// SPDX-License-Identifier: GPL-2.0+
/*
* Comedi driver for National Instruments AT-MIO16D board
* Copyright (C) 2000 Chris R. Baugher <[email protected]>
*/
/*
* Driver: ni_atmio16d
* Description: National Instruments AT-MIO-16D
* Author: Chris R. Baugher <[email protected]>
* Status: unknown
* Devices: [National Instruments] AT-MIO-16 (atmio16), AT-MIO-16D (atmio16d)
*
* Configuration options:
* [0] - I/O port
* [1] - MIO irq (0 == no irq; or 3,4,5,6,7,9,10,11,12,14,15)
* [2] - DIO irq (0 == no irq; or 3,4,5,6,7,9)
* [3] - DMA1 channel (0 == no DMA; or 5,6,7)
* [4] - DMA2 channel (0 == no DMA; or 5,6,7)
* [5] - a/d mux (0=differential; 1=single)
* [6] - a/d range (0=bipolar10; 1=bipolar5; 2=unipolar10)
* [7] - dac0 range (0=bipolar; 1=unipolar)
* [8] - dac0 reference (0=internal; 1=external)
* [9] - dac0 coding (0=2's comp; 1=straight binary)
* [10] - dac1 range (same as dac0 options)
* [11] - dac1 reference (same as dac0 options)
* [12] - dac1 coding (same as dac0 options)
*/
/*
* I must give credit here to Michal Dobes <[email protected]> who
* wrote the driver for Advantec's pcl812 boards. I used the interrupt
* handling code from his driver as an example for this one.
*
* Chris Baugher
* 5/1/2000
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/comedi/comedidev.h>
#include <linux/comedi/comedi_8255.h>
/* Configuration and Status Registers */
#define COM_REG_1 0x00 /* wo 16 */
#define STAT_REG 0x00 /* ro 16 */
#define COM_REG_2 0x02 /* wo 16 */
/* Event Strobe Registers */
#define START_CONVERT_REG 0x08 /* wo 16 */
#define START_DAQ_REG 0x0A /* wo 16 */
#define AD_CLEAR_REG 0x0C /* wo 16 */
#define EXT_STROBE_REG 0x0E /* wo 16 */
/* Analog Output Registers */
#define DAC0_REG 0x10 /* wo 16 */
#define DAC1_REG 0x12 /* wo 16 */
#define INT2CLR_REG 0x14 /* wo 16 */
/* Analog Input Registers */
#define MUX_CNTR_REG 0x04 /* wo 16 */
#define MUX_GAIN_REG 0x06 /* wo 16 */
#define AD_FIFO_REG 0x16 /* ro 16 */
#define DMA_TC_INT_CLR_REG 0x16 /* wo 16 */
/* AM9513A Counter/Timer Registers */
#define AM9513A_DATA_REG 0x18 /* rw 16 */
#define AM9513A_COM_REG 0x1A /* wo 16 */
#define AM9513A_STAT_REG 0x1A /* ro 16 */
/* MIO-16 Digital I/O Registers */
#define MIO_16_DIG_IN_REG 0x1C /* ro 16 */
#define MIO_16_DIG_OUT_REG 0x1C /* wo 16 */
/* RTSI Switch Registers */
#define RTSI_SW_SHIFT_REG 0x1E /* wo 8 */
#define RTSI_SW_STROBE_REG 0x1F /* wo 8 */
/* DIO-24 Registers */
#define DIO_24_PORTA_REG 0x00 /* rw 8 */
#define DIO_24_PORTB_REG 0x01 /* rw 8 */
#define DIO_24_PORTC_REG 0x02 /* rw 8 */
#define DIO_24_CNFG_REG 0x03 /* wo 8 */
/* Command Register bits */
#define COMREG1_2SCADC 0x0001
#define COMREG1_1632CNT 0x0002
#define COMREG1_SCANEN 0x0008
#define COMREG1_DAQEN 0x0010
#define COMREG1_DMAEN 0x0020
#define COMREG1_CONVINTEN 0x0080
#define COMREG2_SCN2 0x0010
#define COMREG2_INTEN 0x0080
#define COMREG2_DOUTEN0 0x0100
#define COMREG2_DOUTEN1 0x0200
/* Status Register bits */
