// SPDX-License-Identifier: GPL-2.0+
/*
* Comedi driver for National Instruments AT-A2150 boards
* Copyright (C) 2001, 2002 Frank Mori Hess <[email protected]>
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 2000 David A. Schleef <[email protected]>
*/
/*
* Driver: ni_at_a2150
* Description: National Instruments AT-A2150
* Author: Frank Mori Hess
* Status: works
* Devices: [National Instruments] AT-A2150C (at_a2150c), AT-2150S (at_a2150s)
*
* Configuration options:
* [0] - I/O port base address
* [1] - IRQ (optional, required for timed conversions)
* [2] - DMA (optional, required for timed conversions)
*
* Yet another driver for obsolete hardware brought to you by Frank Hess.
* Testing and debugging help provided by Dave Andruczyk.
*
* If you want to ac couple the board's inputs, use AREF_OTHER.
*
* The only difference in the boards is their master clock frequencies.
*
* References (from ftp://ftp.natinst.com/support/manuals):
* 320360.pdf AT-A2150 User Manual
*
* TODO:
* - analog level triggering
* - TRIG_WAKE_EOS
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/comedi/comedidev.h>
#include <linux/comedi/comedi_8254.h>
#include <linux/comedi/comedi_isadma.h>
#define A2150_DMA_BUFFER_SIZE 0xff00 /* size in bytes of dma buffer */
/* Registers and bits */
#define CONFIG_REG 0x0
#define CHANNEL_BITS(x) ((x) & 0x7)
#define CHANNEL_MASK 0x7
#define CLOCK_SELECT_BITS(x) (((x) & 0x3) << 3)
#define CLOCK_DIVISOR_BITS(x) (((x) & 0x3) << 5)
#define CLOCK_MASK (0xf << 3)
/* enable (don't internally ground) channels 0 and 1 */
#define ENABLE0_BIT 0x80
/* enable (don't internally ground) channels 2 and 3 */
#define ENABLE1_BIT 0x100
#define AC0_BIT 0x200 /* ac couple channels 0,1 */
#define AC1_BIT 0x400 /* ac couple channels 2,3 */
#define APD_BIT 0x800 /* analog power down */
#define DPD_BIT 0x1000 /* digital power down */
#define TRIGGER_REG 0x2 /* trigger config register */
#define POST_TRIGGER_BITS 0x2
#define DELAY_TRIGGER_BITS 0x3
#define HW_TRIG_EN 0x10 /* enable hardware trigger */
#define FIFO_START_REG 0x6 /* software start aquistion trigger */
#define FIFO_RESET_REG 0x8 /* clears fifo + fifo flags */
#define FIFO_DATA_REG 0xa /* read data */
#define DMA_TC_CLEAR_REG 0xe /* clear dma terminal count interrupt */
#define STATUS_REG 0x12 /* read only */
#define FNE_BIT 0x1 /* fifo not empty */
#define OVFL_BIT 0x8 /* fifo overflow */
#define EDAQ_BIT 0x10 /* end of acquisition interrupt */
#define DCAL_BIT 0x20 /* offset calibration in progress */
#define INTR_BIT 0x40 /* interrupt has occurred */
/* dma terminal count interrupt has occurred */
#define DMA_TC_BIT 0x80
#define ID_BITS(x) (((x) >> 8) & 0x3)
#define IRQ_DMA_CNTRL_REG 0x12 /* write only */
#define DMA_CHAN_BITS(x) ((x) & 0x7) /* sets dma channel */
#define DMA_EN_BIT 0x8 /* enables dma */
#define IRQ_LVL_BITS(x) (((x) & 0xf) << 4) /* sets irq level */
#define FIFO_INTR_EN_BIT 0x100 /* enable fifo interrupts */
#define FIFO_INTR_FHF_BIT 0x200 /* interrupt fifo half full */
/* enable interrupt on dma terminal count */
#define DMA_INTR_EN_BIT 0x800
#define DMA_DEM_EN_BIT 0x1000 /* enables demand mode dma */
#define I8253_BASE_REG 0x14
struct a2150_board {
const char *name;
int clock[4]; /* master clock periods, in nanoseconds */
int num_clocks; /* number of available master clock speeds */
int ai_speed; /* maximum conversion rate in nanoseconds */
};
/* analog input range */
static const struct comedi_lrange range_a2150 = {
1, {
BIP_RANGE(2.828)
