// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2023 Intel Corporation. */
#define dev_fmt(fmt) "Telemetry debugfs: " fmt
#include <linux/atomic.h>
#include <linux/debugfs.h>
#include <linux/dev_printk.h>
#include <linux/dcache.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/mutex.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/units.h>
#include "adf_accel_devices.h"
#include "adf_cfg_strings.h"
#include "adf_telemetry.h"
#include "adf_tl_debugfs.h"
#define TL_VALUE_MIN_PADDING 20
#define TL_KEY_MIN_PADDING 23
#define TL_RP_SRV_UNKNOWN "Unknown"
static int tl_collect_values_u32(struct adf_telemetry *telemetry,
size_t counter_offset, u64 *arr)
{
unsigned int samples, hb_idx, i;
u32 *regs_hist_buff;
u32 counter_val;
samples = min(telemetry->msg_cnt, telemetry->hbuffs);
hb_idx = telemetry->hb_num + telemetry->hbuffs - samples;
mutex_lock(&telemetry->regs_hist_lock);
for (i = 0; i < samples; i++) {
regs_hist_buff = telemetry->regs_hist_buff[hb_idx % telemetry->hbuffs];
counter_val = regs_hist_buff[counter_offset / sizeof(counter_val)];
arr[i] = counter_val;
hb_idx++;
}
mutex_unlock(&telemetry->regs_hist_lock);
return samples;
}
static int tl_collect_values_u64(struct adf_telemetry *telemetry,
size_t counter_offset, u64 *arr)
{
unsigned int samples, hb_idx, i;
u64 *regs_hist_buff;
u64 counter_val;
samples = min(telemetry->msg_cnt, telemetry->hbuffs);
hb_idx = telemetry->hb_num + telemetry->hbuffs - samples;
mutex_lock(&telemetry->regs_hist_lock);
for (i = 0; i < samples; i++) {
regs_hist_buff = telemetry->regs_hist_buff[hb_idx % telemetry->hbuffs];
counter_val = regs_hist_buff[counter_offset / sizeof(counter_val)];
arr[i] = counter_val;
hb_idx++;
}
mutex_unlock(&telemetry->regs_hist_lock);
return samples;
}
/**
* avg_array() - Return average of values within an array.
* @array: Array of values.
* @len: Number of elements.
*
* This algorithm computes average of an array without running into overflow.
*
* Return: average of values.
*/
#define avg_array(array, len) ( \
{ \
typeof(&(array)[0]) _array = (array); \
__unqual_scalar_typeof(_array[0]) _x = 0; \
__unqual_scalar_typeof(_array[0]) _y = 0; \
__unqual_scalar_typeof(_array[0]) _a, _b; \
typeof(len) _len = (len); \
size_t _i; \
\
for (_i = 0; _i < _len; _i++) { \
_a = _array[_i]; \
_b = do_div(_a, _len); \
_x += _a; \
if (_y >= _len - _b) { \
_x++; \
_y -= _len - _b; \
} else { \
_y += _b; \
} \
} \
do_div(_y, _len); \
(_x + _y); \
})
/* Calculation function for simple counter. */
static int tl_calc_count(struct adf_telemetry *telemetry,
const struct adf_tl_dbg_counter *ctr,
struct adf_tl_dbg_aggr_values *vals)
{
struct adf_tl_hw_data *tl_data = &GET_TL_DATA(telemetry->accel_dev);
u64 *hist_vals;
int sample_cnt;
int ret = 0;
hist_vals = kmalloc_array(tl_data->num_hbuff, sizeof(*hist_vals),
GFP_KERNEL);
if (!hist_vals)
return -ENOMEM;
memset(vals, 0, sizeof(*vals));
sample_cnt = tl_collect_values_u32(telemetry, ctr->offset1, hist_vals);
if (!sample_cnt)
goto out_free_hist_vals;
vals->curr = hist_vals[sample_cnt - 1];
vals->min = min_array(hist_vals, sample_cnt);
vals->max = max_array(hist_vals, sample_cnt);
vals->avg = avg_array(hist_vals, sample_cnt);
out_free_hist_vals:
kfree(hist_vals);
return ret;
}
/* Convert CPP bus cycles to ns. */
static int tl_cycles_to_ns(struct adf_telemetry *telemetry,
const struct adf_tl_dbg_counter *ctr,
struct adf_tl_dbg_aggr_values *vals)
{
struct adf_tl_hw_data *tl_data = &GET_TL_DATA(telemetry->accel_dev);
u8 cpp_ns_per_cycle = tl_data->cpp_ns_per_cycle;
int ret;
ret = tl_calc_count(telemetry, ctr, vals);
if (ret)
return ret;
vals->curr *= cpp_ns_per_cycle;
vals->min *= cpp_ns_per_cycle;
vals->max *= cpp_ns_per_cycle;
vals->avg *= cpp_ns_per_cycle;
return 0;
}
/*
* Compute latency cumulative average with division of accumulated value
* by sample count. Returned value is in ns.