#define STAT_AD_OVERRUN 0x0100
#define STAT_AD_OVERFLOW 0x0200
#define STAT_AD_DAQPROG 0x0800
#define STAT_AD_CONVAVAIL 0x2000
#define STAT_AD_DAQSTOPINT 0x4000
/* AM9513A Counter/Timer defines */
#define CLOCK_1_MHZ 0x8B25
#define CLOCK_100_KHZ 0x8C25
#define CLOCK_10_KHZ 0x8D25
#define CLOCK_1_KHZ 0x8E25
#define CLOCK_100_HZ 0x8F25
struct atmio16_board_t {
const char *name;
int has_8255;
};
/* range structs */
static const struct comedi_lrange range_atmio16d_ai_10_bipolar = {
4, {
BIP_RANGE(10),
BIP_RANGE(1),
BIP_RANGE(0.1),
BIP_RANGE(0.02)
}
};
static const struct comedi_lrange range_atmio16d_ai_5_bipolar = {
4, {
BIP_RANGE(5),
BIP_RANGE(0.5),
BIP_RANGE(0.05),
BIP_RANGE(0.01)
}
};
static const struct comedi_lrange range_atmio16d_ai_unipolar = {
4, {
UNI_RANGE(10),
UNI_RANGE(1),
UNI_RANGE(0.1),
UNI_RANGE(0.02)
}
};
/* private data struct */
struct atmio16d_private {
enum { adc_diff, adc_singleended } adc_mux;
enum { adc_bipolar10, adc_bipolar5, adc_unipolar10 } adc_range;
enum { adc_2comp, adc_straight } adc_coding;
enum { dac_bipolar, dac_unipolar } dac0_range, dac1_range;
enum { dac_internal, dac_external } dac0_reference, dac1_reference;
enum { dac_2comp, dac_straight } dac0_coding, dac1_coding;
const struct comedi_lrange *ao_range_type_list[2];
unsigned int com_reg_1_state; /* current state of command register 1 */
unsigned int com_reg_2_state; /* current state of command register 2 */
};
static void reset_counters(struct comedi_device *dev)
{
/* Counter 2 */
outw(0xFFC2, dev->iobase + AM9513A_COM_REG);
outw(0xFF02, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0A, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF42, dev->iobase + AM9513A_COM_REG);
outw(0xFF42, dev->iobase + AM9513A_COM_REG);
/* Counter 3 */
outw(0xFFC4, dev->iobase + AM9513A_COM_REG);
outw(0xFF03, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0B, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF44, dev->iobase + AM9513A_COM_REG);
outw(0xFF44, dev->iobase + AM9513A_COM_REG);
/* Counter 4 */
outw(0xFFC8, dev->iobase + AM9513A_COM_REG);
outw(0xFF04, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0C, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
/* Counter 5 */
outw(0xFFD0, dev->iobase + AM9513A_COM_REG);
outw(0xFF05, dev->iobase + AM9513A_COM_REG);
outw(0x4, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0D, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
outw(0xFF50, dev->iobase + AM9513A_COM_REG);
outw(0xFF50, dev->iobase + AM9513A_COM_REG);
outw(0, dev->iobase + AD_CLEAR_REG);
}
static void reset_atmio16d(struct comedi_device *dev)
{
struct atmio16d_private *devpriv = dev->private;
int i;
/* now we need to initialize the board */
outw(0, dev->iobase + COM_REG_1);
outw(0, dev->iobase + COM_REG_2);
outw(0, dev->iobase + MUX_GAIN_REG);
/* init AM9513A timer */
outw(0xFFFF, dev->iobase + AM9513A_COM_REG);
outw(0xFFEF, dev->iobase + AM9513A_COM_REG);