}
};
/* enum must match board indices */
enum { a2150_c, a2150_s };
static const struct a2150_board a2150_boards[] = {
{
.name = "at-a2150c",
.clock = {31250, 22676, 20833, 19531},
.num_clocks = 4,
.ai_speed = 19531,
},
{
.name = "at-a2150s",
.clock = {62500, 50000, 41667, 0},
.num_clocks = 3,
.ai_speed = 41667,
},
};
struct a2150_private {
struct comedi_isadma *dma;
unsigned int count; /* number of data points left to be taken */
int irq_dma_bits; /* irq/dma register bits */
int config_bits; /* config register bits */
};
/* interrupt service routine */
static irqreturn_t a2150_interrupt(int irq, void *d)
{
struct comedi_device *dev = d;
struct a2150_private *devpriv = dev->private;
struct comedi_isadma *dma = devpriv->dma;
struct comedi_isadma_desc *desc = &dma->desc[0];
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
unsigned short *buf = desc->virt_addr;
unsigned int max_points, num_points, residue, leftover;
unsigned short dpnt;
int status;
int i;
if (!dev->attached)
return IRQ_HANDLED;
status = inw(dev->iobase + STATUS_REG);
if ((status & INTR_BIT) == 0)
return IRQ_NONE;
if (status & OVFL_BIT) {
async->events |= COMEDI_CB_ERROR;
comedi_handle_events(dev, s);
}
if ((status & DMA_TC_BIT) == 0) {
async->events |= COMEDI_CB_ERROR;
comedi_handle_events(dev, s);
return IRQ_HANDLED;
}
/*
* residue is the number of bytes left to be done on the dma
* transfer. It should always be zero at this point unless
* the stop_src is set to external triggering.
*/
residue = comedi_isadma_disable(desc->chan);
/* figure out how many points to read */
max_points = comedi_bytes_to_samples(s, desc->size);
num_points = max_points - comedi_bytes_to_samples(s, residue);
if (devpriv->count < num_points && cmd->stop_src == TRIG_COUNT)
num_points = devpriv->count;
/* figure out how many points will be stored next time */
leftover = 0;
if (cmd->stop_src == TRIG_NONE) {
leftover = comedi_bytes_to_samples(s, desc->size);
} else if (devpriv->count > max_points) {
leftover = devpriv->count - max_points;
if (leftover > max_points)
leftover = max_points;
}
/*
* There should only be a residue if collection was stopped by having
* the stop_src set to an external trigger, in which case there
* will be no more data
*/
if (residue)
leftover = 0;
for (i = 0; i < num_points; i++) {
/* write data point to comedi buffer */
dpnt = buf[i];
/* convert from 2's complement to unsigned coding */
dpnt ^= 0x8000;
comedi_buf_write_samples(s, &dpnt, 1);
if (cmd->stop_src == TRIG_COUNT) {
if (--devpriv->count == 0) { /* end of acquisition */
async->events |= COMEDI_CB_EOA;
break;
}
}
}
/* re-enable dma */
if (leftover) {
desc->size = comedi_samples_to_bytes(s, leftover);
comedi_isadma_program(desc);
}
comedi_handle_events(dev, s);
/* clear interrupt */
outw(0x00, dev->iobase + DMA_TC_CLEAR_REG);
return IRQ_HANDLED;
}
static int a2150_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct a2150_private *devpriv = dev->private;
struct comedi_isadma *dma = devpriv->dma;
struct comedi_isadma_desc *desc = &dma->desc[0];
/* disable dma on card */
devpriv->irq_dma_bits &= ~DMA_INTR_EN_BIT & ~DMA_EN_BIT;
outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG);
/* disable computer's dma */
comedi_isadma_disable(desc->chan);
/* clear fifo and reset triggering circuitry */
outw(0, dev->iobase + FIFO_RESET_REG);
return 0;
}
/*
* sets bits in devpriv->clock_bits to nearest approximation of requested
* period, adjusts requested period to actual timing.
