// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2021 Intel Corporation. All rights rsvd. */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/iommu.h>
#include <uapi/linux/idxd.h>
#include <linux/highmem.h>
#include <linux/sched/smt.h>
#include <crypto/internal/acompress.h>
#include "idxd.h"
#include "iaa_crypto.h"
#include "iaa_crypto_stats.h"
#ifdef pr_fmt
#undef pr_fmt
#endif
#define pr_fmt(fmt) "idxd: " IDXD_SUBDRIVER_NAME ": " fmt
#define IAA_ALG_PRIORITY 300
/* number of iaa instances probed */
static unsigned int nr_iaa;
static unsigned int nr_cpus;
static unsigned int nr_nodes;
static unsigned int nr_cpus_per_node;
/* Number of physical cpus sharing each iaa instance */
static unsigned int cpus_per_iaa;
static struct crypto_comp *deflate_generic_tfm;
/* Per-cpu lookup table for balanced wqs */
static struct wq_table_entry __percpu *wq_table;
static struct idxd_wq *wq_table_next_wq(int cpu)
{
struct wq_table_entry *entry = per_cpu_ptr(wq_table, cpu);
if (++entry->cur_wq >= entry->n_wqs)
entry->cur_wq = 0;
if (!entry->wqs[entry->cur_wq])
return NULL;
pr_debug("%s: returning wq at idx %d (iaa wq %d.%d) from cpu %d\n", __func__,
entry->cur_wq, entry->wqs[entry->cur_wq]->idxd->id,
entry->wqs[entry->cur_wq]->id, cpu);
return entry->wqs[entry->cur_wq];
}
static void wq_table_add(int cpu, struct idxd_wq *wq)
{
struct wq_table_entry *entry = per_cpu_ptr(wq_table, cpu);
if (WARN_ON(entry->n_wqs == entry->max_wqs))
return;
entry->wqs[entry->n_wqs++] = wq;
pr_debug("%s: added iaa wq %d.%d to idx %d of cpu %d\n", __func__,
entry->wqs[entry->n_wqs - 1]->idxd->id,
entry->wqs[entry->n_wqs - 1]->id, entry->n_wqs - 1, cpu);
}
static void wq_table_free_entry(int cpu)
{
struct wq_table_entry *entry = per_cpu_ptr(wq_table, cpu);
kfree(entry->wqs);
memset(entry, 0, sizeof(*entry));
}
static void wq_table_clear_entry(int cpu)
{
struct wq_table_entry *entry = per_cpu_ptr(wq_table, cpu);
entry->n_wqs = 0;
entry->cur_wq = 0;
memset(entry->wqs, 0, entry->max_wqs * sizeof(struct idxd_wq *));
}
LIST_HEAD(iaa_devices);
DEFINE_MUTEX(iaa_devices_lock);
/* If enabled, IAA hw crypto algos are registered, unavailable otherwise */
static bool iaa_crypto_enabled;
static bool iaa_crypto_registered;
/* Verify results of IAA compress or not */
static bool iaa_verify_compress = true;
static ssize_t verify_compress_show(struct device_driver *driver, char *buf)
{
return sprintf(buf, "%d\n", iaa_verify_compress);
}
static ssize_t verify_compress_store(struct device_driver *driver,
const char *buf, size_t count)
{
int ret = -EBUSY;
mutex_lock(&iaa_devices_lock);
if (iaa_crypto_enabled)
goto out;
ret = kstrtobool(buf, &iaa_verify_compress);
if (ret)
goto out;
ret = count;
out:
mutex_unlock(&iaa_devices_lock);
return ret;
}
static DRIVER_ATTR_RW(verify_compress);
/*
* The iaa crypto driver supports three 'sync' methods determining how
* compressions and decompressions are performed:
*
* - sync: the compression or decompression completes before
* returning. This is the mode used by the async crypto
* interface when the sync mode is set to 'sync' and by
* the sync crypto interface regardless of setting.
*
* - async: the compression or decompression is submitted and returns
* immediately. Completion interrupts are not used so
* the caller is responsible for polling the descriptor
* for completion. This mode is applicable to only the
* async crypto interface and is ignored for anything
* else.
*
* - async_irq: the compression or decompression is submitted and
* returns immediately. Completion interrupts are
* enabled so the caller can wait for the completion and
* yield to other threads. When the compression or
* decompression completes, the completion is signaled
* and the caller awakened. This mode is applicable to
* only the async crypto interface and is ignored for
* anything else.
*
* These modes can be set using the iaa_crypto sync_mode driver
* attribute.
*/
/* Use async mode */
static bool async_mode;
/* Use interrupts */
static bool use_irq;
/**
* set_iaa_sync_mode - Set IAA sync mode
* @name: The name of the sync mode
*
* Make the IAA sync mode named @name the current sync mode used by
* compression/decompression.
*/
static int set_iaa_sync_mode(const char *name)
{
int ret = 0;
if (sysfs_streq(name, "sync")) {
async_mode = false;
use_irq = false;
} else if (sysfs_streq(name, "async")) {
async_mode = true;
use_irq = false;
} else if (sysfs_streq(name, "async_irq")) {
async_mode = true;
use_irq = true;
} else {
ret = -EINVAL;
}
return ret;
}
static ssize_t sync_mode_show(struct device_driver *driver, char *buf)
{
int ret = 0;
if (!async_mode && !use_irq)
ret = sprintf(buf, "%s\n", "sync");
else if (async_mode && !use_irq)
ret = sprintf(buf, "%s\n", "async");
else if (async_mode && use_irq)
ret = sprintf(buf, "%s\n", "async_irq");
return ret;
}
static ssize_t sync_mode_store(struct device_driver *driver,
const char *buf, size_t count)
{
int ret = -EBUSY;
mutex_lock(&iaa_devices_lock);
if (iaa_crypto_enabled)
goto out;
ret = set_iaa_sync_mode(buf);
if (ret == 0)
ret = count;
out:
mutex_unlock(&iaa_devices_lock);
return ret;
}
static DRIVER_ATTR_RW(sync_mode);
static struct iaa_compression_mode *iaa_compression_modes[IAA_COMP_MODES_MAX];
static int find_empty_iaa_compression_mode(void)
{
int i = -EINVAL;
for (i = 0; i < IAA_COMP_MODES_MAX; i++) {
if (iaa_compression_modes[i])
continue;
break;
}
return i;
}
static struct iaa_compression_mode *find_iaa_compression_mode(const char *name, int *idx)
{
struct iaa_compression_mode *mode;
int i;
for (i = 0; i < IAA_COMP_MODES_MAX; i++) {
mode = iaa_compression_modes[i];
if (!mode)
continue;
if (!strcmp(mode->name, name)) {
*idx = i;
return iaa_compression_modes[i];
}
}
return NULL;
}
static void free_iaa_compression_mode(struct iaa_compression_mode *mode)
{
kfree(mode->name);
kfree(mode->ll_table);
kfree(mode->d_table);
kfree(mode);
}
/*
* IAA Compression modes are defined by an ll_table and a d_table.
* These tables are typically generated and captured using statistics
* collected from running actual compress/decompress workloads.
*
* A module or other kernel code can add and remove compression modes
* with a given name using the exported @add_iaa_compression_mode()
* and @remove_iaa_compression_mode functions.
*
* When a new compression mode is added, the tables are saved in a
* global compression mode list. When IAA devices are added, a
* per-IAA device dma mapping is created for each IAA device, for each
* compression mode. These are the tables used to do the actual
* compression/deccompression and are unmapped if/when the devices are
* removed. Currently, compression modes must be added before any
* device is added, and removed after all devices have been removed.
*/
/**
* remove_iaa_compression_mode - Remove an IAA compression mode
* @name: The name the compression mode will be known as
*
* Remove the IAA compression mode named @name.
