// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2020 Intel Corporation */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include "adf_accel_devices.h"
#include "adf_common_drv.h"
#include "adf_cfg.h"
#include "adf_cfg_strings.h"
#include "adf_cfg_common.h"
#include "adf_transport_access_macros.h"
#include "adf_transport_internal.h"
#define ADF_MAX_NUM_VFS 32
static struct workqueue_struct *adf_misc_wq;
static int adf_enable_msix(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 msix_num_entries = hw_data->num_banks + 1;
int ret;
if (hw_data->set_msix_rttable)
hw_data->set_msix_rttable(accel_dev);
ret = pci_alloc_irq_vectors(pci_dev_info->pci_dev, msix_num_entries,
msix_num_entries, PCI_IRQ_MSIX);
if (unlikely(ret < 0)) {
dev_err(&GET_DEV(accel_dev),
"Failed to allocate %d MSI-X vectors\n",
msix_num_entries);
return ret;
}
return 0;
}
static void adf_disable_msix(struct adf_accel_pci *pci_dev_info)
{
pci_free_irq_vectors(pci_dev_info->pci_dev);
}
static irqreturn_t adf_msix_isr_bundle(int irq, void *bank_ptr)
{
struct adf_etr_bank_data *bank = bank_ptr;
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev);
csr_ops->write_csr_int_flag_and_col(bank->csr_addr, bank->bank_number,
0);
tasklet_hi_schedule(&bank->resp_handler);
return IRQ_HANDLED;
}
#ifdef CONFIG_PCI_IOV
void adf_enable_vf2pf_interrupts(struct adf_accel_dev *accel_dev, u32 vf_mask)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
unsigned long flags;
spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags);
GET_PFVF_OPS(accel_dev)->enable_vf2pf_interrupts(pmisc_addr, vf_mask);
spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags);
}
void adf_disable_all_vf2pf_interrupts(struct adf_accel_dev *accel_dev)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
unsigned long flags;
spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags);
GET_PFVF_OPS(accel_dev)->disable_all_vf2pf_interrupts(pmisc_addr);
spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags);
}
static u32 adf_disable_pending_vf2pf_interrupts(struct adf_accel_dev *accel_dev)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
u32 pending;
spin_lock(&accel_dev->pf.vf2pf_ints_lock);
pending = GET_PFVF_OPS(accel_dev)->disable_pending_vf2pf_interrupts(pmisc_addr);
spin_unlock(&accel_dev->pf.vf2pf_ints_lock);
return pending;
}
static bool adf_handle_vf2pf_int(struct adf_accel_dev *accel_dev)
{
bool irq_handled = false;
unsigned long vf_mask;
/* Get the interrupt sources triggered by VFs, except for those already disabled */
vf_mask = adf_disable_pending_vf2pf_interrupts(accel_dev);
if (vf_mask) {
struct adf_accel_vf_info *vf_info;
int i;
/*
* Handle VF2PF interrupt unless the VF is malicious and
* is attempting to flood the host OS with VF2PF interrupts.
