// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2020 Intel Corporation */
#include <linux/iopoll.h>
#include <asm/div64.h>
#include "adf_accel_devices.h"
#include "adf_cfg_services.h"
#include "adf_common_drv.h"
#include "adf_fw_config.h"
#include "adf_gen4_hw_data.h"
#include "adf_gen4_pm.h"
u32 adf_gen4_get_accel_mask(struct adf_hw_device_data *self)
{
return ADF_GEN4_ACCELERATORS_MASK;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_accel_mask);
u32 adf_gen4_get_num_accels(struct adf_hw_device_data *self)
{
return ADF_GEN4_MAX_ACCELERATORS;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_num_accels);
u32 adf_gen4_get_num_aes(struct adf_hw_device_data *self)
{
if (!self || !self->ae_mask)
return 0;
return hweight32(self->ae_mask);
}
EXPORT_SYMBOL_GPL(adf_gen4_get_num_aes);
u32 adf_gen4_get_misc_bar_id(struct adf_hw_device_data *self)
{
return ADF_GEN4_PMISC_BAR;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_misc_bar_id);
u32 adf_gen4_get_etr_bar_id(struct adf_hw_device_data *self)
{
return ADF_GEN4_ETR_BAR;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_etr_bar_id);
u32 adf_gen4_get_sram_bar_id(struct adf_hw_device_data *self)
{
return ADF_GEN4_SRAM_BAR;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_sram_bar_id);
enum dev_sku_info adf_gen4_get_sku(struct adf_hw_device_data *self)
{
return DEV_SKU_1;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_sku);
void adf_gen4_get_arb_info(struct arb_info *arb_info)
{
arb_info->arb_cfg = ADF_GEN4_ARB_CONFIG;
arb_info->arb_offset = ADF_GEN4_ARB_OFFSET;
arb_info->wt2sam_offset = ADF_GEN4_ARB_WRK_2_SER_MAP_OFFSET;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_arb_info);
void adf_gen4_get_admin_info(struct admin_info *admin_csrs_info)
{
admin_csrs_info->mailbox_offset = ADF_GEN4_MAILBOX_BASE_OFFSET;
admin_csrs_info->admin_msg_ur = ADF_GEN4_ADMINMSGUR_OFFSET;
admin_csrs_info->admin_msg_lr = ADF_GEN4_ADMINMSGLR_OFFSET;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_admin_info);
u32 adf_gen4_get_heartbeat_clock(struct adf_hw_device_data *self)
{
/*
* GEN4 uses KPT counter for HB
*/
return ADF_GEN4_KPT_COUNTER_FREQ;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_heartbeat_clock);
void adf_gen4_enable_error_correction(struct adf_accel_dev *accel_dev)
{
struct adf_bar *misc_bar = &GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR];
void __iomem *csr = misc_bar->virt_addr;
/* Enable all in errsou3 except VFLR notification on host */
ADF_CSR_WR(csr, ADF_GEN4_ERRMSK3, ADF_GEN4_VFLNOTIFY);
}
EXPORT_SYMBOL_GPL(adf_gen4_enable_error_correction);
void adf_gen4_enable_ints(struct adf_accel_dev *accel_dev)
{
void __iomem *addr;
addr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr;
/* Enable bundle interrupts */
ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_RP_X0_MASK_OFFSET, 0);
ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_RP_X1_MASK_OFFSET, 0);
/* Enable misc interrupts */
ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_MASK_OFFSET, 0);
}
EXPORT_SYMBOL_GPL(adf_gen4_enable_ints);
int adf_gen4_init_device(struct adf_accel_dev *accel_dev)
{
void __iomem *addr;
u32 status;
u32 csr;
int ret;
addr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr;
/* Temporarily mask PM interrupt */
csr = ADF_CSR_RD(addr, ADF_GEN4_ERRMSK2);
csr |= ADF_GEN4_PM_SOU;
ADF_CSR_WR(addr, ADF_GEN4_ERRMSK2, csr);
/* Set DRV_ACTIVE bit to power up the device */
ADF_CSR_WR(addr, ADF_GEN4_PM_INTERRUPT, ADF_GEN4_PM_DRV_ACTIVE);
/* Poll status register to make sure the device is powered up */
ret = read_poll_timeout(ADF_CSR_RD, status,
status & ADF_GEN4_PM_INIT_STATE,
ADF_GEN4_PM_POLL_DELAY_US,
ADF_GEN4_PM_POLL_TIMEOUT_US, true, addr,
ADF_GEN4_PM_STATUS);
if (ret)
dev_err(&GET_DEV(accel_dev), "Failed to power up the device\n");
return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_device);
static inline void adf_gen4_unpack_ssm_wdtimer(u64 value, u32 *upper,
u32 *lower)
{
*lower = lower_32_bits(value);
*upper = upper_32_bits(value);
}
void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
u64 timer_val_pke = ADF_SSM_WDT_PKE_DEFAULT_VALUE;
u64 timer_val = ADF_SSM_WDT_DEFAULT_VALUE;
u32 ssm_wdt_pke_high = 0;
u32 ssm_wdt_pke_low = 0;
u32 ssm_wdt_high = 0;
u32 ssm_wdt_low = 0;
/* Convert 64bit WDT timer value into 32bit values for
* mmio write to 32bit CSRs.