*/
void remove_iaa_compression_mode(const char *name)
{
struct iaa_compression_mode *mode;
int idx;
mutex_lock(&iaa_devices_lock);
if (!list_empty(&iaa_devices))
goto out;
mode = find_iaa_compression_mode(name, &idx);
if (mode) {
free_iaa_compression_mode(mode);
iaa_compression_modes[idx] = NULL;
}
out:
mutex_unlock(&iaa_devices_lock);
}
EXPORT_SYMBOL_GPL(remove_iaa_compression_mode);
/**
* add_iaa_compression_mode - Add an IAA compression mode
* @name: The name the compression mode will be known as
* @ll_table: The ll table
* @ll_table_size: The ll table size in bytes
* @d_table: The d table
* @d_table_size: The d table size in bytes
* @init: Optional callback function to init the compression mode data
* @free: Optional callback function to free the compression mode data
*
* Add a new IAA compression mode named @name.
*
* Returns 0 if successful, errcode otherwise.
*/
int add_iaa_compression_mode(const char *name,
const u32 *ll_table,
int ll_table_size,
const u32 *d_table,
int d_table_size,
iaa_dev_comp_init_fn_t init,
iaa_dev_comp_free_fn_t free)
{
struct iaa_compression_mode *mode;
int idx, ret = -ENOMEM;
mutex_lock(&iaa_devices_lock);
if (!list_empty(&iaa_devices)) {
ret = -EBUSY;
goto out;
}
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
goto out;
mode->name = kstrdup(name, GFP_KERNEL);
if (!mode->name)
goto free;
if (ll_table) {
mode->ll_table = kmemdup(ll_table, ll_table_size, GFP_KERNEL);
if (!mode->ll_table)
goto free;
mode->ll_table_size = ll_table_size;
}
if (d_table) {
mode->d_table = kmemdup(d_table, d_table_size, GFP_KERNEL);
if (!mode->d_table)
goto free;
mode->d_table_size = d_table_size;
}
mode->init = init;
mode->free = free;
idx = find_empty_iaa_compression_mode();
if (idx < 0)
goto free;
pr_debug("IAA compression mode %s added at idx %d\n",
mode->name, idx);
iaa_compression_modes[idx] = mode;
ret = 0;
out:
mutex_unlock(&iaa_devices_lock);
return ret;
free:
free_iaa_compression_mode(mode);
goto out;
}
EXPORT_SYMBOL_GPL(add_iaa_compression_mode);
static struct iaa_device_compression_mode *
get_iaa_device_compression_mode(struct iaa_device *iaa_device, int idx)
{
return iaa_device->compression_modes[idx];
}
static void free_device_compression_mode(struct iaa_device *iaa_device,
struct iaa_device_compression_mode *device_mode)
{
size_t size = sizeof(struct aecs_comp_table_record) + IAA_AECS_ALIGN;
struct device *dev = &iaa_device->idxd->pdev->dev;
kfree(device_mode->name);
if (device_mode->aecs_comp_table)
dma_free_coherent(dev, size, device_mode->aecs_comp_table,
device_mode->aecs_comp_table_dma_addr);
kfree(device_mode);
}
#define IDXD_OP_FLAG_AECS_RW_TGLS 0x400000
#define IAX_AECS_DEFAULT_FLAG (IDXD_OP_FLAG_CRAV | IDXD_OP_FLAG_RCR | IDXD_OP_FLAG_CC)
#define IAX_AECS_COMPRESS_FLAG (IAX_AECS_DEFAULT_FLAG | IDXD_OP_FLAG_RD_SRC2_AECS)
#define IAX_AECS_DECOMPRESS_FLAG (IAX_AECS_DEFAULT_FLAG | IDXD_OP_FLAG_RD_SRC2_AECS)
#define IAX_AECS_GEN_FLAG (IAX_AECS_DEFAULT_FLAG | \
IDXD_OP_FLAG_WR_SRC2_AECS_COMP | \
IDXD_OP_FLAG_AECS_RW_TGLS)
static int check_completion(struct device *dev,
struct iax_completion_record *comp,
bool compress,
bool only_once);
static int init_device_compression_mode(struct iaa_device *iaa_device,
struct iaa_compression_mode *mode,
int idx, struct idxd_wq *wq)
{
size_t size = sizeof(struct aecs_comp_table_record) + IAA_AECS_ALIGN;
struct device *dev = &iaa_device->idxd->pdev->dev;
struct iaa_device_compression_mode *device_mode;
int ret = -ENOMEM;
device_mode = kzalloc(sizeof(*device_mode), GFP_KERNEL);
if (!device_mode)
return -ENOMEM;
device_mode->name = kstrdup(mode->name, GFP_KERNEL);
if (!device_mode->name)
goto free;
device_mode->aecs_comp_table = dma_alloc_coherent(dev, size,
&device_mode->aecs_comp_table_dma_addr, GFP_KERNEL);
if (!device_mode->aecs_comp_table)
goto free;
/* Add Huffman table to aecs */
memset(device_mode->aecs_comp_table, 0, sizeof(*device_mode->aecs_comp_table));
memcpy(device_mode->aecs_comp_table->ll_sym, mode->ll_table, mode->ll_table_size);
memcpy(device_mode->aecs_comp_table->d_sym, mode->d_table, mode->d_table_size);
if (mode->init) {
ret = mode->init(device_mode);
if (ret)
goto free;
}
/* mode index should match iaa_compression_modes idx */
iaa_device->compression_modes[idx] = device_mode;
pr_debug("IAA %s compression mode initialized for iaa device %d\n",
mode->name, iaa_device->idxd->id);
ret = 0;
out:
return ret;
free:
pr_debug("IAA %s compression mode initialization failed for iaa device %d\n",
mode->name, iaa_device->idxd->id);
free_device_compression_mode(iaa_device, device_mode);
goto out;
}
static int init_device_compression_modes(struct iaa_device *iaa_device,
struct idxd_wq *wq)
{
struct iaa_compression_mode *mode;
int i, ret = 0;
for (i = 0; i < IAA_COMP_MODES_MAX; i++) {
mode = iaa_compression_modes[i];
if (!mode)
continue;
ret = init_device_compression_mode(iaa_device, mode, i, wq);
if (ret)
break;
}
return ret;
}
static void remove_device_compression_modes(struct iaa_device *iaa_device)
{
struct iaa_device_compression_mode *device_mode;
int i;
for (i = 0; i < IAA_COMP_MODES_MAX; i++) {
device_mode = iaa_device->compression_modes[i];
if (!device_mode)
continue;
if (iaa_compression_modes[i]->free)
iaa_compression_modes[i]->free(device_mode);
free_device_compression_mode(iaa_device, device_mode);
iaa_device->compression_modes[i] = NULL;
}
}
static struct iaa_device *iaa_device_alloc(void)
{
struct iaa_device *iaa_device;
iaa_device = kzalloc(sizeof(*iaa_device), GFP_KERNEL);
if (!iaa_device)
return NULL;
INIT_LIST_HEAD(&iaa_device->wqs);
return iaa_device;
}
static bool iaa_has_wq(struct iaa_device *iaa_device, struct idxd_wq *wq)
{
struct iaa_wq *iaa_wq;
list_for_each_entry(iaa_wq, &iaa_device->wqs, list) {
if (iaa_wq->wq == wq)
return true;
}
return false;
}
static struct iaa_device *add_iaa_device(struct idxd_device *idxd)
{
struct iaa_device *iaa_device;
iaa_device = iaa_device_alloc();
if (!iaa_device)
return NULL;
iaa_device->idxd = idxd;
list_add_tail(&iaa_device->list, &iaa_devices);
nr_iaa++;
return iaa_device;
}
static int init_iaa_device(struct iaa_device *iaa_device, struct iaa_wq *iaa_wq)
{
int ret = 0;
ret = init_device_compression_modes(iaa_device, iaa_wq->wq);
if (ret)
return ret;
return ret;
}
