// SPDX-License-Identifier: GPL-2.0+
/*
* adq12b.c
* Driver for MicroAxial ADQ12-B data acquisition and control card
* written by jeremy theler <[email protected]>
* instituto balseiro
* commission nacional de energia atomica
* universidad nacional de cuyo
* argentina
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 2000 David A. Schleef <[email protected]>
*/
/*
* Driver: adq12b
* Description: Driver for MicroAxial ADQ12-B data acquisition and control card
* Devices: [MicroAxial] ADQ12-B (adq12b)
* Author: jeremy theler <[email protected]>
* Updated: Thu, 21 Feb 2008 02:56:27 -0300
* Status: works
*
* Configuration options:
* [0] - I/O base address (set with hardware jumpers)
* address jumper JADR
* 0x300 1 (factory default)
* 0x320 2
* 0x340 3
* 0x360 4
* 0x380 5
* 0x3A0 6
* [1] - Analog Input unipolar/bipolar selection
* selection option JUB
* bipolar 0 2-3 (factory default)
* unipolar 1 1-2
* [2] - Analog Input single-ended/differential selection
* selection option JCHA JCHB
* single-ended 0 1-2 1-2 (factory default)
* differential 1 2-3 2-3
*
* Driver for the acquisition card ADQ12-B (without any add-on).
*
* - Analog input is subdevice 0 (16 channels single-ended or 8 differential)
* - Digital input is subdevice 1 (5 channels)
* - Digital output is subdevice 1 (8 channels)
* - The PACER is not supported in this version
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/comedi/comedidev.h>
/* address scheme (page 2.17 of the manual) */
#define ADQ12B_CTREG 0x00
#define ADQ12B_CTREG_MSKP BIT(7) /* enable pacer interrupt */
#define ADQ12B_CTREG_GTP BIT(6) /* enable pacer */
#define ADQ12B_CTREG_RANGE(x) ((x) << 4)
#define ADQ12B_CTREG_CHAN(x) ((x) << 0)
#define ADQ12B_STINR 0x00
#define ADQ12B_STINR_OUT2 BIT(7) /* timer 2 output state */
#define ADQ12B_STINR_OUTP BIT(6) /* pacer output state */
#define ADQ12B_STINR_EOC BIT(5) /* A/D end-of-conversion */
#define ADQ12B_STINR_IN_MASK (0x1f << 0)
#define ADQ12B_OUTBR 0x04
#define ADQ12B_ADLOW 0x08
#define ADQ12B_ADHIG 0x09
#define ADQ12B_TIMER_BASE 0x0c
/* available ranges through the PGA gains */
static const struct comedi_lrange range_adq12b_ai_bipolar = {
4, {
BIP_RANGE(5),
BIP_RANGE(2),
BIP_RANGE(1),
BIP_RANGE(0.5)
}
};
static const struct comedi_lrange range_adq12b_ai_unipolar = {
4, {
UNI_RANGE(5),
UNI_RANGE(2),
UNI_RANGE(1),
UNI_RANGE(0.5)
}
};
struct adq12b_private {
unsigned int last_ctreg;
};
static int adq12b_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned char status;
status = inb(dev->iobase + ADQ12B_STINR);
if (status & ADQ12B_STINR_EOC)
return 0;
return -EBUSY;
}
static int adq12b_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct adq12b_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int range = CR_RANGE(insn->chanspec);
unsigned int val;
int ret;
int i;
/* change channel and range only if it is different from the previous */
val = ADQ12B_CTREG_RANGE(range) | ADQ12B_CTREG_CHAN(chan);
if (val != devpriv->last_ctreg) {
outb(val, dev->iobase + ADQ12B_CTREG);
devpriv->last_ctreg = val;
usleep_range(50, 100); /* wait for the mux to settle */
}
val = inb(dev->iobase + ADQ12B_ADLOW); /* trigger A/D */
for (i = 0; i < insn->n; i++) {
ret = comedi_timeout(dev, s, insn, adq12b_ai_eoc, 0);
if (ret)
return ret;
val = inb(dev->iobase + ADQ12B_ADHIG) << 8;
val |= inb(dev->iobase + ADQ12B_ADLOW); /* retriggers A/D */
data[i] = val;
}
return insn->n;
}
static int adq12b_di_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
/* only bits 0-4 have information about digital inputs */
data[1] = (inb(dev->iobase + ADQ12B_STINR) & ADQ12B_STINR_IN_MASK);
return insn->n;
}
static int adq12b_do_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int mask;
unsigned int chan;
unsigned int val;
mask = comedi_dio_update_state(s, data);
if (mask) {
for (chan = 0; chan < 8; chan++) {
if ((mask >> chan) & 0x01) {
val = (s->state >> chan) & 0x01;
outb((val << 3) | chan,
dev->iobase + ADQ12B_OUTBR);
}
}
}
data[1] = s->state;
return insn->n;
}
static int adq12b_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{
struct adq12b_private *devpriv;
struct comedi_subdevice *s;
int ret;
ret = comedi_request_region(dev, it->options[0], 0x10);
if (ret)
return ret;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
devpriv->last_ctreg = -1; /* force ctreg update */
ret = comedi_alloc_subdevices(dev, 3);
if (ret)
return ret;
/* Analog Input subdevice */
s = &dev->subdevices[0];
s->type = COMEDI_SUBD_AI;
if (it->options[2]) {
s->subdev_flags = SDF_READABLE | SDF_DIFF;
s->n_chan = 8;
} else {
s->subdev_flags = SDF_READABLE | SDF_GROUND;
s->n_chan = 16;
}
s->maxdata = 0xfff;
s->range_table = it->options[1] ? &range_adq12b_ai_unipolar
: &range_adq12b_ai_bipolar;
s->insn_read = adq12b_ai_insn_read;
/* Digital Input subdevice */
s = &dev->subdevices[1];
s->type = COMEDI_SUBD_DI;
s->subdev_flags = SDF_READABLE;
s->n_chan = 5;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = adq12b_di_insn_bits;
/* Digital Output subdevice */
s = &dev->subdevices[2];
s->type = COMEDI_SUBD_DO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = adq12b_do_insn_bits;
return 0;
}
static struct comedi_driver adq12b_driver = {
.driver_name = "adq12b",
.module = THIS_MODULE,
.attach = adq12b_attach,
.detach = comedi_legacy_detach,
};
module_comedi_driver(adq12b_driver);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");