*/
static int a2150_get_timing(struct comedi_device *dev, unsigned int *period,
unsigned int flags)
{
const struct a2150_board *board = dev->board_ptr;
struct a2150_private *devpriv = dev->private;
int lub, glb, temp;
int lub_divisor_shift, lub_index, glb_divisor_shift, glb_index;
int i, j;
/* initialize greatest lower and least upper bounds */
lub_divisor_shift = 3;
lub_index = 0;
lub = board->clock[lub_index] * (1 << lub_divisor_shift);
glb_divisor_shift = 0;
glb_index = board->num_clocks - 1;
glb = board->clock[glb_index] * (1 << glb_divisor_shift);
/* make sure period is in available range */
if (*period < glb)
*period = glb;
if (*period > lub)
*period = lub;
/* we can multiply period by 1, 2, 4, or 8, using (1 << i) */
for (i = 0; i < 4; i++) {
/* there are a maximum of 4 master clocks */
for (j = 0; j < board->num_clocks; j++) {
/* temp is the period in nanosec we are evaluating */
temp = board->clock[j] * (1 << i);
/* if it is the best match yet */
if (temp < lub && temp >= *period) {
lub_divisor_shift = i;
lub_index = j;
lub = temp;
}
if (temp > glb && temp <= *period) {
glb_divisor_shift = i;
glb_index = j;
glb = temp;
}
}
}
switch (flags & CMDF_ROUND_MASK) {
case CMDF_ROUND_NEAREST:
default:
/* if least upper bound is better approximation */
if (lub - *period < *period - glb)
*period = lub;
else
*period = glb;
break;
case CMDF_ROUND_UP:
*period = lub;
break;
case CMDF_ROUND_DOWN:
*period = glb;
break;
}
/* set clock bits for config register appropriately */
devpriv->config_bits &= ~CLOCK_MASK;
if (*period == lub) {
devpriv->config_bits |=
CLOCK_SELECT_BITS(lub_index) |
CLOCK_DIVISOR_BITS(lub_divisor_shift);
} else {
devpriv->config_bits |=
CLOCK_SELECT_BITS(glb_index) |
CLOCK_DIVISOR_BITS(glb_divisor_shift);
}
return 0;
}
static int a2150_set_chanlist(struct comedi_device *dev,
unsigned int start_channel,
unsigned int num_channels)
{
struct a2150_private *devpriv = dev->private;
if (start_channel + num_channels > 4)
return -1;
devpriv->config_bits &= ~CHANNEL_MASK;
switch (num_channels) {
case 1:
devpriv->config_bits |= CHANNEL_BITS(0x4 | start_channel);
break;
case 2:
if (start_channel == 0)
devpriv->config_bits |= CHANNEL_BITS(0x2);
else if (start_channel == 2)
devpriv->config_bits |= CHANNEL_BITS(0x3);
else
return -1;
break;
case 4:
devpriv->config_bits |= CHANNEL_BITS(0x1);
break;
default:
return -1;
}
return 0;
}
static int a2150_ai_check_chanlist(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
unsigned int chan0 = CR_CHAN(cmd->chanlist[0]);
unsigned int aref0 = CR_AREF(cmd->chanlist[0]);
int i;
if (cmd->chanlist_len == 2 && (chan0 == 1 || chan0 == 3)) {
dev_dbg(dev->class_dev,
"length 2 chanlist must be channels 0,1 or channels 2,3\n");
return -EINVAL;
}
if (cmd->chanlist_len == 3) {
dev_dbg(dev->class_dev,
"chanlist must have 1,2 or 4 channels\n");
return -EINVAL;
}
for (i = 1; i < cmd->chanlist_len; i++) {
unsigned int chan = CR_CHAN(cmd->chanlist[i]);
unsigned int aref = CR_AREF(cmd->chanlist[i]);
if (chan != (chan0 + i)) {
dev_dbg(dev->class_dev,
"entries in chanlist must be consecutive channels, counting upwards\n");