outw(0xFF17, dev->iobase + AM9513A_COM_REG);
outw(0xF000, dev->iobase + AM9513A_DATA_REG);
for (i = 1; i <= 5; ++i) {
outw(0xFF00 + i, dev->iobase + AM9513A_COM_REG);
outw(0x0004, dev->iobase + AM9513A_DATA_REG);
outw(0xFF08 + i, dev->iobase + AM9513A_COM_REG);
outw(0x3, dev->iobase + AM9513A_DATA_REG);
}
outw(0xFF5F, dev->iobase + AM9513A_COM_REG);
/* timer init done */
outw(0, dev->iobase + AD_CLEAR_REG);
outw(0, dev->iobase + INT2CLR_REG);
/* select straight binary mode for Analog Input */
devpriv->com_reg_1_state |= 1;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
devpriv->adc_coding = adc_straight;
/* zero the analog outputs */
outw(2048, dev->iobase + DAC0_REG);
outw(2048, dev->iobase + DAC1_REG);
}
static irqreturn_t atmio16d_interrupt(int irq, void *d)
{
struct comedi_device *dev = d;
struct comedi_subdevice *s = dev->read_subdev;
unsigned short val;
val = inw(dev->iobase + AD_FIFO_REG);
comedi_buf_write_samples(s, &val, 1);
comedi_handle_events(dev, s);
return IRQ_HANDLED;
}
static int atmio16d_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
int err = 0;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW);
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
TRIG_FOLLOW | TRIG_TIMER);
err |= comedi_check_trigger_src(&cmd->convert_src, TRIG_TIMER);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
if (cmd->scan_begin_src == TRIG_FOLLOW) {
/* internal trigger */
err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, 0);
}
err |= comedi_check_trigger_arg_min(&cmd->convert_arg, 10000);
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
if (cmd->stop_src == TRIG_COUNT)
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
else /* TRIG_NONE */
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
if (err)
return 3;
return 0;
}
static int atmio16d_ai_cmd(struct comedi_device *dev,
struct comedi_subdevice *s)
{
struct atmio16d_private *devpriv = dev->private;
struct comedi_cmd *cmd = &s->async->cmd;
unsigned int timer, base_clock;
unsigned int sample_count, tmp, chan, gain;
int i;
/*
* This is slowly becoming a working command interface.
* It is still uber-experimental
*/
reset_counters(dev);
/* check if scanning multiple channels */
if (cmd->chanlist_len < 2) {
devpriv->com_reg_1_state &= ~COMREG1_SCANEN;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
} else {
devpriv->com_reg_1_state |= COMREG1_SCANEN;
devpriv->com_reg_2_state |= COMREG2_SCN2;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2);
}
/* Setup the Mux-Gain Counter */
for (i = 0; i < cmd->chanlist_len; ++i) {
chan = CR_CHAN(cmd->chanlist[i]);
gain = CR_RANGE(cmd->chanlist[i]);
outw(i, dev->iobase + MUX_CNTR_REG);
tmp = chan | (gain << 6);
if (i == cmd->scan_end_arg - 1)
tmp |= 0x0010; /* set LASTONE bit */
outw(tmp, dev->iobase + MUX_GAIN_REG);
}
/*
* Now program the sample interval timer.
* Figure out which clock to use then get an appropriate timer value.