*/
adf_gen4_unpack_ssm_wdtimer(timer_val, &ssm_wdt_high, &ssm_wdt_low);
adf_gen4_unpack_ssm_wdtimer(timer_val_pke, &ssm_wdt_pke_high,
&ssm_wdt_pke_low);
/* Enable WDT for sym and dc */
ADF_CSR_WR(pmisc_addr, ADF_SSMWDTL_OFFSET, ssm_wdt_low);
ADF_CSR_WR(pmisc_addr, ADF_SSMWDTH_OFFSET, ssm_wdt_high);
/* Enable WDT for pke */
ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEL_OFFSET, ssm_wdt_pke_low);
ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEH_OFFSET, ssm_wdt_pke_high);
}
EXPORT_SYMBOL_GPL(adf_gen4_set_ssm_wdtimer);
/*
* The vector routing table is used to select the MSI-X entry to use for each
* interrupt source.
* The first ADF_GEN4_ETR_MAX_BANKS entries correspond to ring interrupts.
* The final entry corresponds to VF2PF or error interrupts.
* This vector table could be used to configure one MSI-X entry to be shared
* between multiple interrupt sources.
*
* The default routing is set to have a one to one correspondence between the
* interrupt source and the MSI-X entry used.
*/
void adf_gen4_set_msix_default_rttable(struct adf_accel_dev *accel_dev)
{
void __iomem *csr;
int i;
csr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr;
for (i = 0; i <= ADF_GEN4_ETR_MAX_BANKS; i++)
ADF_CSR_WR(csr, ADF_GEN4_MSIX_RTTABLE_OFFSET(i), i);
}
EXPORT_SYMBOL_GPL(adf_gen4_set_msix_default_rttable);
int adf_pfvf_comms_disabled(struct adf_accel_dev *accel_dev)
{
return 0;
}
EXPORT_SYMBOL_GPL(adf_pfvf_comms_disabled);
static int reset_ring_pair(void __iomem *csr, u32 bank_number)
{
u32 status;
int ret;
/* Write rpresetctl register BIT(0) as 1
* Since rpresetctl registers have no RW fields, no need to preserve
* values for other bits. Just write directly.