return -EINVAL;
}
if (chan == 2)
aref0 = aref;
if (aref != aref0) {
dev_dbg(dev->class_dev,
"channels 0/1 and 2/3 must have the same analog reference\n");
return -EINVAL;
}
}
return 0;
}
static int a2150_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
const struct a2150_board *board = dev->board_ptr;
int err = 0;
unsigned int arg;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_begin_src, TRIG_TIMER);
err |= comedi_check_trigger_src(&cmd->convert_src, TRIG_NOW);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->start_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
if (cmd->convert_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
board->ai_speed);
}
err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1);
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
if (cmd->stop_src == TRIG_COUNT)
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
else /* TRIG_NONE */
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->scan_begin_src == TRIG_TIMER) {
arg = cmd->scan_begin_arg;
a2150_get_timing(dev, &arg, cmd->flags);
err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
}
if (err)
return 4;
/* Step 5: check channel list if it exists */
if (cmd->chanlist && cmd->chanlist_len > 0)
err |= a2150_ai_check_chanlist(dev, s, cmd);
if (err)
return 5;
return 0;
}
static int a2150_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct a2150_private *devpriv = dev->private;
struct comedi_isadma *dma = devpriv->dma;
struct comedi_isadma_desc *desc = &dma->desc[0];
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
unsigned int old_config_bits = devpriv->config_bits;
unsigned int trigger_bits;
if (cmd->flags & CMDF_PRIORITY) {
dev_err(dev->class_dev,
"dma incompatible with hard real-time interrupt (CMDF_PRIORITY), aborting\n");
return -1;
}
/* clear fifo and reset triggering circuitry */
outw(0, dev->iobase + FIFO_RESET_REG);
/* setup chanlist */
if (a2150_set_chanlist(dev, CR_CHAN(cmd->chanlist[0]),
cmd->chanlist_len) < 0)
return -1;
/* setup ac/dc coupling */
if (CR_AREF(cmd->chanlist[0]) == AREF_OTHER)
devpriv->config_bits |= AC0_BIT;
else
devpriv->config_bits &= ~AC0_BIT;
if (CR_AREF(cmd->chanlist[2]) == AREF_OTHER)
devpriv->config_bits |= AC1_BIT;
else
devpriv->config_bits &= ~AC1_BIT;
/* setup timing */
a2150_get_timing(dev, &cmd->scan_begin_arg, cmd->flags);
/* send timing, channel, config bits */
outw(devpriv->config_bits, dev->iobase + CONFIG_REG);
/* initialize number of samples remaining */
devpriv->count = cmd->stop_arg * cmd->chanlist_len;
comedi_isadma_disable(desc->chan);
/* set size of transfer to fill in 1/3 second */
#define ONE_THIRD_SECOND 333333333
desc->size = comedi_bytes_per_sample(s) * cmd->chanlist_len *
ONE_THIRD_SECOND / cmd->scan_begin_arg;
if (desc->size > desc->maxsize)
desc->size = desc->maxsize;
if (desc->size < comedi_bytes_per_sample(s))
desc->size = comedi_bytes_per_sample(s);
desc->size -= desc->size % comedi_bytes_per_sample(s);
comedi_isadma_program(desc);
/*
* Clear dma interrupt before enabling it, to try and get rid of
* that one spurious interrupt that has been happening.
