BIT_ERR;
err_info->dev_shutdown_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
HPRE_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver);
err_info->qm_shutdown_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
HPRE_QM_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver);
err_info->qm_reset_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
HPRE_QM_RESET_MASK_CAP, qm->cap_ver);
err_info->dev_reset_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
HPRE_RESET_MASK_CAP, qm->cap_ver);
err_info->msi_wr_port = HPRE_WR_MSI_PORT;
err_info->acpi_rst = "HRST";
}
static const struct hisi_qm_err_ini hpre_err_ini = {
.hw_init = hpre_set_user_domain_and_cache,
.hw_err_enable = hpre_hw_error_enable,
.hw_err_disable = hpre_hw_error_disable,
.get_dev_hw_err_status = hpre_get_hw_err_status,
.clear_dev_hw_err_status = hpre_clear_hw_err_status,
.log_dev_hw_err = hpre_log_hw_error,
.open_axi_master_ooo = hpre_open_axi_master_ooo,
.open_sva_prefetch = hpre_open_sva_prefetch,
.close_sva_prefetch = hpre_close_sva_prefetch,
.show_last_dfx_regs = hpre_show_last_dfx_regs,
.err_info_init = hpre_err_info_init,
};
static int hpre_pf_probe_init(struct hpre *hpre)
{
struct hisi_qm *qm = &hpre->qm;
int ret;
ret = hpre_set_user_domain_and_cache(qm);
if (ret)
return ret;
hpre_open_sva_prefetch(qm);
hisi_qm_dev_err_init(qm);
ret = hpre_show_last_regs_init(qm);
if (ret)
pci_err(qm->pdev, "Failed to init last word regs!\n");
return ret;
}
static int hpre_probe_init(struct hpre *hpre)
{
u32 type_rate = HPRE_SHAPER_TYPE_RATE;
struct hisi_qm *qm = &hpre->qm;
int ret;
if (qm->fun_type == QM_HW_PF) {
ret = hpre_pf_probe_init(hpre);
if (ret)
return ret;
/* Enable shaper type 0 */
if (qm->ver >= QM_HW_V3) {
type_rate |= QM_SHAPER_ENABLE;
qm->type_rate = type_rate;
}
}
return 0;
}
static void hpre_probe_uninit(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_VF)
return;
hpre_cnt_regs_clear(qm);
qm->debug.curr_qm_qp_num = 0;
hpre_show_last_regs_uninit(qm);
hpre_close_sva_prefetch(qm);
hisi_qm_dev_err_uninit(qm);
}
static int hpre_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct hisi_qm *qm;
struct hpre *hpre;
int ret;
hpre = devm_kzalloc(&pdev->dev, sizeof(*hpre), GFP_KERNEL);
if (!hpre)
return -ENOMEM;
qm = &hpre->qm;
ret = hpre_qm_init(qm, pdev);
if (ret) {
pci_err(pdev, "Failed to init HPRE QM (%d)!\n", ret);
return ret;
}
ret = hpre_probe_init(hpre);
if (ret) {
pci_err(pdev, "Failed to probe (%d)!\n", ret);
goto err_with_qm_init;
}
ret = hisi_qm_start(qm);
if (ret)
goto err_with_probe_init;
ret = hpre_debugfs_init(qm);
if (ret)
dev_warn(&pdev->dev, "init debugfs fail!\n");
hisi_qm_add_list(qm, &hpre_devices);
ret = hisi_qm_alg_register(qm, &hpre_devices, HPRE_CTX_Q_NUM_DEF);
if (ret < 0) {
pci_err(pdev, "fail to register algs to crypto!\n");
goto err_qm_del_list;
}
if (qm->uacce) {
ret = uacce_register(qm->uacce);
if (ret) {
pci_err(pdev, "failed to register uacce (%d)!\n", ret);
goto err_with_alg_register;
}
}
if (qm->fun_type == QM_HW_PF && vfs_num) {
ret = hisi_qm_sriov_enable(pdev, vfs_num);
if (ret < 0)
goto err_with_alg_register;
}
hisi_qm_pm_init(qm);
return 0;
err_with_alg_register:
hisi_qm_alg_unregister(qm, &hpre_devices, HPRE_CTX_Q_NUM_DEF);
err_qm_del_list:
hisi_qm_del_list(qm, &hpre_devices);
hpre_debugfs_exit(qm);
hisi_qm_stop(qm, QM_NORMAL);
err_with_probe_init:
hpre_probe_uninit(qm);
err_with_qm_init:
hisi_qm_uninit(qm);
return ret;
}
static void hpre_remove(struct pci_dev *pdev)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
hisi_qm_pm_uninit(qm);
hisi_qm_wait_task_finish(qm, &hpre_devices);
hisi_qm_alg_unregister(qm, &hpre_devices, HPRE_CTX_Q_NUM_DEF);
hisi_qm_del_list(qm, &hpre_devices);
if (qm->fun_type == QM_HW_PF && qm->vfs_num)
hisi_qm_sriov_disable(pdev, true);
hpre_debugfs_exit(qm);
hisi_qm_stop(qm, QM_NORMAL);
hpre_probe_uninit(qm);
hisi_qm_uninit(qm);
}
static const struct dev_pm_ops hpre_pm_ops = {
SET_RUNTIME_PM_OPS(hisi_qm_suspend, hisi_qm_resume, NULL)
};
static const struct pci_error_handlers hpre_err_handler = {
.error_detected = hisi_qm_dev_err_detected,
.slot_reset = hisi_qm_dev_slot_reset,
.reset_prepare = hisi_qm_reset_prepare,
.reset_done = hisi_qm_reset_done,
};
static struct pci_driver hpre_pci_driver = {
.name = hpre_name,
.id_table = hpre_dev_ids,
.probe = hpre_probe,
.remove = hpre_remove,
.sriov_configure = IS_ENABLED(CONFIG_PCI_IOV) ?
hisi_qm_sriov_configure : NULL,
.err_handler = &hpre_err_handler,
.shutdown = hisi_qm_dev_shutdown,
.driver.pm = &hpre_pm_ops,
};
struct pci_driver *hisi_hpre_get_pf_driver(void)
{
return &hpre_pci_driver;
}
EXPORT_SYMBOL_GPL(hisi_hpre_get_pf_driver);
static void hpre_register_debugfs(void)
{
if (!debugfs_initialized())
return;
hpre_debugfs_root = debugfs_create_dir(hpre_name, NULL);
}
static void hpre_unregister_debugfs(void)
{
debugfs_remove_recursive(hpre_debugfs_root);
}
static int __init hpre_init(void)
{
int ret;
hisi_qm_init_list(&hpre_devices);
hpre_register_debugfs();
ret = pci_register_driver(&hpre_pci_driver);
if (ret) {
hpre_unregister_debugfs();
pr_err("hpre: can't register hisi hpre driver.\n");
}
return ret;
}
static void __exit hpre_exit(void)
{
pci_unregister_driver(&hpre_pci_driver);
hpre_unregister_debugfs();
}
module_init(hpre_init);
module_exit(hpre_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Zaibo Xu <[email protected]>");
MODULE_AUTHOR("Meng Yu <[email protected]>");
MODULE_DESCRIPTION("Driver for HiSilicon HPRE accelerator");