// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/daqboard2000.c
* hardware driver for IOtech DAQboard/2000
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 1999 Anders Blomdell <[email protected]>
*/
/*
* Driver: daqboard2000
* Description: IOTech DAQBoard/2000
* Author: Anders Blomdell <[email protected]>
* Status: works
* Updated: Mon, 14 Apr 2008 15:28:52 +0100
* Devices: [IOTech] DAQBoard/2000 (daqboard2000)
*
* Much of the functionality of this driver was determined from reading
* the source code for the Windows driver.
*
* The FPGA on the board requires firmware, which is available from
* https://www.comedi.org in the comedi_nonfree_firmware tarball.
*
* Configuration options: not applicable, uses PCI auto config
*/
/*
* This card was obviously never intended to leave the Windows world,
* since it lacked all kind of hardware documentation (except for cable
* pinouts, plug and pray has something to catch up with yet).
*
* With some help from our swedish distributor, we got the Windows sourcecode
* for the card, and here are the findings so far.
*
* 1. A good document that describes the PCI interface chip is 9080db-106.pdf
* available from http://www.plxtech.com/products/io/pci9080
*
* 2. The initialization done so far is:
* a. program the FPGA (windows code sans a lot of error messages)
* b.
*
* 3. Analog out seems to work OK with DAC's disabled, if DAC's are enabled,
* you have to output values to all enabled DAC's until result appears, I
* guess that it has something to do with pacer clocks, but the source
* gives me no clues. I'll keep it simple so far.
*
* 4. Analog in.
* Each channel in the scanlist seems to be controlled by four
* control words:
*
* Word0:
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* ! | | | ! | | | ! | | | ! | | | !
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* Word1:
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* ! | | | ! | | | ! | | | ! | | | !
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | | | | | |
* +------+------+ | | | | +-- Digital input (??)
* | | | | +---- 10 us settling time
* | | | +------ Suspend acquisition (last to scan)
* | | +-------- Simultaneous sample and hold
* | +---------- Signed data format
* +------------------------- Correction offset low
*
* Word2:
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* ! | | | ! | | | ! | | | ! | | | !
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | | | | | | | | |
* +-----+ +--+--+ +++ +++ +--+--+
* | | | | +----- Expansion channel
* | | | +----------- Expansion gain
* | | +--------------- Channel (low)
* | +--------------------- Correction offset high
* +----------------------------- Correction gain low
* Word3:
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* ! | | | ! | | | ! | | | ! | | | !
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | | | | | | | |
* +------+------+ | | +-+-+ | | +-- Low bank enable
* | | | | | +---- High bank enable
* | | | | +------ Hi/low select
* | | | +---------- Gain (1,?,2,4,8,16,32,64)
* | | +-------------- differential/single ended
* | +---------------- Unipolar
* +------------------------- Correction gain high
*
* 999. The card seems to have an incredible amount of capabilities, but
* trying to reverse engineer them from the Windows source is beyond my
* patience.