*/
static int tl_lat_acc_avg(struct adf_telemetry *telemetry,
const struct adf_tl_dbg_counter *ctr,
struct adf_tl_dbg_aggr_values *vals)
{
struct adf_tl_hw_data *tl_data = &GET_TL_DATA(telemetry->accel_dev);
u8 cpp_ns_per_cycle = tl_data->cpp_ns_per_cycle;
u8 num_hbuff = tl_data->num_hbuff;
int sample_cnt, i;
u64 *hist_vals;
u64 *hist_cnt;
int ret = 0;
hist_vals = kmalloc_array(num_hbuff, sizeof(*hist_vals), GFP_KERNEL);
if (!hist_vals)
return -ENOMEM;
hist_cnt = kmalloc_array(num_hbuff, sizeof(*hist_cnt), GFP_KERNEL);
if (!hist_cnt) {
ret = -ENOMEM;
goto out_free_hist_vals;
}
memset(vals, 0, sizeof(*vals));
sample_cnt = tl_collect_values_u64(telemetry, ctr->offset1, hist_vals);
if (!sample_cnt)
goto out_free_hist_cnt;
tl_collect_values_u32(telemetry, ctr->offset2, hist_cnt);
for (i = 0; i < sample_cnt; i++) {
/* Avoid division by 0 if count is 0. */
if (hist_cnt[i])
hist_vals[i] = div_u64(hist_vals[i] * cpp_ns_per_cycle,
hist_cnt[i]);
else
hist_vals[i] = 0;
}
vals->curr = hist_vals[sample_cnt - 1];
vals->min = min_array(hist_vals, sample_cnt);
vals->max = max_array(hist_vals, sample_cnt);
vals->avg = avg_array(hist_vals, sample_cnt);
out_free_hist_cnt:
kfree(hist_cnt);
out_free_hist_vals:
kfree(hist_vals);
return ret;
}
/* Convert HW raw bandwidth units to Mbps. */
static int tl_bw_hw_units_to_mbps(struct adf_telemetry *telemetry,
const struct adf_tl_dbg_counter *ctr,
struct adf_tl_dbg_aggr_values *vals)
{
struct adf_tl_hw_data *tl_data = &GET_TL_DATA(telemetry->accel_dev);
u16 bw_hw_2_bits = tl_data->bw_units_to_bytes * BITS_PER_BYTE;
u64 *hist_vals;
int sample_cnt;
int ret = 0;
hist_vals = kmalloc_array(tl_data->num_hbuff, sizeof(*hist_vals),
GFP_KERNEL);
if (!hist_vals)
return -ENOMEM;
memset(vals, 0, sizeof(*vals));
sample_cnt = tl_collect_values_u32(telemetry, ctr->offset1, hist_vals);
if (!sample_cnt)
goto out_free_hist_vals;
vals->curr = div_u64(hist_vals[sample_cnt - 1] * bw_hw_2_bits, MEGA);
vals->min = div_u64(min_array(hist_vals, sample_cnt) * bw_hw_2_bits, MEGA);
vals->max = div_u64(max_array(hist_vals, sample_cnt) * bw_hw_2_bits, MEGA);
vals->avg = div_u64(avg_array(hist_vals, sample_cnt) * bw_hw_2_bits, MEGA);
out_free_hist_vals:
kfree(hist_vals);
return ret;
}
static void tl_seq_printf_counter(struct adf_telemetry *telemetry,
struct seq_file *s, const char *name,
struct adf_tl_dbg_aggr_values *vals)
{
seq_printf(s, "%-*s", TL_KEY_MIN_PADDING, name);
seq_printf(s, "%*llu", TL_VALUE_MIN_PADDING, vals->curr);
if (atomic_read(&telemetry->state) > 1) {
seq_printf(s, "%*llu", TL_VALUE_MIN_PADDING, vals->min);
seq_printf(s, "%*llu", TL_VALUE_MIN_PADDING, vals->max);