*/
if (cmd->convert_arg < 65536000) {
base_clock = CLOCK_1_MHZ;
timer = cmd->convert_arg / 1000;
} else if (cmd->convert_arg < 655360000) {
base_clock = CLOCK_100_KHZ;
timer = cmd->convert_arg / 10000;
} else /* cmd->convert_arg < 6553600000 */ {
base_clock = CLOCK_10_KHZ;
timer = cmd->convert_arg / 100000;
}
outw(0xFF03, dev->iobase + AM9513A_COM_REG);
outw(base_clock, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0B, dev->iobase + AM9513A_COM_REG);
outw(0x2, dev->iobase + AM9513A_DATA_REG);
outw(0xFF44, dev->iobase + AM9513A_COM_REG);
outw(0xFFF3, dev->iobase + AM9513A_COM_REG);
outw(timer, dev->iobase + AM9513A_DATA_REG);
outw(0xFF24, dev->iobase + AM9513A_COM_REG);
/* Now figure out how many samples to get */
/* and program the sample counter */
sample_count = cmd->stop_arg * cmd->scan_end_arg;
outw(0xFF04, dev->iobase + AM9513A_COM_REG);
outw(0x1025, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0C, dev->iobase + AM9513A_COM_REG);
if (sample_count < 65536) {
/* use only Counter 4 */
outw(sample_count, dev->iobase + AM9513A_DATA_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
outw(0xFFF4, dev->iobase + AM9513A_COM_REG);
outw(0xFF28, dev->iobase + AM9513A_COM_REG);
devpriv->com_reg_1_state &= ~COMREG1_1632CNT;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
} else {
/* Counter 4 and 5 are needed */
tmp = sample_count & 0xFFFF;
if (tmp)
outw(tmp - 1, dev->iobase + AM9513A_DATA_REG);
else
outw(0xFFFF, dev->iobase + AM9513A_DATA_REG);
outw(0xFF48, dev->iobase + AM9513A_COM_REG);
outw(0, dev->iobase + AM9513A_DATA_REG);
outw(0xFF28, dev->iobase + AM9513A_COM_REG);
outw(0xFF05, dev->iobase + AM9513A_COM_REG);
outw(0x25, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0D, dev->iobase + AM9513A_COM_REG);
tmp = sample_count & 0xFFFF;
if ((tmp == 0) || (tmp == 1)) {
outw((sample_count >> 16) & 0xFFFF,
dev->iobase + AM9513A_DATA_REG);
} else {
outw(((sample_count >> 16) & 0xFFFF) + 1,
dev->iobase + AM9513A_DATA_REG);
}
outw(0xFF70, dev->iobase + AM9513A_COM_REG);
devpriv->com_reg_1_state |= COMREG1_1632CNT;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
}
/*
* Program the scan interval timer ONLY IF SCANNING IS ENABLED.
* Figure out which clock to use then get an appropriate timer value.
*/
if (cmd->chanlist_len > 1) {
if (cmd->scan_begin_arg < 65536000) {
base_clock = CLOCK_1_MHZ;
timer = cmd->scan_begin_arg / 1000;
} else if (cmd->scan_begin_arg < 655360000) {
base_clock = CLOCK_100_KHZ;
timer = cmd->scan_begin_arg / 10000;
} else /* cmd->scan_begin_arg < 6553600000 */ {
base_clock = CLOCK_10_KHZ;
timer = cmd->scan_begin_arg / 100000;
}
outw(0xFF02, dev->iobase + AM9513A_COM_REG);
outw(base_clock, dev->iobase + AM9513A_DATA_REG);
outw(0xFF0A, dev->iobase + AM9513A_COM_REG);
outw(0x2, dev->iobase + AM9513A_DATA_REG);
outw(0xFF42, dev->iobase + AM9513A_COM_REG);
outw(0xFFF2, dev->iobase + AM9513A_COM_REG);
outw(timer, dev->iobase + AM9513A_DATA_REG);
outw(0xFF22, dev->iobase + AM9513A_COM_REG);
}
/* Clear the A/D FIFO and reset the MUX counter */
outw(0, dev->iobase + AD_CLEAR_REG);
outw(0, dev->iobase + MUX_CNTR_REG);
outw(0, dev->iobase + INT2CLR_REG);
/* enable this acquisition operation */