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/comedi/comedi_pci.h>
#include <linux/comedi/comedi_8255.h>
#include "plx9080.h"
#define DB2K_FIRMWARE "daqboard2000_firmware.bin"
static const struct comedi_lrange db2k_ai_range = {
13, {
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1.25),
BIP_RANGE(0.625),
BIP_RANGE(0.3125),
BIP_RANGE(0.156),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2.5),
UNI_RANGE(1.25),
UNI_RANGE(0.625),
UNI_RANGE(0.3125)
}
};
/*
* Register Memory Map
*/
#define DB2K_REG_ACQ_CONTROL 0x00 /* u16 (w) */
#define DB2K_REG_ACQ_STATUS 0x00 /* u16 (r) */
#define DB2K_REG_ACQ_SCAN_LIST_FIFO 0x02 /* u16 */
#define DB2K_REG_ACQ_PACER_CLOCK_DIV_LOW 0x04 /* u32 */
#define DB2K_REG_ACQ_SCAN_COUNTER 0x08 /* u16 */
#define DB2K_REG_ACQ_PACER_CLOCK_DIV_HIGH 0x0a /* u16 */
#define DB2K_REG_ACQ_TRIGGER_COUNT 0x0c /* u16 */
#define DB2K_REG_ACQ_RESULTS_FIFO 0x10 /* u16 */
#define DB2K_REG_ACQ_RESULTS_SHADOW 0x14 /* u16 */
#define DB2K_REG_ACQ_ADC_RESULT 0x18 /* u16 */
#define DB2K_REG_DAC_SCAN_COUNTER 0x1c /* u16 */
#define DB2K_REG_DAC_CONTROL 0x20 /* u16 (w) */
#define DB2K_REG_DAC_STATUS 0x20 /* u16 (r) */
#define DB2K_REG_DAC_FIFO 0x24 /* s16 */
#define DB2K_REG_DAC_PACER_CLOCK_DIV 0x2a /* u16 */
#define DB2K_REG_REF_DACS 0x2c /* u16 */
#define DB2K_REG_DIO_CONTROL 0x30 /* u16 */
#define DB2K_REG_P3_HSIO_DATA 0x32 /* s16 */
#define DB2K_REG_P3_CONTROL 0x34 /* u16 */
#define DB2K_REG_CAL_EEPROM_CONTROL 0x36 /* u16 */
#define DB2K_REG_DAC_SETTING(x) (0x38 + (x) * 2) /* s16 */
#define DB2K_REG_DIO_P2_EXP_IO_8_BIT 0x40 /* s16 */
#define DB2K_REG_COUNTER_TIMER_CONTROL 0x80 /* u16 */
#define DB2K_REG_COUNTER_INPUT(x) (0x88 + (x) * 2) /* s16 */
#define DB2K_REG_TIMER_DIV(x) (0xa0 + (x) * 2) /* u16 */
#define DB2K_REG_DMA_CONTROL 0xb0 /* u16 */
#define DB2K_REG_TRIG_CONTROL 0xb2 /* u16 */
#define DB2K_REG_CAL_EEPROM 0xb8 /* u16 */
#define DB2K_REG_ACQ_DIGITAL_MARK 0xba /* u16 */
#define DB2K_REG_TRIG_DACS 0xbc /* u16 */
#define DB2K_REG_DIO_P2_EXP_IO_16_BIT(x) (0xc0 + (x) * 2) /* s16 */
/* CPLD registers */
#define DB2K_REG_CPLD_STATUS 0x1000 /* u16 (r) */
#define DB2K_REG_CPLD_WDATA 0x1000 /* u16 (w) */
/* Scan Sequencer programming */
#define DB2K_ACQ_CONTROL_SEQ_START_SCAN_LIST 0x0011
#define DB2K_ACQ_CONTROL_SEQ_STOP_SCAN_LIST 0x0010
/* Prepare for acquisition */
#define DB2K_ACQ_CONTROL_RESET_SCAN_LIST_FIFO 0x0004
#define DB2K_ACQ_CONTROL_RESET_RESULTS_FIFO 0x0002
#define DB2K_ACQ_CONTROL_RESET_CONFIG_PIPE 0x0001