seq_printf(s, "%*llu", TL_VALUE_MIN_PADDING, vals->avg);
}
seq_puts(s, "\n");
}
static int tl_calc_and_print_counter(struct adf_telemetry *telemetry,
struct seq_file *s,
const struct adf_tl_dbg_counter *ctr,
const char *name)
{
const char *counter_name = name ? name : ctr->name;
enum adf_tl_counter_type type = ctr->type;
struct adf_tl_dbg_aggr_values vals;
int ret;
switch (type) {
case ADF_TL_SIMPLE_COUNT:
ret = tl_calc_count(telemetry, ctr, &vals);
break;
case ADF_TL_COUNTER_NS:
ret = tl_cycles_to_ns(telemetry, ctr, &vals);
break;
case ADF_TL_COUNTER_NS_AVG:
ret = tl_lat_acc_avg(telemetry, ctr, &vals);
break;
case ADF_TL_COUNTER_MBPS:
ret = tl_bw_hw_units_to_mbps(telemetry, ctr, &vals);
break;
default:
return -EINVAL;
}
if (ret)
return ret;
tl_seq_printf_counter(telemetry, s, counter_name, &vals);
return 0;
}
static int tl_print_sl_counter(struct adf_telemetry *telemetry,
const struct adf_tl_dbg_counter *ctr,
struct seq_file *s, u8 cnt_id)
{
size_t sl_regs_sz = GET_TL_DATA(telemetry->accel_dev).slice_reg_sz;
struct adf_tl_dbg_counter slice_ctr;
size_t offset_inc = cnt_id * sl_regs_sz;
char cnt_name[MAX_COUNT_NAME_SIZE];
snprintf(cnt_name, MAX_COUNT_NAME_SIZE, "%s%d", ctr->name, cnt_id);
slice_ctr = *ctr;
slice_ctr.offset1 += offset_inc;
return tl_calc_and_print_counter(telemetry, s, &slice_ctr, cnt_name);
}
static int tl_calc_and_print_sl_counters(struct adf_accel_dev *accel_dev,
struct seq_file *s, u8 cnt_type, u8 cnt_id)
{
struct adf_tl_hw_data *tl_data = &GET_TL_DATA(accel_dev);
struct adf_telemetry *telemetry = accel_dev->telemetry;
const struct adf_tl_dbg_counter *sl_tl_util_counters;
const struct adf_tl_dbg_counter *sl_tl_exec_counters;
const struct adf_tl_dbg_counter *ctr;
int ret;
sl_tl_util_counters = tl_data->sl_util_counters;
sl_tl_exec_counters = tl_data->sl_exec_counters;
ctr = &sl_tl_util_counters[cnt_type];
ret = tl_print_sl_counter(telemetry, ctr, s, cnt_id);
if (ret) {
dev_notice(&GET_DEV(accel_dev),
"invalid slice utilization counter type\n");
return ret;
}
ctr = &sl_tl_exec_counters[cnt_type];
ret = tl_print_sl_counter(telemetry, ctr, s, cnt_id);
if (ret) {
dev_notice(&GET_DEV(accel_dev),
"invalid slice execution counter type\n");
return ret;
}
return 0;
}
static void tl_print_msg_cnt(struct seq_file *s, u32 msg_cnt)
{
seq_printf(s, "%-*s", TL_KEY_MIN_PADDING, SNAPSHOT_CNT_MSG);
seq_printf(s, "%*u\n", TL_VALUE_MIN_PADDING, msg_cnt);
}
static int tl_print_dev_data(struct adf_accel_dev *accel_dev,
struct seq_file *s)
{
struct adf_tl_hw_data *tl_data = &GET_TL_DATA(accel_dev);
struct adf_telemetry *telemetry = accel_dev->telemetry;
const struct adf_tl_dbg_counter *dev_tl_counters;
u8 num_dev_counters = tl_data->num_dev_counters;