static void del_iaa_device(struct iaa_device *iaa_device)
{
list_del(&iaa_device->list);
nr_iaa--;
}
static int add_iaa_wq(struct iaa_device *iaa_device, struct idxd_wq *wq,
struct iaa_wq **new_wq)
{
struct idxd_device *idxd = iaa_device->idxd;
struct pci_dev *pdev = idxd->pdev;
struct device *dev = &pdev->dev;
struct iaa_wq *iaa_wq;
iaa_wq = kzalloc(sizeof(*iaa_wq), GFP_KERNEL);
if (!iaa_wq)
return -ENOMEM;
iaa_wq->wq = wq;
iaa_wq->iaa_device = iaa_device;
idxd_wq_set_private(wq, iaa_wq);
list_add_tail(&iaa_wq->list, &iaa_device->wqs);
iaa_device->n_wq++;
if (new_wq)
*new_wq = iaa_wq;
dev_dbg(dev, "added wq %d to iaa device %d, n_wq %d\n",
wq->id, iaa_device->idxd->id, iaa_device->n_wq);
return 0;
}
static void del_iaa_wq(struct iaa_device *iaa_device, struct idxd_wq *wq)
{
struct idxd_device *idxd = iaa_device->idxd;
struct pci_dev *pdev = idxd->pdev;
struct device *dev = &pdev->dev;
struct iaa_wq *iaa_wq;
list_for_each_entry(iaa_wq, &iaa_device->wqs, list) {
if (iaa_wq->wq == wq) {
list_del(&iaa_wq->list);
iaa_device->n_wq--;
dev_dbg(dev, "removed wq %d from iaa_device %d, n_wq %d, nr_iaa %d\n",
wq->id, iaa_device->idxd->id,
iaa_device->n_wq, nr_iaa);
if (iaa_device->n_wq == 0)
del_iaa_device(iaa_device);
break;
}
}
}
static void clear_wq_table(void)
{
int cpu;
for (cpu = 0; cpu < nr_cpus; cpu++)
wq_table_clear_entry(cpu);
pr_debug("cleared wq table\n");
}
static void free_iaa_device(struct iaa_device *iaa_device)
{
if (!iaa_device)
return;
remove_device_compression_modes(iaa_device);
kfree(iaa_device);
}
static void __free_iaa_wq(struct iaa_wq *iaa_wq)
{
struct iaa_device *iaa_device;
if (!iaa_wq)
return;
iaa_device = iaa_wq->iaa_device;
if (iaa_device->n_wq == 0)
free_iaa_device(iaa_wq->iaa_device);
}
static void free_iaa_wq(struct iaa_wq *iaa_wq)
{
struct idxd_wq *wq;
__free_iaa_wq(iaa_wq);
wq = iaa_wq->wq;
kfree(iaa_wq);
idxd_wq_set_private(wq, NULL);
}
static int iaa_wq_get(struct idxd_wq *wq)
{
struct idxd_device *idxd = wq->idxd;
struct iaa_wq *iaa_wq;
int ret = 0;
spin_lock(&idxd->dev_lock);
iaa_wq = idxd_wq_get_private(wq);
if (iaa_wq && !iaa_wq->remove) {
iaa_wq->ref++;
idxd_wq_get(wq);
} else {
ret = -ENODEV;
}
spin_unlock(&idxd->dev_lock);
return ret;
}
static int iaa_wq_put(struct idxd_wq *wq)
{
struct idxd_device *idxd = wq->idxd;
struct iaa_wq *iaa_wq;
bool free = false;
int ret = 0;
spin_lock(&idxd->dev_lock);
iaa_wq = idxd_wq_get_private(wq);
if (iaa_wq) {
iaa_wq->ref--;
if (iaa_wq->ref == 0 && iaa_wq->remove) {
idxd_wq_set_private(wq, NULL);
free = true;
}
idxd_wq_put(wq);
} else {
ret = -ENODEV;
}
spin_unlock(&idxd->dev_lock);
if (free) {
__free_iaa_wq(iaa_wq);
kfree(iaa_wq);
}
return ret;
}
static void free_wq_table(void)
{
int cpu;
for (cpu = 0; cpu < nr_cpus; cpu++)
wq_table_free_entry(cpu);
free_percpu(wq_table);
pr_debug("freed wq table\n");
}
static int alloc_wq_table(int max_wqs)
{
struct wq_table_entry *entry;
int cpu;
wq_table = alloc_percpu(struct wq_table_entry);
if (!wq_table)
return -ENOMEM;
for (cpu = 0; cpu < nr_cpus; cpu++) {
entry = per_cpu_ptr(wq_table, cpu);
entry->wqs = kcalloc(max_wqs, sizeof(struct wq *), GFP_KERNEL);
if (!entry->wqs) {
free_wq_table();
return -ENOMEM;
}
entry->max_wqs = max_wqs;
}
pr_debug("initialized wq table\n");
return 0;
}
static int save_iaa_wq(struct idxd_wq *wq)
{
struct iaa_device *iaa_device, *found = NULL;
struct idxd_device *idxd;
struct pci_dev *pdev;
struct device *dev;
int ret = 0;
list_for_each_entry(iaa_device, &iaa_devices, list) {
if (iaa_device->idxd == wq->idxd) {
idxd = iaa_device->idxd;
pdev = idxd->pdev;
dev = &pdev->dev;
/*
* Check to see that we don't already have this wq.
* Shouldn't happen but we don't control probing.
*/
if (iaa_has_wq(iaa_device, wq)) {
dev_dbg(dev, "same wq probed multiple times for iaa_device %p\n",
iaa_device);
goto out;
}
found = iaa_device;
ret = add_iaa_wq(iaa_device, wq, NULL);
if (ret)
goto out;
break;
}
}
if (!found) {
struct iaa_device *new_device;
struct iaa_wq *new_wq;
new_device = add_iaa_device(wq->idxd);
if (!new_device) {
ret = -ENOMEM;
goto out;
}
ret = add_iaa_wq(new_device, wq, &new_wq);
if (ret) {
del_iaa_device(new_device);
free_iaa_device(new_device);
goto out;
}
ret = init_iaa_device(new_device, new_wq);
if (ret) {
del_iaa_wq(new_device, new_wq->wq);
del_iaa_device(new_device);
free_iaa_wq(new_wq);
goto out;
}
}
if (WARN_ON(nr_iaa == 0))
return -EINVAL;
cpus_per_iaa = (nr_nodes * nr_cpus_per_node) / nr_iaa;
if (!cpus_per_iaa)
cpus_per_iaa = 1;
out:
return 0;
}
static void remove_iaa_wq(struct idxd_wq *wq)
{
struct iaa_device *iaa_device;
list_for_each_entry(iaa_device, &iaa_devices, list) {
if (iaa_has_wq(iaa_device, wq)) {
del_iaa_wq(iaa_device, wq);
break;
}
}
if (nr_iaa) {
cpus_per_iaa = (nr_nodes * nr_cpus_per_node) / nr_iaa;
if (!cpus_per_iaa)
cpus_per_iaa = 1;
} else
cpus_per_iaa = 1;
}
static int wq_table_add_wqs(int iaa, int cpu)
{
struct iaa_device *iaa_device, *found_device = NULL;
int ret = 0, cur_iaa = 0, n_wqs_added = 0;
struct idxd_device *idxd;
struct iaa_wq *iaa_wq;
struct pci_dev *pdev;
struct device *dev;
list_for_each_entry(iaa_device, &iaa_devices, list) {
idxd = iaa_device->idxd;
pdev = idxd->pdev;
dev = &pdev->dev;
if (cur_iaa != iaa) {
cur_iaa++;
continue;
}
found_device = iaa_device;
dev_dbg(dev, "getting wq from iaa_device %d, cur_iaa %d\n",
found_device->idxd->id, cur_iaa);
break;
}
if (!found_device) {
found_device = list_first_entry_or_null(&iaa_devices,
struct iaa_device, list);
if (!found_device) {
pr_debug("couldn't find any iaa devices with wqs!\n");
ret = -EINVAL;
goto out;
}
cur_iaa = 0;
idxd = found_device->idxd;
pdev = idxd->pdev;
dev = &pdev->dev;
dev_dbg(dev, "getting wq from only iaa_device %d, cur_iaa %d\n",
found_device->idxd->id, cur_iaa);
}
list_for_each_entry(iaa_wq, &found_device->wqs, list) {
wq_table_add(cpu, iaa_wq->wq);
pr_debug("rebalance: added wq for cpu=%d: iaa wq %d.%d\n",
cpu, iaa_wq->wq->idxd->id, iaa_wq->wq->id);
n_wqs_added++;
}
if (!n_wqs_added) {
pr_debug("couldn't find any iaa wqs!\n");
ret = -EINVAL;
goto out;
}
out:
return ret;
}
/*
* Rebalance the wq table so that given a cpu, it's easy to find the
* closest IAA instance. The idea is to try to choose the most
* appropriate IAA instance for a caller and spread available
* workqueues around to clients.