*/
outw(0x00, dev->iobase + DMA_TC_CLEAR_REG);
/* enable dma on card */
devpriv->irq_dma_bits |= DMA_INTR_EN_BIT | DMA_EN_BIT;
outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG);
/* may need to wait 72 sampling periods if timing was changed */
comedi_8254_load(dev->pacer, 2, 72, I8254_MODE0 | I8254_BINARY);
/* setup start triggering */
trigger_bits = 0;
/* decide if we need to wait 72 periods for valid data */
if (cmd->start_src == TRIG_NOW &&
(old_config_bits & CLOCK_MASK) !=
(devpriv->config_bits & CLOCK_MASK)) {
/* set trigger source to delay trigger */
trigger_bits |= DELAY_TRIGGER_BITS;
} else {
/* otherwise no delay */
trigger_bits |= POST_TRIGGER_BITS;
}
/* enable external hardware trigger */
if (cmd->start_src == TRIG_EXT) {
trigger_bits |= HW_TRIG_EN;
} else if (cmd->start_src == TRIG_OTHER) {
/*
* XXX add support for level/slope start trigger
* using TRIG_OTHER
*/
dev_err(dev->class_dev, "you shouldn't see this?\n");
}
/* send trigger config bits */
outw(trigger_bits, dev->iobase + TRIGGER_REG);
/* start acquisition for soft trigger */
if (cmd->start_src == TRIG_NOW)
outw(0, dev->iobase + FIFO_START_REG);
return 0;
}
static int a2150_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = inw(dev->iobase + STATUS_REG);
if (status & FNE_BIT)
return 0;
return -EBUSY;
}
static int a2150_ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
struct a2150_private *devpriv = dev->private;
unsigned int n;
int ret;
/* clear fifo and reset triggering circuitry */
outw(0, dev->iobase + FIFO_RESET_REG);
/* setup chanlist */
if (a2150_set_chanlist(dev, CR_CHAN(insn->chanspec), 1) < 0)
return -1;
/* set dc coupling */
devpriv->config_bits &= ~AC0_BIT;
devpriv->config_bits &= ~AC1_BIT;
/* send timing, channel, config bits */
outw(devpriv->config_bits, dev->iobase + CONFIG_REG);
/* disable dma on card */
devpriv->irq_dma_bits &= ~DMA_INTR_EN_BIT & ~DMA_EN_BIT;
outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG);
/* setup start triggering */
outw(0, dev->iobase + TRIGGER_REG);
/* start acquisition for soft trigger */
outw(0, dev->iobase + FIFO_START_REG);
/*
* there is a 35.6 sample delay for data to get through the
* antialias filter
*/
for (n = 0; n < 36; n++) {
ret = comedi_timeout(dev, s, insn, a2150_ai_eoc, 0);
if (ret)
return ret;
inw(dev->iobase + FIFO_DATA_REG);
}
/* read data */
for (n = 0; n < insn->n; n++) {
ret = comedi_timeout(dev, s, insn, a2150_ai_eoc, 0);
if (ret)
return ret;
data[n] = inw(dev->iobase + FIFO_DATA_REG);
data[n] ^= 0x8000;
}
/* clear fifo and reset triggering circuitry */
outw(0, dev->iobase + FIFO_RESET_REG);
return n;
}
static void a2150_alloc_irq_and_dma(struct comedi_device *dev,
struct comedi_devconfig *it)
{
struct a2150_private *devpriv = dev->private;
unsigned int irq_num = it->options[1];
unsigned int dma_chan = it->options[2];
/*
* Only IRQs 15, 14, 12-9, and 7-3 are valid.
* Only DMA channels 7-5 and 3-0 are valid.