u8 *sl_cnt = (u8 *)&telemetry->slice_cnt;
const struct adf_tl_dbg_counter *ctr;
unsigned int i;
int ret;
u8 j;
if (!atomic_read(&telemetry->state)) {
dev_info(&GET_DEV(accel_dev), "not enabled\n");
return -EPERM;
}
dev_tl_counters = tl_data->dev_counters;
tl_print_msg_cnt(s, telemetry->msg_cnt);
/* Print device level telemetry. */
for (i = 0; i < num_dev_counters; i++) {
ctr = &dev_tl_counters[i];
ret = tl_calc_and_print_counter(telemetry, s, ctr, NULL);
if (ret) {
dev_notice(&GET_DEV(accel_dev),
"invalid counter type\n");
return ret;
}
}
/* Print per slice telemetry. */
for (i = 0; i < ADF_TL_SL_CNT_COUNT; i++) {
for (j = 0; j < sl_cnt[i]; j++) {
ret = tl_calc_and_print_sl_counters(accel_dev, s, i, j);
if (ret)
return ret;
}
}
return 0;
}
static int tl_dev_data_show(struct seq_file *s, void *unused)
{
struct adf_accel_dev *accel_dev = s->private;
if (!accel_dev)
return -EINVAL;
return tl_print_dev_data(accel_dev, s);
}
DEFINE_SHOW_ATTRIBUTE(tl_dev_data);
static int tl_control_show(struct seq_file *s, void *unused)
{
struct adf_accel_dev *accel_dev = s->private;
if (!accel_dev)
return -EINVAL;
seq_printf(s, "%d\n", atomic_read(&accel_dev->telemetry->state));
return 0;
}
static ssize_t tl_control_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct seq_file *seq_f = file->private_data;
struct adf_accel_dev *accel_dev;
struct adf_telemetry *telemetry;
struct adf_tl_hw_data *tl_data;
struct device *dev;
u32 input;
int ret;
accel_dev = seq_f->private;
if (!accel_dev)
return -EINVAL;
tl_data = &GET_TL_DATA(accel_dev);
telemetry = accel_dev->telemetry;
dev = &GET_DEV(accel_dev);
mutex_lock(&telemetry->wr_lock);
ret = kstrtou32_from_user(userbuf, count, 10, &input);
if (ret)
goto unlock_and_exit;
if (input > tl_data->num_hbuff) {
dev_info(dev, "invalid control input\n");
ret = -EINVAL;
goto unlock_and_exit;
}
/* If input is 0, just stop telemetry. */
if (!input) {
ret = adf_tl_halt(accel_dev);
if (!ret)
ret = count;
goto unlock_and_exit;
}
/* If TL is already enabled, stop it. */
if (atomic_read(&telemetry->state)) {
dev_info(dev, "already enabled, restarting.\n");
ret = adf_tl_halt(accel_dev);
if (ret)
goto unlock_and_exit;
}
ret = adf_tl_run(accel_dev, input);
if (ret)
goto unlock_and_exit;
ret = count;
unlock_and_exit:
mutex_unlock(&telemetry->wr_lock);
return ret;
}
DEFINE_SHOW_STORE_ATTRIBUTE(tl_control);
static int get_rp_index_from_file(const struct file *f, u8 *rp_id, u8 rp_num)
{
char alpha;
u8 index;
int ret;
ret = sscanf(f->f_path.dentry->d_name.name, ADF_TL_RP_REGS_FNAME, &alpha);
if (ret != 1)
return -EINVAL;
index = ADF_TL_DBG_RP_INDEX_ALPHA(alpha);
*rp_id = index;
return 0;