*/
static void rebalance_wq_table(void)
{
const struct cpumask *node_cpus;
int node, cpu, iaa = -1;
if (nr_iaa == 0)
return;
pr_debug("rebalance: nr_nodes=%d, nr_cpus %d, nr_iaa %d, cpus_per_iaa %d\n",
nr_nodes, nr_cpus, nr_iaa, cpus_per_iaa);
clear_wq_table();
if (nr_iaa == 1) {
for (cpu = 0; cpu < nr_cpus; cpu++) {
if (WARN_ON(wq_table_add_wqs(0, cpu))) {
pr_debug("could not add any wqs for iaa 0 to cpu %d!\n", cpu);
return;
}
}
return;
}
for_each_node_with_cpus(node) {
node_cpus = cpumask_of_node(node);
for (cpu = 0; cpu < cpumask_weight(node_cpus); cpu++) {
int node_cpu = cpumask_nth(cpu, node_cpus);
if (WARN_ON(node_cpu >= nr_cpu_ids)) {
pr_debug("node_cpu %d doesn't exist!\n", node_cpu);
return;
}
if ((cpu % cpus_per_iaa) == 0)
iaa++;
if (WARN_ON(wq_table_add_wqs(iaa, node_cpu))) {
pr_debug("could not add any wqs for iaa %d to cpu %d!\n", iaa, cpu);
return;
}
}
}
}
static inline int check_completion(struct device *dev,
struct iax_completion_record *comp,
bool compress,
bool only_once)
{
char *op_str = compress ? "compress" : "decompress";
int ret = 0;
while (!comp->status) {
if (only_once)
return -EAGAIN;
cpu_relax();
}
if (comp->status != IAX_COMP_SUCCESS) {
if (comp->status == IAA_ERROR_WATCHDOG_EXPIRED) {
ret = -ETIMEDOUT;
dev_dbg(dev, "%s timed out, size=0x%x\n",
op_str, comp->output_size);
update_completion_timeout_errs();
goto out;
}
if (comp->status == IAA_ANALYTICS_ERROR &&
comp->error_code == IAA_ERROR_COMP_BUF_OVERFLOW && compress) {
ret = -E2BIG;
dev_dbg(dev, "compressed > uncompressed size,"
" not compressing, size=0x%x\n",
comp->output_size);
update_completion_comp_buf_overflow_errs();
goto out;
}
if (comp->status == IAA_ERROR_DECOMP_BUF_OVERFLOW) {
ret = -EOVERFLOW;
goto out;
}
ret = -EINVAL;
dev_dbg(dev, "iaa %s status=0x%x, error=0x%x, size=0x%x\n",
op_str, comp->status, comp->error_code, comp->output_size);
print_hex_dump(KERN_INFO, "cmp-rec: ", DUMP_PREFIX_OFFSET, 8, 1, comp, 64, 0);
update_completion_einval_errs();
goto out;
}
out:
return ret;
}
static int deflate_generic_decompress(struct acomp_req *req)
{
void *src, *dst;
int ret;
src = kmap_local_page(sg_page(req->src)) + req->src->offset;
dst = kmap_local_page(sg_page(req->dst)) + req->dst->offset;
ret = crypto_comp_decompress(deflate_generic_tfm,
src, req->slen, dst, &req->dlen);
kunmap_local(src);
kunmap_local(dst);
update_total_sw_decomp_calls();
return ret;
}
static int iaa_remap_for_verify(struct device *dev, struct iaa_wq *iaa_wq,
struct acomp_req *req,
dma_addr_t *src_addr, dma_addr_t *dst_addr);
static int iaa_compress_verify(struct crypto_tfm *tfm, struct acomp_req *req,
struct idxd_wq *wq,
dma_addr_t src_addr, unsigned int slen,
dma_addr_t dst_addr, unsigned int *dlen,
u32 compression_crc);
static void iaa_desc_complete(struct idxd_desc *idxd_desc,
enum idxd_complete_type comp_type,
bool free_desc, void *__ctx,
u32 *status)
{
struct iaa_device_compression_mode *active_compression_mode;
struct iaa_compression_ctx *compression_ctx;
struct crypto_ctx *ctx = __ctx;
struct iaa_device *iaa_device;
struct idxd_device *idxd;
struct iaa_wq *iaa_wq;
struct pci_dev *pdev;
struct device *dev;
int ret, err = 0;
compression_ctx = crypto_tfm_ctx(ctx->tfm);
iaa_wq = idxd_wq_get_private(idxd_desc->wq);
iaa_device = iaa_wq->iaa_device;
idxd = iaa_device->idxd;
pdev = idxd->pdev;
dev = &pdev->dev;
active_compression_mode = get_iaa_device_compression_mode(iaa_device,
compression_ctx->mode);
dev_dbg(dev, "%s: compression mode %s,"
" ctx->src_addr %llx, ctx->dst_addr %llx\n", __func__,
active_compression_mode->name,
ctx->src_addr, ctx->dst_addr);
ret = check_completion(dev, idxd_desc->iax_completion,
ctx->compress, false);
if (ret) {
dev_dbg(dev, "%s: check_completion failed ret=%d\n", __func__, ret);
if (!ctx->compress &&
idxd_desc->iax_completion->status == IAA_ANALYTICS_ERROR) {
pr_warn("%s: falling back to deflate-generic decompress, "
"analytics error code %x\n", __func__,
idxd_desc->iax_completion->error_code);
ret = deflate_generic_decompress(ctx->req);
if (ret) {
dev_dbg(dev, "%s: deflate-generic failed ret=%d\n",
__func__, ret);
err = -EIO;
goto err;
}
} else {
err = -EIO;
goto err;
}
} else {
ctx->req->dlen = idxd_desc->iax_completion->output_size;
}
/* Update stats */
if (ctx->compress) {
update_total_comp_bytes_out(ctx->req->dlen);
update_wq_comp_bytes(iaa_wq->wq, ctx->req->dlen);
} else {
update_total_decomp_bytes_in(ctx->req->slen);
update_wq_decomp_bytes(iaa_wq->wq, ctx->req->slen);
}
if (ctx->compress && compression_ctx->verify_compress) {
dma_addr_t src_addr, dst_addr;
u32 compression_crc;
compression_crc = idxd_desc->iax_completion->crc;
ret = iaa_remap_for_verify(dev, iaa_wq, ctx->req, &src_addr, &dst_addr);
if (ret) {
dev_dbg(dev, "%s: compress verify remap failed ret=%d\n", __func__, ret);
err = -EIO;
goto out;
}
ret = iaa_compress_verify(ctx->tfm, ctx->req, iaa_wq->wq, src_addr,
ctx->req->slen, dst_addr, &ctx->req->dlen,
compression_crc);
if (ret) {
dev_dbg(dev, "%s: compress verify failed ret=%d\n", __func__, ret);
err = -EIO;
}
dma_unmap_sg(dev, ctx->req->dst, sg_nents(ctx->req->dst), DMA_TO_DEVICE);
dma_unmap_sg(dev, ctx->req->src, sg_nents(ctx->req->src), DMA_FROM_DEVICE);
goto out;
}
err:
dma_unmap_sg(dev, ctx->req->dst, sg_nents(ctx->req->dst), DMA_FROM_DEVICE);
dma_unmap_sg(dev, ctx->req->src, sg_nents(ctx->req->src), DMA_TO_DEVICE);
out:
if (ret != 0)
dev_dbg(dev, "asynchronous compress failed ret=%d\n", ret);
if (ctx->req->base.complete)
acomp_request_complete(ctx->req, err);
if (free_desc)
idxd_free_desc(idxd_desc->wq, idxd_desc);
iaa_wq_put(idxd_desc->wq);
}
static int iaa_compress(struct crypto_tfm *tfm, struct acomp_req *req,
struct idxd_wq *wq,
dma_addr_t src_addr, unsigned int slen,
dma_addr_t dst_addr, unsigned int *dlen,
u32 *compression_crc,