devpriv->com_reg_1_state |= COMREG1_DAQEN;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
/* enable interrupts for conversion completion */
devpriv->com_reg_1_state |= COMREG1_CONVINTEN;
devpriv->com_reg_2_state |= COMREG2_INTEN;
outw(devpriv->com_reg_1_state, dev->iobase + COM_REG_1);
outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2);
/* apply a trigger. this starts the counters! */
outw(0, dev->iobase + START_DAQ_REG);
return 0;
}
/* This will cancel a running acquisition operation */
static int atmio16d_ai_cancel(struct comedi_device *dev,
struct comedi_subdevice *s)
{
reset_atmio16d(dev);
return 0;
}
static int atmio16d_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = inw(dev->iobase + STAT_REG);
if (status & STAT_AD_CONVAVAIL)
return 0;
if (status & STAT_AD_OVERFLOW) {
outw(0, dev->iobase + AD_CLEAR_REG);
return -EOVERFLOW;
}
return -EBUSY;
}
static int atmio16d_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
struct atmio16d_private *devpriv = dev->private;
int i;
int chan;
int gain;
int ret;
chan = CR_CHAN(insn->chanspec);
gain = CR_RANGE(insn->chanspec);
/* reset the Analog input circuitry */
/* outw( 0, dev->iobase+AD_CLEAR_REG ); */
/* reset the Analog Input MUX Counter to 0 */
/* outw( 0, dev->iobase+MUX_CNTR_REG ); */
/* set the Input MUX gain */
outw(chan | (gain << 6), dev->iobase + MUX_GAIN_REG);
for (i = 0; i < insn->n; i++) {
/* start the conversion */
outw(0, dev->iobase + START_CONVERT_REG);
/* wait for it to finish */
ret = comedi_timeout(dev, s, insn, atmio16d_ai_eoc, 0);
if (ret)
return ret;
/* read the data now */
data[i] = inw(dev->iobase + AD_FIFO_REG);
/* change to two's complement if need be */
if (devpriv->adc_coding == adc_2comp)
data[i] ^= 0x800;
}
return i;
}
static int atmio16d_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct atmio16d_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int reg = (chan) ? DAC1_REG : DAC0_REG;
bool munge = false;
int i;
if (chan == 0 && devpriv->dac0_coding == dac_2comp)
munge = true;
if (chan == 1 && devpriv->dac1_coding == dac_2comp)
munge = true;
for (i = 0; i < insn->n; i++) {
unsigned int val = data[i];
s->readback[chan] = val;
if (munge)
val ^= 0x800;
outw(val, dev->iobase + reg);
}
return insn->n;
}
static int atmio16d_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
if (comedi_dio_update_state(s, data))
outw(s->state, dev->iobase + MIO_16_DIG_OUT_REG);
data[1] = inw(dev->iobase + MIO_16_DIG_IN_REG);
return insn->n;
}
static int atmio16d_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct atmio16d_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int mask;
int ret;
if (chan < 4)
mask = 0x0f;
else
mask = 0xf0;
ret = comedi_dio_insn_config(dev, s, insn, data, mask);
if (ret)
return ret;
devpriv->com_reg_2_state &= ~(COMREG2_DOUTEN0 | COMREG2_DOUTEN1);
if (s->io_bits & 0x0f)
devpriv->com_reg_2_state |= COMREG2_DOUTEN0;
if (s->io_bits & 0xf0)
devpriv->com_reg_2_state |= COMREG2_DOUTEN1;
outw(devpriv->com_reg_2_state, dev->iobase + COM_REG_2);
return insn->n;
}
static int atmio16d_attach(struct comedi_device *dev,
struct comedi_devconfig *it)
{
const struct atmio16_board_t *board = dev->board_ptr;
struct atmio16d_private *devpriv;
struct comedi_subdevice *s;
int ret;