}
static int adf_tl_dbg_change_rp_index(struct adf_accel_dev *accel_dev,
unsigned int new_rp_num,
unsigned int rp_regs_index)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
struct adf_telemetry *telemetry = accel_dev->telemetry;
struct device *dev = &GET_DEV(accel_dev);
unsigned int i;
u8 curr_state;
int ret;
if (new_rp_num >= hw_data->num_rps) {
dev_info(dev, "invalid Ring Pair number selected\n");
return -EINVAL;
}
for (i = 0; i < hw_data->tl_data.max_rp; i++) {
if (telemetry->rp_num_indexes[i] == new_rp_num) {
dev_info(dev, "RP nr: %d is already selected in slot rp_%c_data\n",
new_rp_num, ADF_TL_DBG_RP_ALPHA_INDEX(i));
return 0;
}
}
dev_dbg(dev, "selecting RP nr %u into slot rp_%c_data\n",
new_rp_num, ADF_TL_DBG_RP_ALPHA_INDEX(rp_regs_index));
curr_state = atomic_read(&telemetry->state);
if (curr_state) {
ret = adf_tl_halt(accel_dev);
if (ret)
return ret;
telemetry->rp_num_indexes[rp_regs_index] = new_rp_num;
ret = adf_tl_run(accel_dev, curr_state);
if (ret)
return ret;
} else {
telemetry->rp_num_indexes[rp_regs_index] = new_rp_num;
}
return 0;
}
static void tl_print_rp_srv(struct adf_accel_dev *accel_dev, struct seq_file *s,
u8 rp_idx)
{
u32 banks_per_vf = GET_HW_DATA(accel_dev)->num_banks_per_vf;
enum adf_cfg_service_type svc;
seq_printf(s, "%-*s", TL_KEY_MIN_PADDING, RP_SERVICE_TYPE);
svc = GET_SRV_TYPE(accel_dev, rp_idx % banks_per_vf);
switch (svc) {
case COMP:
seq_printf(s, "%*s\n", TL_VALUE_MIN_PADDING, ADF_CFG_DC);
break;
case SYM:
seq_printf(s, "%*s\n", TL_VALUE_MIN_PADDING, ADF_CFG_SYM);
break;
case ASYM:
seq_printf(s, "%*s\n", TL_VALUE_MIN_PADDING, ADF_CFG_ASYM);
break;
default:
seq_printf(s, "%*s\n", TL_VALUE_MIN_PADDING, TL_RP_SRV_UNKNOWN);
break;
}
}
static int tl_print_rp_data(struct adf_accel_dev *accel_dev, struct seq_file *s,
u8 rp_regs_index)
{
struct adf_tl_hw_data *tl_data = &GET_TL_DATA(accel_dev);
struct adf_telemetry *telemetry = accel_dev->telemetry;
const struct adf_tl_dbg_counter *rp_tl_counters;
u8 num_rp_counters = tl_data->num_rp_counters;
size_t rp_regs_sz = tl_data->rp_reg_sz;
struct adf_tl_dbg_counter ctr;
unsigned int i;
u8 rp_idx;
int ret;
if (!atomic_read(&telemetry->state)) {
dev_info(&GET_DEV(accel_dev), "not enabled\n");
return -EPERM;
}
rp_tl_counters = tl_data->rp_counters;
rp_idx = telemetry->rp_num_indexes[rp_regs_index];
if (rp_idx == ADF_TL_RP_REGS_DISABLED) {
dev_info(&GET_DEV(accel_dev), "no RP number selected in rp_%c_data\n",
ADF_TL_DBG_RP_ALPHA_INDEX(rp_regs_index));
return -EPERM;
}
tl_print_msg_cnt(s, telemetry->msg_cnt);
seq_printf(s, "%-*s", TL_KEY_MIN_PADDING, RP_NUM_INDEX);
seq_printf(s, "%*d\n", TL_VALUE_MIN_PADDING, rp_idx);