*/
if (irq_num > 15 || dma_chan > 7 ||
!((1 << irq_num) & 0xdef8) || !((1 << dma_chan) & 0xef))
return;
if (request_irq(irq_num, a2150_interrupt, 0, dev->board_name, dev))
return;
/* DMA uses 1 buffer */
devpriv->dma = comedi_isadma_alloc(dev, 1, dma_chan, dma_chan,
A2150_DMA_BUFFER_SIZE,
COMEDI_ISADMA_READ);
if (!devpriv->dma) {
free_irq(irq_num, dev);
} else {
dev->irq = irq_num;
devpriv->irq_dma_bits = IRQ_LVL_BITS(irq_num) |
DMA_CHAN_BITS(dma_chan);
}
}
static void a2150_free_dma(struct comedi_device *dev)
{
struct a2150_private *devpriv = dev->private;
if (devpriv)
comedi_isadma_free(devpriv->dma);
}
static const struct a2150_board *a2150_probe(struct comedi_device *dev)
{
int id = ID_BITS(inw(dev->iobase + STATUS_REG));
if (id >= ARRAY_SIZE(a2150_boards))
return NULL;
return &a2150_boards[id];
}
static int a2150_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{
const struct a2150_board *board;
struct a2150_private *devpriv;
struct comedi_subdevice *s;
static const int timeout = 2000;
int i;
int ret;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
ret = comedi_request_region(dev, it->options[0], 0x1c);
if (ret)
return ret;
board = a2150_probe(dev);
if (!board)
return -ENODEV;
dev->board_ptr = board;
dev->board_name = board->name;
/* an IRQ and DMA are required to support async commands */
a2150_alloc_irq_and_dma(dev, it);
dev->pacer = comedi_8254_io_alloc(dev->iobase + I8253_BASE_REG,
0, I8254_IO8, 0);
if (IS_ERR(dev->pacer))
return PTR_ERR(dev->pacer);
ret = comedi_alloc_subdevices(dev, 1);
if (ret)
return ret;
/* analog input subdevice */
s = &dev->subdevices[0];
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_OTHER;
s->n_chan = 4;
s->maxdata = 0xffff;
s->range_table = &range_a2150;
s->insn_read = a2150_ai_rinsn;
if (dev->irq) {
dev->read_subdev = s;
s->subdev_flags |= SDF_CMD_READ;
s->len_chanlist = s->n_chan;
s->do_cmd = a2150_ai_cmd;
s->do_cmdtest = a2150_ai_cmdtest;
s->cancel = a2150_cancel;
}
/* set card's irq and dma levels */
outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG);
/* reset and sync adc clock circuitry */
outw_p(DPD_BIT | APD_BIT, dev->iobase + CONFIG_REG);
outw_p(DPD_BIT, dev->iobase + CONFIG_REG);
/* initialize configuration register */
devpriv->config_bits = 0;
outw(devpriv->config_bits, dev->iobase + CONFIG_REG);
/* wait until offset calibration is done, then enable analog inputs */
for (i = 0; i < timeout; i++) {
if ((DCAL_BIT & inw(dev->iobase + STATUS_REG)) == 0)
break;
usleep_range(1000, 3000);
}
if (i == timeout) {
dev_err(dev->class_dev,
"timed out waiting for offset calibration to complete\n");
return -ETIME;
}
devpriv->config_bits |= ENABLE0_BIT | ENABLE1_BIT;
outw(devpriv->config_bits, dev->iobase + CONFIG_REG);
return 0;
};
static void a2150_detach(struct comedi_device *dev)
{
if (dev->iobase)
outw(APD_BIT | DPD_BIT, dev->iobase + CONFIG_REG);
a2150_free_dma(dev);
comedi_legacy_detach(dev);
};
static struct comedi_driver ni_at_a2150_driver = {
.driver_name = "ni_at_a2150",
.module = THIS_MODULE,
.attach = a2150_attach,
.detach = a2150_detach,
};
module_comedi_driver(ni_at_a2150_driver);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");