ret = comedi_request_region(dev, it->options[0], 0x20);
if (ret)
return ret;
ret = comedi_alloc_subdevices(dev, 4);
if (ret)
return ret;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
/* reset the atmio16d hardware */
reset_atmio16d(dev);
if (it->options[1]) {
ret = request_irq(it->options[1], atmio16d_interrupt, 0,
dev->board_name, dev);
if (ret == 0)
dev->irq = it->options[1];
}
/* set device options */
devpriv->adc_mux = it->options[5];
devpriv->adc_range = it->options[6];
devpriv->dac0_range = it->options[7];
devpriv->dac0_reference = it->options[8];
devpriv->dac0_coding = it->options[9];
devpriv->dac1_range = it->options[10];
devpriv->dac1_reference = it->options[11];
devpriv->dac1_coding = it->options[12];
/* setup sub-devices */
s = &dev->subdevices[0];
/* ai subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND;
s->n_chan = (devpriv->adc_mux ? 16 : 8);
s->insn_read = atmio16d_ai_insn_read;
s->maxdata = 0xfff; /* 4095 decimal */
switch (devpriv->adc_range) {
case adc_bipolar10:
s->range_table = &range_atmio16d_ai_10_bipolar;
break;
case adc_bipolar5:
s->range_table = &range_atmio16d_ai_5_bipolar;
break;
case adc_unipolar10:
s->range_table = &range_atmio16d_ai_unipolar;
break;
}
if (dev->irq) {
dev->read_subdev = s;
s->subdev_flags |= SDF_CMD_READ;
s->len_chanlist = 16;
s->do_cmdtest = atmio16d_ai_cmdtest;
s->do_cmd = atmio16d_ai_cmd;
s->cancel = atmio16d_ai_cancel;
}
/* ao subdevice */
s = &dev->subdevices[1];
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = 0xfff; /* 4095 decimal */
s->range_table_list = devpriv->ao_range_type_list;
switch (devpriv->dac0_range) {
case dac_bipolar:
devpriv->ao_range_type_list[0] = &range_bipolar10;
break;
case dac_unipolar:
devpriv->ao_range_type_list[0] = &range_unipolar10;
break;
}
switch (devpriv->dac1_range) {
case dac_bipolar:
devpriv->ao_range_type_list[1] = &range_bipolar10;
break;
case dac_unipolar:
devpriv->ao_range_type_list[1] = &range_unipolar10;
break;
}
s->insn_write = atmio16d_ao_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
/* Digital I/O */
s = &dev->subdevices[2];
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 8;
s->insn_bits = atmio16d_dio_insn_bits;
s->insn_config = atmio16d_dio_insn_config;
s->maxdata = 1;
s->range_table = &range_digital;
/* 8255 subdevice */
s = &dev->subdevices[3];
if (board->has_8255) {
ret = subdev_8255_io_init(dev, s, 0x00);
if (ret)
return ret;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* don't yet know how to deal with counter/timers */
#if 0
s = &dev->subdevices[4];
/* do */
s->type = COMEDI_SUBD_TIMER;
s->n_chan = 0;
s->maxdata = 0
#endif
return 0;
}
static void atmio16d_detach(struct comedi_device *dev)
{
reset_atmio16d(dev);
comedi_legacy_detach(dev);
}
static const struct atmio16_board_t atmio16_boards[] = {
{
.name = "atmio16",
.has_8255 = 0,
}, {
.name = "atmio16d",
.has_8255 = 1,
},
};
static struct comedi_driver atmio16d_driver = {
.driver_name = "atmio16",
.module = THIS_MODULE,
.attach = atmio16d_attach,
.detach = atmio16d_detach,
.board_name = &atmio16_boards[0].name,
.num_names = ARRAY_SIZE(atmio16_boards),
.offset = sizeof(struct atmio16_board_t),
};
module_comedi_driver(atmio16d_driver);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");