*/
ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETCTL(bank_number),
ADF_WQM_CSR_RPRESETCTL_RESET);
/* Read rpresetsts register and wait for rp reset to complete */
ret = read_poll_timeout(ADF_CSR_RD, status,
status & ADF_WQM_CSR_RPRESETSTS_STATUS,
ADF_RPRESET_POLL_DELAY_US,
ADF_RPRESET_POLL_TIMEOUT_US, true,
csr, ADF_WQM_CSR_RPRESETSTS(bank_number));
if (!ret) {
/* When rp reset is done, clear rpresetsts */
ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETSTS(bank_number),
ADF_WQM_CSR_RPRESETSTS_STATUS);
}
return ret;
}
int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
void __iomem *csr = adf_get_etr_base(accel_dev);
int ret;
if (bank_number >= hw_data->num_banks)
return -EINVAL;
dev_dbg(&GET_DEV(accel_dev),
"ring pair reset for bank:%d\n", bank_number);
ret = reset_ring_pair(csr, bank_number);
if (ret)
dev_err(&GET_DEV(accel_dev),
"ring pair reset failed (timeout)\n");
else
dev_dbg(&GET_DEV(accel_dev), "ring pair reset successful\n");
return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_ring_pair_reset);
static const u32 thrd_to_arb_map_dcc[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x0
};
static const u16 rp_group_to_arb_mask[] = {
[RP_GROUP_0] = 0x5,
[RP_GROUP_1] = 0xA,
};
static bool is_single_service(int service_id)
{
switch (service_id) {
case SVC_DC:
case SVC_SYM:
case SVC_ASYM:
return true;
case SVC_CY:
case SVC_CY2:
case SVC_DCC:
case SVC_ASYM_DC:
case SVC_DC_ASYM:
case SVC_SYM_DC:
case SVC_DC_SYM:
default:
return false;
}
}
int adf_gen4_init_thd2arb_map(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
u32 *thd2arb_map = hw_data->thd_to_arb_map;
unsigned int ae_cnt, worker_obj_cnt, i, j;
unsigned long ae_mask, thds_mask;
int srv_id, rp_group;
u32 thd2arb_map_base;
u16 arb_mask;
if (!hw_data->get_rp_group || !hw_data->get_ena_thd_mask ||
!hw_data->get_num_aes || !hw_data->uof_get_num_objs ||
!hw_data->uof_get_ae_mask)
return -EFAULT;
srv_id = adf_get_service_enabled(accel_dev);
if (srv_id < 0)
return srv_id;
ae_cnt = hw_data->get_num_aes(hw_data);
worker_obj_cnt = hw_data->uof_get_num_objs(accel_dev) -
ADF_GEN4_ADMIN_ACCELENGINES;
if (srv_id == SVC_DCC) {
if (ae_cnt > ICP_QAT_HW_AE_DELIMITER)
return -EINVAL;
memcpy(thd2arb_map, thrd_to_arb_map_dcc,
array_size(sizeof(*thd2arb_map), ae_cnt));
return 0;
}
for (i = 0; i < worker_obj_cnt; i++) {
ae_mask = hw_data->uof_get_ae_mask(accel_dev, i);
rp_group = hw_data->get_rp_group(accel_dev, ae_mask);
thds_mask = hw_data->get_ena_thd_mask(accel_dev, i);
thd2arb_map_base = 0;
if (rp_group >= RP_GROUP_COUNT || rp_group < RP_GROUP_0)
return -EINVAL;
if (thds_mask == ADF_GEN4_ENA_THD_MASK_ERROR)
return -EINVAL;
if (is_single_service(srv_id))
arb_mask = rp_group_to_arb_mask[RP_GROUP_0] |
rp_group_to_arb_mask[RP_GROUP_1];
else
arb_mask = rp_group_to_arb_mask[rp_group];
for_each_set_bit(j, &thds_mask, ADF_NUM_THREADS_PER_AE)
thd2arb_map_base |= arb_mask << (j * 4);
for_each_set_bit(j, &ae_mask, ae_cnt)
thd2arb_map[j] = thd2arb_map_base;
}
return 0;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_thd2arb_map);
u16 adf_gen4_get_ring_to_svc_map(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
enum adf_cfg_service_type rps[RP_GROUP_COUNT] = { };
unsigned int ae_mask, start_id, worker_obj_cnt, i;
u16 ring_to_svc_map;