bool disable_async)
{
struct iaa_device_compression_mode *active_compression_mode;
struct iaa_compression_ctx *ctx = crypto_tfm_ctx(tfm);
struct iaa_device *iaa_device;
struct idxd_desc *idxd_desc;
struct iax_hw_desc *desc;
struct idxd_device *idxd;
struct iaa_wq *iaa_wq;
struct pci_dev *pdev;
struct device *dev;
int ret = 0;
iaa_wq = idxd_wq_get_private(wq);
iaa_device = iaa_wq->iaa_device;
idxd = iaa_device->idxd;
pdev = idxd->pdev;
dev = &pdev->dev;
active_compression_mode = get_iaa_device_compression_mode(iaa_device, ctx->mode);
idxd_desc = idxd_alloc_desc(wq, IDXD_OP_BLOCK);
if (IS_ERR(idxd_desc)) {
dev_dbg(dev, "idxd descriptor allocation failed\n");
dev_dbg(dev, "iaa compress failed: ret=%ld\n", PTR_ERR(idxd_desc));
return PTR_ERR(idxd_desc);
}
desc = idxd_desc->iax_hw;
desc->flags = IDXD_OP_FLAG_CRAV | IDXD_OP_FLAG_RCR |
IDXD_OP_FLAG_RD_SRC2_AECS | IDXD_OP_FLAG_CC;
desc->opcode = IAX_OPCODE_COMPRESS;
desc->compr_flags = IAA_COMP_FLAGS;
desc->priv = 0;
desc->src1_addr = (u64)src_addr;
desc->src1_size = slen;
desc->dst_addr = (u64)dst_addr;
desc->max_dst_size = *dlen;
desc->src2_addr = active_compression_mode->aecs_comp_table_dma_addr;
desc->src2_size = sizeof(struct aecs_comp_table_record);
desc->completion_addr = idxd_desc->compl_dma;
if (ctx->use_irq && !disable_async) {
desc->flags |= IDXD_OP_FLAG_RCI;
idxd_desc->crypto.req = req;
idxd_desc->crypto.tfm = tfm;
idxd_desc->crypto.src_addr = src_addr;
idxd_desc->crypto.dst_addr = dst_addr;
idxd_desc->crypto.compress = true;
dev_dbg(dev, "%s use_async_irq: compression mode %s,"
" src_addr %llx, dst_addr %llx\n", __func__,
active_compression_mode->name,
src_addr, dst_addr);
} else if (ctx->async_mode && !disable_async)
req->base.data = idxd_desc;
dev_dbg(dev, "%s: compression mode %s,"
" desc->src1_addr %llx, desc->src1_size %d,"
" desc->dst_addr %llx, desc->max_dst_size %d,"
" desc->src2_addr %llx, desc->src2_size %d\n", __func__,
active_compression_mode->name,
desc->src1_addr, desc->src1_size, desc->dst_addr,
desc->max_dst_size, desc->src2_addr, desc->src2_size);
ret = idxd_submit_desc(wq, idxd_desc);
if (ret) {
dev_dbg(dev, "submit_desc failed ret=%d\n", ret);
goto err;
}
/* Update stats */
update_total_comp_calls();
update_wq_comp_calls(wq);
if (ctx->async_mode && !disable_async) {
ret = -EINPROGRESS;
dev_dbg(dev, "%s: returning -EINPROGRESS\n", __func__);
goto out;
}
ret = check_completion(dev, idxd_desc->iax_completion, true, false);
if (ret) {
dev_dbg(dev, "check_completion failed ret=%d\n", ret);
goto err;
}
*dlen = idxd_desc->iax_completion->output_size;
/* Update stats */
update_total_comp_bytes_out(*dlen);
update_wq_comp_bytes(wq, *dlen);
*compression_crc = idxd_desc->iax_completion->crc;
if (!ctx->async_mode || disable_async)
idxd_free_desc(wq, idxd_desc);
out:
return ret;
err:
idxd_free_desc(wq, idxd_desc);
dev_dbg(dev, "iaa compress failed: ret=%d\n", ret);
goto out;
}
static int iaa_remap_for_verify(struct device *dev, struct iaa_wq *iaa_wq,
struct acomp_req *req,
dma_addr_t *src_addr, dma_addr_t *dst_addr)
{
int ret = 0;
int nr_sgs;
dma_unmap_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE);
nr_sgs = dma_map_sg(dev, req->src, sg_nents(req->src), DMA_FROM_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "verify: couldn't map src sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
goto out;
}
*src_addr = sg_dma_address(req->src);
dev_dbg(dev, "verify: dma_map_sg, src_addr %llx, nr_sgs %d, req->src %p,"
" req->slen %d, sg_dma_len(sg) %d\n", *src_addr, nr_sgs,
req->src, req->slen, sg_dma_len(req->src));
nr_sgs = dma_map_sg(dev, req->dst, sg_nents(req->dst), DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "verify: couldn't map dst sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_FROM_DEVICE);
goto out;
}
*dst_addr = sg_dma_address(req->dst);
dev_dbg(dev, "verify: dma_map_sg, dst_addr %llx, nr_sgs %d, req->dst %p,"
" req->dlen %d, sg_dma_len(sg) %d\n", *dst_addr, nr_sgs,
req->dst, req->dlen, sg_dma_len(req->dst));
out:
return ret;
}
static int iaa_compress_verify(struct crypto_tfm *tfm, struct acomp_req *req,
struct idxd_wq *wq,
dma_addr_t src_addr, unsigned int slen,
dma_addr_t dst_addr, unsigned int *dlen,
u32 compression_crc)
{
struct iaa_device_compression_mode *active_compression_mode;
struct iaa_compression_ctx *ctx = crypto_tfm_ctx(tfm);
struct iaa_device *iaa_device;
struct idxd_desc *idxd_desc;
struct iax_hw_desc *desc;
struct idxd_device *idxd;
struct iaa_wq *iaa_wq;
struct pci_dev *pdev;
struct device *dev;
int ret = 0;
iaa_wq = idxd_wq_get_private(wq);
iaa_device = iaa_wq->iaa_device;
idxd = iaa_device->idxd;
pdev = idxd->pdev;
dev = &pdev->dev;
active_compression_mode = get_iaa_device_compression_mode(iaa_device, ctx->mode);
idxd_desc = idxd_alloc_desc(wq, IDXD_OP_BLOCK);
if (IS_ERR(idxd_desc)) {
dev_dbg(dev, "idxd descriptor allocation failed\n");
dev_dbg(dev, "iaa compress failed: ret=%ld\n",
PTR_ERR(idxd_desc));
return PTR_ERR(idxd_desc);
}
desc = idxd_desc->iax_hw;
/* Verify (optional) - decompress and check crc, suppress dest write */
desc->flags = IDXD_OP_FLAG_CRAV | IDXD_OP_FLAG_RCR | IDXD_OP_FLAG_CC;
desc->opcode = IAX_OPCODE_DECOMPRESS;
desc->decompr_flags = IAA_DECOMP_FLAGS | IAA_DECOMP_SUPPRESS_OUTPUT;
desc->priv = 0;
desc->src1_addr = (u64)dst_addr;
desc->src1_size = *dlen;
desc->dst_addr = (u64)src_addr;
desc->max_dst_size = slen;
desc->completion_addr = idxd_desc->compl_dma;
dev_dbg(dev, "(verify) compression mode %s,"
" desc->src1_addr %llx, desc->src1_size %d,"
" desc->dst_addr %llx, desc->max_dst_size %d,"
" desc->src2_addr %llx, desc->src2_size %d\n",
active_compression_mode->name,
desc->src1_addr, desc->src1_size, desc->dst_addr,
desc->max_dst_size, desc->src2_addr, desc->src2_size);
ret = idxd_submit_desc(wq, idxd_desc);
if (ret) {