*/
for_each_set_bit(i, &vf_mask, ADF_MAX_NUM_VFS) {
vf_info = accel_dev->pf.vf_info + i;
if (!__ratelimit(&vf_info->vf2pf_ratelimit)) {
dev_info(&GET_DEV(accel_dev),
"Too many ints from VF%d\n",
vf_info->vf_nr);
continue;
}
adf_schedule_vf2pf_handler(vf_info);
irq_handled = true;
}
}
return irq_handled;
}
#endif /* CONFIG_PCI_IOV */
static bool adf_handle_pm_int(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
if (hw_data->handle_pm_interrupt &&
hw_data->handle_pm_interrupt(accel_dev))
return true;
return false;
}
static bool adf_handle_ras_int(struct adf_accel_dev *accel_dev)
{
struct adf_ras_ops *ras_ops = &accel_dev->hw_device->ras_ops;
bool reset_required;
if (ras_ops->handle_interrupt &&
ras_ops->handle_interrupt(accel_dev, &reset_required)) {
if (reset_required) {
dev_err(&GET_DEV(accel_dev), "Fatal error, reset required\n");
if (adf_notify_fatal_error(accel_dev))
dev_err(&GET_DEV(accel_dev),
"Failed to notify fatal error\n");
}
return true;
}
return false;
}
static irqreturn_t adf_msix_isr_ae(int irq, void *dev_ptr)
{
struct adf_accel_dev *accel_dev = dev_ptr;
#ifdef CONFIG_PCI_IOV
/* If SR-IOV is enabled (vf_info is non-NULL), check for VF->PF ints */
if (accel_dev->pf.vf_info && adf_handle_vf2pf_int(accel_dev))
return IRQ_HANDLED;
#endif /* CONFIG_PCI_IOV */
if (adf_handle_pm_int(accel_dev))
return IRQ_HANDLED;
if (adf_handle_ras_int(accel_dev))
return IRQ_HANDLED;
dev_dbg(&GET_DEV(accel_dev), "qat_dev%d spurious AE interrupt\n",
accel_dev->accel_id);
return IRQ_NONE;
}
static void adf_free_irqs(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_irq *irqs = pci_dev_info->msix_entries.irqs;
struct adf_etr_data *etr_data = accel_dev->transport;
int clust_irq = hw_data->num_banks;
int irq, i = 0;
if (pci_dev_info->msix_entries.num_entries > 1) {
for (i = 0; i < hw_data->num_banks; i++) {
if (irqs[i].enabled) {
irq = pci_irq_vector(pci_dev_info->pci_dev, i);
irq_set_affinity_hint(irq, NULL);
free_irq(irq, &etr_data->banks[i]);
}
}
}
if (irqs[i].enabled) {
irq = pci_irq_vector(pci_dev_info->pci_dev, clust_irq);
free_irq(irq, accel_dev);
}
}
static int adf_request_irqs(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_irq *irqs = pci_dev_info->msix_entries.irqs;
struct adf_etr_data *etr_data = accel_dev->transport;
int clust_irq = hw_data->num_banks;
int ret, irq, i = 0;
char *name;
/* Request msix irq for all banks unless SR-IOV enabled */
if (!accel_dev->pf.vf_info) {
for (i = 0; i < hw_data->num_banks; i++) {
struct adf_etr_bank_data *bank = &etr_data->banks[i];
unsigned int cpu, cpus = num_online_cpus();
name = irqs[i].name;
snprintf(name, ADF_MAX_MSIX_VECTOR_NAME,
"qat%d-bundle%d", accel_dev->accel_id, i);
irq = pci_irq_vector(pci_dev_info->pci_dev, i);
if (unlikely(irq < 0)) {
dev_err(&GET_DEV(accel_dev),
"Failed to get IRQ number of device vector %d - %s\n",
i, name);
ret = irq;
goto err;
}
ret = request_irq(irq, adf_msix_isr_bundle, 0,
&name[0], bank);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to allocate IRQ %d for %s\n",
irq, name);
goto err;
}
cpu = ((accel_dev->accel_id * hw_data->num_banks) +
i) % cpus;
irq_set_affinity_hint(irq, get_cpu_mask(cpu));
irqs[i].enabled = true;
}
}
/* Request msix irq for AE */
name = irqs[i].name;
snprintf(name, ADF_MAX_MSIX_VECTOR_NAME,
"qat%d-ae-cluster", accel_dev->accel_id);
irq = pci_irq_vector(pci_dev_info->pci_dev, clust_irq);
if (unlikely(irq < 0)) {
dev_err(&GET_DEV(accel_dev),
"Failed to get IRQ number of device vector %d - %s\n",
i, name);