int rp_group;
if (!hw_data->get_rp_group || !hw_data->uof_get_ae_mask ||
!hw_data->uof_get_obj_type || !hw_data->uof_get_num_objs)
return 0;
/* If dcc, all rings handle compression requests */
if (adf_get_service_enabled(accel_dev) == SVC_DCC) {
for (i = 0; i < RP_GROUP_COUNT; i++)
rps[i] = COMP;
goto set_mask;
}
worker_obj_cnt = hw_data->uof_get_num_objs(accel_dev) -
ADF_GEN4_ADMIN_ACCELENGINES;
start_id = worker_obj_cnt - RP_GROUP_COUNT;
for (i = start_id; i < worker_obj_cnt; i++) {
ae_mask = hw_data->uof_get_ae_mask(accel_dev, i);
rp_group = hw_data->get_rp_group(accel_dev, ae_mask);
if (rp_group >= RP_GROUP_COUNT || rp_group < RP_GROUP_0)
return 0;
switch (hw_data->uof_get_obj_type(accel_dev, i)) {
case ADF_FW_SYM_OBJ:
rps[rp_group] = SYM;
break;
case ADF_FW_ASYM_OBJ:
rps[rp_group] = ASYM;
break;
case ADF_FW_DC_OBJ:
rps[rp_group] = COMP;
break;
default:
rps[rp_group] = 0;
break;
}
}
set_mask:
ring_to_svc_map = rps[RP_GROUP_0] << ADF_CFG_SERV_RING_PAIR_0_SHIFT |
rps[RP_GROUP_1] << ADF_CFG_SERV_RING_PAIR_1_SHIFT |
rps[RP_GROUP_0] << ADF_CFG_SERV_RING_PAIR_2_SHIFT |
rps[RP_GROUP_1] << ADF_CFG_SERV_RING_PAIR_3_SHIFT;
return ring_to_svc_map;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_ring_to_svc_map);
/*
* adf_gen4_bank_quiesce_coal_timer() - quiesce bank coalesced interrupt timer
* @accel_dev: Pointer to the device structure
* @bank_idx: Offset to the bank within this device
* @timeout_ms: Timeout in milliseconds for the operation
*
* This function tries to quiesce the coalesced interrupt timer of a bank if
* it has been enabled and triggered.
*
* Returns 0 on success, error code otherwise
*
*/
int adf_gen4_bank_quiesce_coal_timer(struct adf_accel_dev *accel_dev,
u32 bank_idx, int timeout_ms)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
void __iomem *csr_misc = adf_get_pmisc_base(accel_dev);
void __iomem *csr_etr = adf_get_etr_base(accel_dev);
u32 int_col_ctl, int_col_mask, int_col_en;
u32 e_stat, intsrc;
u64 wait_us;
int ret;
if (timeout_ms < 0)
return -EINVAL;
int_col_ctl = csr_ops->read_csr_int_col_ctl(csr_etr, bank_idx);
int_col_mask = csr_ops->get_int_col_ctl_enable_mask();
if (!(int_col_ctl & int_col_mask))
return 0;
int_col_en = csr_ops->read_csr_int_col_en(csr_etr, bank_idx);
int_col_en &= BIT(ADF_WQM_CSR_RP_IDX_RX);
e_stat = csr_ops->read_csr_e_stat(csr_etr, bank_idx);
if (!(~e_stat & int_col_en))
return 0;
wait_us = 2 * ((int_col_ctl & ~int_col_mask) << 8) * USEC_PER_SEC;
do_div(wait_us, hw_data->clock_frequency);
wait_us = min(wait_us, (u64)timeout_ms * USEC_PER_MSEC);
dev_dbg(&GET_DEV(accel_dev),
"wait for bank %d - coalesced timer expires in %llu us (max=%u ms estat=0x%x intcolen=0x%x)\n",
bank_idx, wait_us, timeout_ms, e_stat, int_col_en);
ret = read_poll_timeout(ADF_CSR_RD, intsrc, intsrc,
ADF_COALESCED_POLL_DELAY_US, wait_us, true,
csr_misc, ADF_WQM_CSR_RPINTSOU(bank_idx));
if (ret)
dev_warn(&GET_DEV(accel_dev),
"coalesced timer for bank %d expired (%llu us)\n",
bank_idx, wait_us);
return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_bank_quiesce_coal_timer);
static int drain_bank(void __iomem *csr, u32 bank_number, int timeout_us)
{
u32 status;
ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETCTL(bank_number),
ADF_WQM_CSR_RPRESETCTL_DRAIN);