dev_dbg(dev, "submit_desc (verify) failed ret=%d\n", ret);
goto err;
}
ret = check_completion(dev, idxd_desc->iax_completion, false, false);
if (ret) {
dev_dbg(dev, "(verify) check_completion failed ret=%d\n", ret);
goto err;
}
if (compression_crc != idxd_desc->iax_completion->crc) {
ret = -EINVAL;
dev_dbg(dev, "(verify) iaa comp/decomp crc mismatch:"
" comp=0x%x, decomp=0x%x\n", compression_crc,
idxd_desc->iax_completion->crc);
print_hex_dump(KERN_INFO, "cmp-rec: ", DUMP_PREFIX_OFFSET,
8, 1, idxd_desc->iax_completion, 64, 0);
goto err;
}
idxd_free_desc(wq, idxd_desc);
out:
return ret;
err:
idxd_free_desc(wq, idxd_desc);
dev_dbg(dev, "iaa compress failed: ret=%d\n", ret);
goto out;
}
static int iaa_decompress(struct crypto_tfm *tfm, struct acomp_req *req,
struct idxd_wq *wq,
dma_addr_t src_addr, unsigned int slen,
dma_addr_t dst_addr, unsigned int *dlen,
bool disable_async)
{
struct iaa_device_compression_mode *active_compression_mode;
struct iaa_compression_ctx *ctx = crypto_tfm_ctx(tfm);
struct iaa_device *iaa_device;
struct idxd_desc *idxd_desc;
struct iax_hw_desc *desc;
struct idxd_device *idxd;
struct iaa_wq *iaa_wq;
struct pci_dev *pdev;
struct device *dev;
int ret = 0;
iaa_wq = idxd_wq_get_private(wq);
iaa_device = iaa_wq->iaa_device;
idxd = iaa_device->idxd;
pdev = idxd->pdev;
dev = &pdev->dev;
active_compression_mode = get_iaa_device_compression_mode(iaa_device, ctx->mode);
idxd_desc = idxd_alloc_desc(wq, IDXD_OP_BLOCK);
if (IS_ERR(idxd_desc)) {
dev_dbg(dev, "idxd descriptor allocation failed\n");
dev_dbg(dev, "iaa decompress failed: ret=%ld\n",
PTR_ERR(idxd_desc));
return PTR_ERR(idxd_desc);
}
desc = idxd_desc->iax_hw;
desc->flags = IDXD_OP_FLAG_CRAV | IDXD_OP_FLAG_RCR | IDXD_OP_FLAG_CC;
desc->opcode = IAX_OPCODE_DECOMPRESS;
desc->max_dst_size = PAGE_SIZE;
desc->decompr_flags = IAA_DECOMP_FLAGS;
desc->priv = 0;
desc->src1_addr = (u64)src_addr;
desc->dst_addr = (u64)dst_addr;
desc->max_dst_size = *dlen;
desc->src1_size = slen;
desc->completion_addr = idxd_desc->compl_dma;
if (ctx->use_irq && !disable_async) {
desc->flags |= IDXD_OP_FLAG_RCI;
idxd_desc->crypto.req = req;
idxd_desc->crypto.tfm = tfm;
idxd_desc->crypto.src_addr = src_addr;
idxd_desc->crypto.dst_addr = dst_addr;
idxd_desc->crypto.compress = false;
dev_dbg(dev, "%s: use_async_irq compression mode %s,"
" src_addr %llx, dst_addr %llx\n", __func__,
active_compression_mode->name,
src_addr, dst_addr);
} else if (ctx->async_mode && !disable_async)
req->base.data = idxd_desc;
dev_dbg(dev, "%s: decompression mode %s,"
" desc->src1_addr %llx, desc->src1_size %d,"
" desc->dst_addr %llx, desc->max_dst_size %d,"
" desc->src2_addr %llx, desc->src2_size %d\n", __func__,
active_compression_mode->name,
desc->src1_addr, desc->src1_size, desc->dst_addr,
desc->max_dst_size, desc->src2_addr, desc->src2_size);
ret = idxd_submit_desc(wq, idxd_desc);
if (ret) {
dev_dbg(dev, "submit_desc failed ret=%d\n", ret);
goto err;
}
/* Update stats */
update_total_decomp_calls();
update_wq_decomp_calls(wq);
if (ctx->async_mode && !disable_async) {
ret = -EINPROGRESS;
dev_dbg(dev, "%s: returning -EINPROGRESS\n", __func__);
goto out;
}
ret = check_completion(dev, idxd_desc->iax_completion, false, false);
if (ret) {
dev_dbg(dev, "%s: check_completion failed ret=%d\n", __func__, ret);
if (idxd_desc->iax_completion->status == IAA_ANALYTICS_ERROR) {
pr_warn("%s: falling back to deflate-generic decompress, "
"analytics error code %x\n", __func__,
idxd_desc->iax_completion->error_code);
ret = deflate_generic_decompress(req);
if (ret) {
dev_dbg(dev, "%s: deflate-generic failed ret=%d\n",
__func__, ret);
goto err;
}
} else {
goto err;
}
} else {
req->dlen = idxd_desc->iax_completion->output_size;
}
*dlen = req->dlen;
if (!ctx->async_mode || disable_async)
idxd_free_desc(wq, idxd_desc);
/* Update stats */
update_total_decomp_bytes_in(slen);
update_wq_decomp_bytes(wq, slen);
out:
return ret;
err:
idxd_free_desc(wq, idxd_desc);
dev_dbg(dev, "iaa decompress failed: ret=%d\n", ret);
goto out;
}
static int iaa_comp_acompress(struct acomp_req *req)
{
struct iaa_compression_ctx *compression_ctx;
struct crypto_tfm *tfm = req->base.tfm;
dma_addr_t src_addr, dst_addr;
bool disable_async = false;
int nr_sgs, cpu, ret = 0;
struct iaa_wq *iaa_wq;
u32 compression_crc;
struct idxd_wq *wq;
struct device *dev;
int order = -1;
compression_ctx = crypto_tfm_ctx(tfm);
if (!iaa_crypto_enabled) {
pr_debug("iaa_crypto disabled, not compressing\n");
return -ENODEV;
}
if (!req->src || !req->slen) {
pr_debug("invalid src, not compressing\n");
return -EINVAL;
}
cpu = get_cpu();
wq = wq_table_next_wq(cpu);
put_cpu();
if (!wq) {
pr_debug("no wq configured for cpu=%d\n", cpu);
return -ENODEV;
}
ret = iaa_wq_get(wq);
if (ret) {
pr_debug("no wq available for cpu=%d\n", cpu);
return -ENODEV;
}
iaa_wq = idxd_wq_get_private(wq);
if (!req->dst) {
gfp_t flags = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
/* incompressible data will always be < 2 * slen */
req->dlen = 2 * req->slen;
order = order_base_2(round_up(req->dlen, PAGE_SIZE) / PAGE_SIZE);
req->dst = sgl_alloc_order(req->dlen, order, false, flags, NULL);
if (!req->dst) {
ret = -ENOMEM;
order = -1;
goto out;
}
disable_async = true;
}
dev = &wq->idxd->pdev->dev;
nr_sgs = dma_map_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "couldn't map src sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
goto out;
}
src_addr = sg_dma_address(req->src);
dev_dbg(dev, "dma_map_sg, src_addr %llx, nr_sgs %d, req->src %p,"
" req->slen %d, sg_dma_len(sg) %d\n", src_addr, nr_sgs,
req->src, req->slen, sg_dma_len(req->src));
nr_sgs = dma_map_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "couldn't map dst sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
goto err_map_dst;
}
dst_addr = sg_dma_address(req->dst);