ret = irq;
goto err;
}
ret = request_irq(irq, adf_msix_isr_ae, 0, &name[0], accel_dev);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to allocate IRQ %d for %s\n", irq, name);
goto err;
}
irqs[i].enabled = true;
return ret;
err:
adf_free_irqs(accel_dev);
return ret;
}
static int adf_isr_alloc_msix_vectors_data(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 msix_num_entries = 1;
struct adf_irq *irqs;
/* If SR-IOV is disabled (vf_info is NULL), add entries for each bank */
if (!accel_dev->pf.vf_info)
msix_num_entries += hw_data->num_banks;
irqs = kcalloc_node(msix_num_entries, sizeof(*irqs),
GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev)));
if (!irqs)
return -ENOMEM;
accel_dev->accel_pci_dev.msix_entries.num_entries = msix_num_entries;
accel_dev->accel_pci_dev.msix_entries.irqs = irqs;
return 0;
}
static void adf_isr_free_msix_vectors_data(struct adf_accel_dev *accel_dev)
{
kfree(accel_dev->accel_pci_dev.msix_entries.irqs);
accel_dev->accel_pci_dev.msix_entries.irqs = NULL;
}
static int adf_setup_bh(struct adf_accel_dev *accel_dev)
{
struct adf_etr_data *priv_data = accel_dev->transport;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
int i;
for (i = 0; i < hw_data->num_banks; i++)
tasklet_init(&priv_data->banks[i].resp_handler,
adf_response_handler,
(unsigned long)&priv_data->banks[i]);
return 0;
}
static void adf_cleanup_bh(struct adf_accel_dev *accel_dev)
{
struct adf_etr_data *priv_data = accel_dev->transport;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
int i;
for (i = 0; i < hw_data->num_banks; i++) {
tasklet_disable(&priv_data->banks[i].resp_handler);
tasklet_kill(&priv_data->banks[i].resp_handler);
}
}
/**
* adf_isr_resource_free() - Free IRQ for acceleration device
* @accel_dev: Pointer to acceleration device.
*
* Function frees interrupts for acceleration device.
*/
void adf_isr_resource_free(struct adf_accel_dev *accel_dev)
{
adf_free_irqs(accel_dev);
adf_cleanup_bh(accel_dev);
adf_disable_msix(&accel_dev->accel_pci_dev);
adf_isr_free_msix_vectors_data(accel_dev);
}
EXPORT_SYMBOL_GPL(adf_isr_resource_free);
/**
* adf_isr_resource_alloc() - Allocate IRQ for acceleration device
* @accel_dev: Pointer to acceleration device.
*
* Function allocates interrupts for acceleration device.
*
* Return: 0 on success, error code otherwise.
*/
int adf_isr_resource_alloc(struct adf_accel_dev *accel_dev)
{
int ret;
ret = adf_isr_alloc_msix_vectors_data(accel_dev);
if (ret)
goto err_out;
ret = adf_enable_msix(accel_dev);
if (ret)
goto err_free_msix_table;
ret = adf_setup_bh(accel_dev);
if (ret)
goto err_disable_msix;
ret = adf_request_irqs(accel_dev);
if (ret)
goto err_cleanup_bh;
return 0;
err_cleanup_bh:
adf_cleanup_bh(accel_dev);
err_disable_msix:
adf_disable_msix(&accel_dev->accel_pci_dev);
err_free_msix_table:
adf_isr_free_msix_vectors_data(accel_dev);
err_out:
return ret;
}
EXPORT_SYMBOL_GPL(adf_isr_resource_alloc);
/**
* adf_init_misc_wq() - Init misc workqueue
*
* Return: 0 on success, error code otherwise.
*/
int __init adf_init_misc_wq(void)
{
adf_misc_wq = alloc_workqueue("qat_misc_wq", WQ_MEM_RECLAIM, 0);
return !adf_misc_wq ? -ENOMEM : 0;
}
void adf_exit_misc_wq(void)
{
if (adf_misc_wq)
destroy_workqueue(adf_misc_wq);
adf_misc_wq = NULL;
}
bool adf_misc_wq_queue_work(struct work_struct *work)
{
return queue_work(adf_misc_wq, work);
}
bool adf_misc_wq_queue_delayed_work(struct delayed_work *work,
unsigned long delay)
{
return queue_delayed_work(adf_misc_wq, work, delay);
}