return read_poll_timeout(ADF_CSR_RD, status,
status & ADF_WQM_CSR_RPRESETSTS_STATUS,
ADF_RPRESET_POLL_DELAY_US, timeout_us, true,
csr, ADF_WQM_CSR_RPRESETSTS(bank_number));
}
void adf_gen4_bank_drain_finish(struct adf_accel_dev *accel_dev,
u32 bank_number)
{
void __iomem *csr = adf_get_etr_base(accel_dev);
ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETSTS(bank_number),
ADF_WQM_CSR_RPRESETSTS_STATUS);
}
int adf_gen4_bank_drain_start(struct adf_accel_dev *accel_dev,
u32 bank_number, int timeout_us)
{
void __iomem *csr = adf_get_etr_base(accel_dev);
int ret;
dev_dbg(&GET_DEV(accel_dev), "Drain bank %d\n", bank_number);
ret = drain_bank(csr, bank_number, timeout_us);
if (ret)
dev_err(&GET_DEV(accel_dev), "Bank drain failed (timeout)\n");
else
dev_dbg(&GET_DEV(accel_dev), "Bank drain successful\n");
return ret;
}
static void bank_state_save(struct adf_hw_csr_ops *ops, void __iomem *base,
u32 bank, struct bank_state *state, u32 num_rings)
{
u32 i;
state->ringstat0 = ops->read_csr_stat(base, bank);
state->ringuostat = ops->read_csr_uo_stat(base, bank);
state->ringestat = ops->read_csr_e_stat(base, bank);
state->ringnestat = ops->read_csr_ne_stat(base, bank);
state->ringnfstat = ops->read_csr_nf_stat(base, bank);
state->ringfstat = ops->read_csr_f_stat(base, bank);
state->ringcstat0 = ops->read_csr_c_stat(base, bank);
state->iaintflagen = ops->read_csr_int_en(base, bank);
state->iaintflagreg = ops->read_csr_int_flag(base, bank);
state->iaintflagsrcsel0 = ops->read_csr_int_srcsel(base, bank);
state->iaintcolen = ops->read_csr_int_col_en(base, bank);
state->iaintcolctl = ops->read_csr_int_col_ctl(base, bank);
state->iaintflagandcolen = ops->read_csr_int_flag_and_col(base, bank);
state->ringexpstat = ops->read_csr_exp_stat(base, bank);
state->ringexpintenable = ops->read_csr_exp_int_en(base, bank);
state->ringsrvarben = ops->read_csr_ring_srv_arb_en(base, bank);
for (i = 0; i < num_rings; i++) {
state->rings[i].head = ops->read_csr_ring_head(base, bank, i);
state->rings[i].tail = ops->read_csr_ring_tail(base, bank, i);
state->rings[i].config = ops->read_csr_ring_config(base, bank, i);
state->rings[i].base = ops->read_csr_ring_base(base, bank, i);
}
}
#define CHECK_STAT(op, expect_val, name, args...) \
({ \
u32 __expect_val = (expect_val); \
u32 actual_val = op(args); \
(__expect_val == actual_val) ? 0 : \
(pr_err("QAT: Fail to restore %s register. Expected 0x%x, actual 0x%x\n", \
name, __expect_val, actual_val), -EINVAL); \
})
static int bank_state_restore(struct adf_hw_csr_ops *ops, void __iomem *base,
u32 bank, struct bank_state *state, u32 num_rings,
int tx_rx_gap)
{
u32 val, tmp_val, i;
int ret;
for (i = 0; i < num_rings; i++)
ops->write_csr_ring_base(base, bank, i, state->rings[i].base);
for (i = 0; i < num_rings; i++)
ops->write_csr_ring_config(base, bank, i, state->rings[i].config);
for (i = 0; i < num_rings / 2; i++) {
int tx = i * (tx_rx_gap + 1);
int rx = tx + tx_rx_gap;
ops->write_csr_ring_head(base, bank, tx, state->rings[tx].head);
ops->write_csr_ring_tail(base, bank, tx, state->rings[tx].tail);
/*
* The TX ring head needs to be updated again to make sure that
* the HW will not consider the ring as full when it is empty
* and the correct state flags are set to match the recovered state.