dev_dbg(dev, "dma_map_sg, dst_addr %llx, nr_sgs %d, req->dst %p,"
" req->dlen %d, sg_dma_len(sg) %d\n", dst_addr, nr_sgs,
req->dst, req->dlen, sg_dma_len(req->dst));
ret = iaa_compress(tfm, req, wq, src_addr, req->slen, dst_addr,
&req->dlen, &compression_crc, disable_async);
if (ret == -EINPROGRESS)
return ret;
if (!ret && compression_ctx->verify_compress) {
ret = iaa_remap_for_verify(dev, iaa_wq, req, &src_addr, &dst_addr);
if (ret) {
dev_dbg(dev, "%s: compress verify remap failed ret=%d\n", __func__, ret);
goto out;
}
ret = iaa_compress_verify(tfm, req, wq, src_addr, req->slen,
dst_addr, &req->dlen, compression_crc);
if (ret)
dev_dbg(dev, "asynchronous compress verification failed ret=%d\n", ret);
dma_unmap_sg(dev, req->dst, sg_nents(req->dst), DMA_TO_DEVICE);
dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_FROM_DEVICE);
goto out;
}
if (ret)
dev_dbg(dev, "asynchronous compress failed ret=%d\n", ret);
dma_unmap_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
err_map_dst:
dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE);
out:
iaa_wq_put(wq);
if (order >= 0)
sgl_free_order(req->dst, order);
return ret;
}
static int iaa_comp_adecompress_alloc_dest(struct acomp_req *req)
{
gfp_t flags = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
struct crypto_tfm *tfm = req->base.tfm;
dma_addr_t src_addr, dst_addr;
int nr_sgs, cpu, ret = 0;
struct iaa_wq *iaa_wq;
struct device *dev;
struct idxd_wq *wq;
int order = -1;
cpu = get_cpu();
wq = wq_table_next_wq(cpu);
put_cpu();
if (!wq) {
pr_debug("no wq configured for cpu=%d\n", cpu);
return -ENODEV;
}
ret = iaa_wq_get(wq);
if (ret) {
pr_debug("no wq available for cpu=%d\n", cpu);
return -ENODEV;
}
iaa_wq = idxd_wq_get_private(wq);
dev = &wq->idxd->pdev->dev;
nr_sgs = dma_map_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "couldn't map src sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
goto out;
}
src_addr = sg_dma_address(req->src);
dev_dbg(dev, "dma_map_sg, src_addr %llx, nr_sgs %d, req->src %p,"
" req->slen %d, sg_dma_len(sg) %d\n", src_addr, nr_sgs,
req->src, req->slen, sg_dma_len(req->src));
req->dlen = 4 * req->slen; /* start with ~avg comp rato */
alloc_dest:
order = order_base_2(round_up(req->dlen, PAGE_SIZE) / PAGE_SIZE);
req->dst = sgl_alloc_order(req->dlen, order, false, flags, NULL);
if (!req->dst) {
ret = -ENOMEM;
order = -1;
goto out;
}
nr_sgs = dma_map_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "couldn't map dst sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
goto err_map_dst;
}
dst_addr = sg_dma_address(req->dst);
dev_dbg(dev, "dma_map_sg, dst_addr %llx, nr_sgs %d, req->dst %p,"
" req->dlen %d, sg_dma_len(sg) %d\n", dst_addr, nr_sgs,
req->dst, req->dlen, sg_dma_len(req->dst));
ret = iaa_decompress(tfm, req, wq, src_addr, req->slen,
dst_addr, &req->dlen, true);
if (ret == -EOVERFLOW) {
dma_unmap_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
req->dlen *= 2;
if (req->dlen > CRYPTO_ACOMP_DST_MAX)
goto err_map_dst;
goto alloc_dest;
}
if (ret != 0)
dev_dbg(dev, "asynchronous decompress failed ret=%d\n", ret);
dma_unmap_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
err_map_dst:
dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE);
out:
iaa_wq_put(wq);
if (order >= 0)
sgl_free_order(req->dst, order);
return ret;
}
static int iaa_comp_adecompress(struct acomp_req *req)
{
struct crypto_tfm *tfm = req->base.tfm;
dma_addr_t src_addr, dst_addr;
int nr_sgs, cpu, ret = 0;
struct iaa_wq *iaa_wq;
struct device *dev;
struct idxd_wq *wq;
if (!iaa_crypto_enabled) {
pr_debug("iaa_crypto disabled, not decompressing\n");
return -ENODEV;
}
if (!req->src || !req->slen) {
pr_debug("invalid src, not decompressing\n");
return -EINVAL;
}
if (!req->dst)
return iaa_comp_adecompress_alloc_dest(req);
cpu = get_cpu();
wq = wq_table_next_wq(cpu);
put_cpu();
if (!wq) {
pr_debug("no wq configured for cpu=%d\n", cpu);
return -ENODEV;
}
ret = iaa_wq_get(wq);
if (ret) {
pr_debug("no wq available for cpu=%d\n", cpu);
return -ENODEV;
}
iaa_wq = idxd_wq_get_private(wq);
dev = &wq->idxd->pdev->dev;
nr_sgs = dma_map_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "couldn't map src sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
goto out;
}
src_addr = sg_dma_address(req->src);
dev_dbg(dev, "dma_map_sg, src_addr %llx, nr_sgs %d, req->src %p,"
" req->slen %d, sg_dma_len(sg) %d\n", src_addr, nr_sgs,
req->src, req->slen, sg_dma_len(req->src));
nr_sgs = dma_map_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 1) {
dev_dbg(dev, "couldn't map dst sg for iaa device %d,"
" wq %d: ret=%d\n", iaa_wq->iaa_device->idxd->id,
iaa_wq->wq->id, ret);
ret = -EIO;
goto err_map_dst;
}
dst_addr = sg_dma_address(req->dst);
dev_dbg(dev, "dma_map_sg, dst_addr %llx, nr_sgs %d, req->dst %p,"
" req->dlen %d, sg_dma_len(sg) %d\n", dst_addr, nr_sgs,
req->dst, req->dlen, sg_dma_len(req->dst));
ret = iaa_decompress(tfm, req, wq, src_addr, req->slen,
dst_addr, &req->dlen, false);
if (ret == -EINPROGRESS)
return ret;
if (ret != 0)
dev_dbg(dev, "asynchronous decompress failed ret=%d\n", ret);
dma_unmap_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE);
err_map_dst:
dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE);
out:
iaa_wq_put(wq);
return ret;
}
static void compression_ctx_init(struct iaa_compression_ctx *ctx)
{
ctx->verify_compress = iaa_verify_compress;
ctx->async_mode = async_mode;
ctx->use_irq = use_irq;
}
static int iaa_comp_init_fixed(struct crypto_acomp *acomp_tfm)
{
struct crypto_tfm *tfm = crypto_acomp_tfm(acomp_tfm);
struct iaa_compression_ctx *ctx = crypto_tfm_ctx(tfm);
compression_ctx_init(ctx);
ctx->mode = IAA_MODE_FIXED;
return 0;
}
static void dst_free(struct scatterlist *sgl)
{
/*
* Called for req->dst = NULL cases but we free elsewhere
* using sgl_free_order().