tl_print_rp_srv(accel_dev, s, rp_idx);
for (i = 0; i < num_rp_counters; i++) {
ctr = rp_tl_counters[i];
ctr.offset1 += rp_regs_sz * rp_regs_index;
ctr.offset2 += rp_regs_sz * rp_regs_index;
ret = tl_calc_and_print_counter(telemetry, s, &ctr, NULL);
if (ret) {
dev_dbg(&GET_DEV(accel_dev),
"invalid RP counter type\n");
return ret;
}
}
return 0;
}
static int tl_rp_data_show(struct seq_file *s, void *unused)
{
struct adf_accel_dev *accel_dev = s->private;
u8 rp_regs_index;
u8 max_rp;
int ret;
if (!accel_dev)
return -EINVAL;
max_rp = GET_TL_DATA(accel_dev).max_rp;
ret = get_rp_index_from_file(s->file, &rp_regs_index, max_rp);
if (ret) {
dev_dbg(&GET_DEV(accel_dev), "invalid RP data file name\n");
return ret;
}
return tl_print_rp_data(accel_dev, s, rp_regs_index);
}
static ssize_t tl_rp_data_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct seq_file *seq_f = file->private_data;
struct adf_accel_dev *accel_dev;
struct adf_telemetry *telemetry;
unsigned int new_rp_num;
u8 rp_regs_index;
u8 max_rp;
int ret;
accel_dev = seq_f->private;
if (!accel_dev)
return -EINVAL;
telemetry = accel_dev->telemetry;
max_rp = GET_TL_DATA(accel_dev).max_rp;
mutex_lock(&telemetry->wr_lock);
ret = get_rp_index_from_file(file, &rp_regs_index, max_rp);
if (ret) {
dev_dbg(&GET_DEV(accel_dev), "invalid RP data file name\n");
goto unlock_and_exit;
}
ret = kstrtou32_from_user(userbuf, count, 10, &new_rp_num);
if (ret)
goto unlock_and_exit;
ret = adf_tl_dbg_change_rp_index(accel_dev, new_rp_num, rp_regs_index);
if (ret)
goto unlock_and_exit;
ret = count;
unlock_and_exit:
mutex_unlock(&telemetry->wr_lock);
return ret;
}
DEFINE_SHOW_STORE_ATTRIBUTE(tl_rp_data);
void adf_tl_dbgfs_add(struct adf_accel_dev *accel_dev)
{
struct adf_telemetry *telemetry = accel_dev->telemetry;
struct dentry *parent = accel_dev->debugfs_dir;
u8 max_rp = GET_TL_DATA(accel_dev).max_rp;
char name[ADF_TL_RP_REGS_FNAME_SIZE];
struct dentry *dir;
unsigned int i;
if (!telemetry)
return;
dir = debugfs_create_dir("telemetry", parent);
accel_dev->telemetry->dbg_dir = dir;
debugfs_create_file("device_data", 0444, dir, accel_dev, &tl_dev_data_fops);
debugfs_create_file("control", 0644, dir, accel_dev, &tl_control_fops);
for (i = 0; i < max_rp; i++) {
snprintf(name, sizeof(name), ADF_TL_RP_REGS_FNAME,
ADF_TL_DBG_RP_ALPHA_INDEX(i));
debugfs_create_file(name, 0644, dir, accel_dev, &tl_rp_data_fops);
}
}
void adf_tl_dbgfs_rm(struct adf_accel_dev *accel_dev)
{
struct adf_telemetry *telemetry = accel_dev->telemetry;
struct dentry *dbg_dir;
if (!telemetry)
return;
dbg_dir = telemetry->dbg_dir;
debugfs_remove_recursive(dbg_dir);
if (atomic_read(&telemetry->state))
adf_tl_halt(accel_dev);
}