*/
if (state->ringestat & BIT(tx)) {
val = ops->read_csr_int_srcsel(base, bank);
val |= ADF_RP_INT_SRC_SEL_F_RISE_MASK;
ops->write_csr_int_srcsel_w_val(base, bank, val);
ops->write_csr_ring_head(base, bank, tx, state->rings[tx].head);
}
ops->write_csr_ring_tail(base, bank, rx, state->rings[rx].tail);
val = ops->read_csr_int_srcsel(base, bank);
val |= ADF_RP_INT_SRC_SEL_F_RISE_MASK << ADF_RP_INT_SRC_SEL_RANGE_WIDTH;
ops->write_csr_int_srcsel_w_val(base, bank, val);
ops->write_csr_ring_head(base, bank, rx, state->rings[rx].head);
val = ops->read_csr_int_srcsel(base, bank);
val |= ADF_RP_INT_SRC_SEL_F_FALL_MASK << ADF_RP_INT_SRC_SEL_RANGE_WIDTH;
ops->write_csr_int_srcsel_w_val(base, bank, val);
/*
* The RX ring tail needs to be updated again to make sure that
* the HW will not consider the ring as empty when it is full
* and the correct state flags are set to match the recovered state.
*/
if (state->ringfstat & BIT(rx))
ops->write_csr_ring_tail(base, bank, rx, state->rings[rx].tail);
}
ops->write_csr_int_flag_and_col(base, bank, state->iaintflagandcolen);
ops->write_csr_int_en(base, bank, state->iaintflagen);
ops->write_csr_int_col_en(base, bank, state->iaintcolen);
ops->write_csr_int_srcsel_w_val(base, bank, state->iaintflagsrcsel0);
ops->write_csr_exp_int_en(base, bank, state->ringexpintenable);
ops->write_csr_int_col_ctl(base, bank, state->iaintcolctl);
ops->write_csr_ring_srv_arb_en(base, bank, state->ringsrvarben);
/* Check that all ring statuses match the saved state. */
ret = CHECK_STAT(ops->read_csr_stat, state->ringstat0, "ringstat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_e_stat, state->ringestat, "ringestat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_ne_stat, state->ringnestat, "ringnestat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_nf_stat, state->ringnfstat, "ringnfstat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_f_stat, state->ringfstat, "ringfstat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_c_stat, state->ringcstat0, "ringcstat",
base, bank);
if (ret)
return ret;
tmp_val = ops->read_csr_exp_stat(base, bank);
val = state->ringexpstat;
if (tmp_val && !val) {
pr_err("QAT: Bank was restored with exception: 0x%x\n", val);
return -EINVAL;
}
return 0;
}
int adf_gen4_bank_state_save(struct adf_accel_dev *accel_dev, u32 bank_number,
struct bank_state *state)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
void __iomem *csr_base = adf_get_etr_base(accel_dev);
if (bank_number >= hw_data->num_banks || !state)
return -EINVAL;
dev_dbg(&GET_DEV(accel_dev), "Saving state of bank %d\n", bank_number);
bank_state_save(csr_ops, csr_base, bank_number, state,
hw_data->num_rings_per_bank);
return 0;
}
EXPORT_SYMBOL_GPL(adf_gen4_bank_state_save);
int adf_gen4_bank_state_restore(struct adf_accel_dev *accel_dev, u32 bank_number,
struct bank_state *state)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
void __iomem *csr_base = adf_get_etr_base(accel_dev);
int ret;
if (bank_number >= hw_data->num_banks || !state)
return -EINVAL;
dev_dbg(&GET_DEV(accel_dev), "Restoring state of bank %d\n", bank_number);
ret = bank_state_restore(csr_ops, csr_base, bank_number, state,
hw_data->num_rings_per_bank, hw_data->tx_rx_gap);
if (ret)
dev_err(&GET_DEV(accel_dev),
"Unable to restore state of bank %d\n", bank_number);
return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_bank_state_restore);