*/
}
static struct acomp_alg iaa_acomp_fixed_deflate = {
.init = iaa_comp_init_fixed,
.compress = iaa_comp_acompress,
.decompress = iaa_comp_adecompress,
.dst_free = dst_free,
.base = {
.cra_name = "deflate",
.cra_driver_name = "deflate-iaa",
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_ctxsize = sizeof(struct iaa_compression_ctx),
.cra_module = THIS_MODULE,
.cra_priority = IAA_ALG_PRIORITY,
}
};
static int iaa_register_compression_device(void)
{
int ret;
ret = crypto_register_acomp(&iaa_acomp_fixed_deflate);
if (ret) {
pr_err("deflate algorithm acomp fixed registration failed (%d)\n", ret);
goto out;
}
iaa_crypto_registered = true;
out:
return ret;
}
static int iaa_unregister_compression_device(void)
{
if (iaa_crypto_registered)
crypto_unregister_acomp(&iaa_acomp_fixed_deflate);
return 0;
}
static int iaa_crypto_probe(struct idxd_dev *idxd_dev)
{
struct idxd_wq *wq = idxd_dev_to_wq(idxd_dev);
struct idxd_device *idxd = wq->idxd;
struct idxd_driver_data *data = idxd->data;
struct device *dev = &idxd_dev->conf_dev;
bool first_wq = false;
int ret = 0;
if (idxd->state != IDXD_DEV_ENABLED)
return -ENXIO;
if (data->type != IDXD_TYPE_IAX)
return -ENODEV;
mutex_lock(&wq->wq_lock);
if (idxd_wq_get_private(wq)) {
mutex_unlock(&wq->wq_lock);
return -EBUSY;
}
if (!idxd_wq_driver_name_match(wq, dev)) {
dev_dbg(dev, "wq %d.%d driver_name match failed: wq driver_name %s, dev driver name %s\n",
idxd->id, wq->id, wq->driver_name, dev->driver->name);
idxd->cmd_status = IDXD_SCMD_WQ_NO_DRV_NAME;
ret = -ENODEV;
goto err;
}
wq->type = IDXD_WQT_KERNEL;
ret = idxd_drv_enable_wq(wq);
if (ret < 0) {
dev_dbg(dev, "enable wq %d.%d failed: %d\n",
idxd->id, wq->id, ret);
ret = -ENXIO;
goto err;
}
mutex_lock(&iaa_devices_lock);
if (list_empty(&iaa_devices)) {
ret = alloc_wq_table(wq->idxd->max_wqs);
if (ret)
goto err_alloc;
first_wq = true;
}
ret = save_iaa_wq(wq);
if (ret)
goto err_save;
rebalance_wq_table();
if (first_wq) {
iaa_crypto_enabled = true;
ret = iaa_register_compression_device();
if (ret != 0) {
iaa_crypto_enabled = false;
dev_dbg(dev, "IAA compression device registration failed\n");
goto err_register;
}
try_module_get(THIS_MODULE);
pr_info("iaa_crypto now ENABLED\n");
}
mutex_unlock(&iaa_devices_lock);
out:
mutex_unlock(&wq->wq_lock);
return ret;
err_register:
remove_iaa_wq(wq);
free_iaa_wq(idxd_wq_get_private(wq));
err_save:
if (first_wq)
free_wq_table();
err_alloc:
mutex_unlock(&iaa_devices_lock);
idxd_drv_disable_wq(wq);
err:
wq->type = IDXD_WQT_NONE;
goto out;
}
static void iaa_crypto_remove(struct idxd_dev *idxd_dev)
{
struct idxd_wq *wq = idxd_dev_to_wq(idxd_dev);
struct idxd_device *idxd = wq->idxd;
struct iaa_wq *iaa_wq;
bool free = false;
idxd_wq_quiesce(wq);
mutex_lock(&wq->wq_lock);
mutex_lock(&iaa_devices_lock);
remove_iaa_wq(wq);
spin_lock(&idxd->dev_lock);
iaa_wq = idxd_wq_get_private(wq);
if (!iaa_wq) {
spin_unlock(&idxd->dev_lock);
pr_err("%s: no iaa_wq available to remove\n", __func__);
goto out;
}
if (iaa_wq->ref) {
iaa_wq->remove = true;
} else {
wq = iaa_wq->wq;
idxd_wq_set_private(wq, NULL);
free = true;
}
spin_unlock(&idxd->dev_lock);
if (free) {
__free_iaa_wq(iaa_wq);
kfree(iaa_wq);
}
idxd_drv_disable_wq(wq);
rebalance_wq_table();
if (nr_iaa == 0) {
iaa_crypto_enabled = false;
free_wq_table();
module_put(THIS_MODULE);
pr_info("iaa_crypto now DISABLED\n");
}
out:
mutex_unlock(&iaa_devices_lock);
mutex_unlock(&wq->wq_lock);
}
static enum idxd_dev_type dev_types[] = {
IDXD_DEV_WQ,
IDXD_DEV_NONE,
};
static struct idxd_device_driver iaa_crypto_driver = {
.probe = iaa_crypto_probe,
.remove = iaa_crypto_remove,
.name = IDXD_SUBDRIVER_NAME,
.type = dev_types,
.desc_complete = iaa_desc_complete,
};
static int __init iaa_crypto_init_module(void)
{
int ret = 0;
int node;
nr_cpus = num_possible_cpus();
for_each_node_with_cpus(node)
nr_nodes++;
if (!nr_nodes) {
pr_err("IAA couldn't find any nodes with cpus\n");
return -ENODEV;
}
nr_cpus_per_node = nr_cpus / nr_nodes;
if (crypto_has_comp("deflate-generic", 0, 0))
deflate_generic_tfm = crypto_alloc_comp("deflate-generic", 0, 0);
if (IS_ERR_OR_NULL(deflate_generic_tfm)) {
pr_err("IAA could not alloc %s tfm: errcode = %ld\n",
"deflate-generic", PTR_ERR(deflate_generic_tfm));
return -ENOMEM;
}
ret = iaa_aecs_init_fixed();
if (ret < 0) {
pr_debug("IAA fixed compression mode init failed\n");
goto err_aecs_init;
}
ret = idxd_driver_register(&iaa_crypto_driver);
if (ret) {
pr_debug("IAA wq sub-driver registration failed\n");
goto err_driver_reg;
}
ret = driver_create_file(&iaa_crypto_driver.drv,
&driver_attr_verify_compress);
if (ret) {
pr_debug("IAA verify_compress attr creation failed\n");
goto err_verify_attr_create;
}
ret = driver_create_file(&iaa_crypto_driver.drv,
&driver_attr_sync_mode);
if (ret) {
pr_debug("IAA sync mode attr creation failed\n");
goto err_sync_attr_create;
}
if (iaa_crypto_debugfs_init())
pr_warn("debugfs init failed, stats not available\n");
pr_debug("initialized\n");
out:
return ret;
err_sync_attr_create:
driver_remove_file(&iaa_crypto_driver.drv,
&driver_attr_verify_compress);
err_verify_attr_create:
idxd_driver_unregister(&iaa_crypto_driver);
err_driver_reg:
iaa_aecs_cleanup_fixed();
err_aecs_init:
crypto_free_comp(deflate_generic_tfm);
goto out;
}
static void __exit iaa_crypto_cleanup_module(void)
{
if (iaa_unregister_compression_device())
pr_debug("IAA compression device unregister failed\n");
iaa_crypto_debugfs_cleanup();
driver_remove_file(&iaa_crypto_driver.drv,
&driver_attr_sync_mode);
driver_remove_file(&iaa_crypto_driver.drv,
&driver_attr_verify_compress);
idxd_driver_unregister(&iaa_crypto_driver);
iaa_aecs_cleanup_fixed();
crypto_free_comp(deflate_generic_tfm);
pr_debug("cleaned up\n");
}
MODULE_IMPORT_NS(IDXD);
MODULE_LICENSE("GPL");
MODULE_ALIAS_IDXD_DEVICE(0);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("IAA Compression Accelerator Crypto Driver");
module_init(iaa_crypto_init_module);
module_exit(iaa_crypto_cleanup_module);