/* Pacer Clock Control */
#define DB2K_ACQ_CONTROL_ADC_PACER_INTERNAL 0x0030
#define DB2K_ACQ_CONTROL_ADC_PACER_EXTERNAL 0x0032
#define DB2K_ACQ_CONTROL_ADC_PACER_ENABLE 0x0031
#define DB2K_ACQ_CONTROL_ADC_PACER_ENABLE_DAC_PACER 0x0034
#define DB2K_ACQ_CONTROL_ADC_PACER_DISABLE 0x0030
#define DB2K_ACQ_CONTROL_ADC_PACER_NORMAL_MODE 0x0060
#define DB2K_ACQ_CONTROL_ADC_PACER_COMPATIBILITY_MODE 0x0061
#define DB2K_ACQ_CONTROL_ADC_PACER_INTERNAL_OUT_ENABLE 0x0008
#define DB2K_ACQ_CONTROL_ADC_PACER_EXTERNAL_RISING 0x0100
/* Acquisition status bits */
#define DB2K_ACQ_STATUS_RESULTS_FIFO_MORE_1_SAMPLE 0x0001
#define DB2K_ACQ_STATUS_RESULTS_FIFO_HAS_DATA 0x0002
#define DB2K_ACQ_STATUS_RESULTS_FIFO_OVERRUN 0x0004
#define DB2K_ACQ_STATUS_LOGIC_SCANNING 0x0008
#define DB2K_ACQ_STATUS_CONFIG_PIPE_FULL 0x0010
#define DB2K_ACQ_STATUS_SCAN_LIST_FIFO_EMPTY 0x0020
#define DB2K_ACQ_STATUS_ADC_NOT_READY 0x0040
#define DB2K_ACQ_STATUS_ARBITRATION_FAILURE 0x0080
#define DB2K_ACQ_STATUS_ADC_PACER_OVERRUN 0x0100
#define DB2K_ACQ_STATUS_DAC_PACER_OVERRUN 0x0200
/* DAC status */
#define DB2K_DAC_STATUS_DAC_FULL 0x0001
#define DB2K_DAC_STATUS_REF_BUSY 0x0002
#define DB2K_DAC_STATUS_TRIG_BUSY 0x0004
#define DB2K_DAC_STATUS_CAL_BUSY 0x0008
#define DB2K_DAC_STATUS_DAC_BUSY(x) (0x0010 << (x))
/* DAC control */
#define DB2K_DAC_CONTROL_ENABLE_BIT 0x0001
#define DB2K_DAC_CONTROL_DATA_IS_SIGNED 0x0002
#define DB2K_DAC_CONTROL_RESET_FIFO 0x0004
#define DB2K_DAC_CONTROL_DAC_DISABLE(x) (0x0020 + ((x) << 4))
#define DB2K_DAC_CONTROL_DAC_ENABLE(x) (0x0021 + ((x) << 4))
#define DB2K_DAC_CONTROL_PATTERN_DISABLE 0x0060
#define DB2K_DAC_CONTROL_PATTERN_ENABLE 0x0061
/* Trigger Control */
#define DB2K_TRIG_CONTROL_TYPE_ANALOG 0x0000
#define DB2K_TRIG_CONTROL_TYPE_TTL 0x0010
#define DB2K_TRIG_CONTROL_EDGE_HI_LO 0x0004
#define DB2K_TRIG_CONTROL_EDGE_LO_HI 0x0000
#define DB2K_TRIG_CONTROL_LEVEL_ABOVE 0x0000
#define DB2K_TRIG_CONTROL_LEVEL_BELOW 0x0004
#define DB2K_TRIG_CONTROL_SENSE_LEVEL 0x0002
#define DB2K_TRIG_CONTROL_SENSE_EDGE 0x0000
#define DB2K_TRIG_CONTROL_ENABLE 0x0001
#define DB2K_TRIG_CONTROL_DISABLE 0x0000
/* Reference Dac Selection */
#define DB2K_REF_DACS_SET 0x0080
#define DB2K_REF_DACS_SELECT_POS_REF 0x0100
#define DB2K_REF_DACS_SELECT_NEG_REF 0x0000
/* CPLD status bits */
#define DB2K_CPLD_STATUS_INIT 0x0002
#define DB2K_CPLD_STATUS_TXREADY 0x0004
#define DB2K_CPLD_VERSION_MASK 0xf000
/* "New CPLD" signature. */
#define DB2K_CPLD_VERSION_NEW 0x5000
enum db2k_boardid {
BOARD_DAQBOARD2000,
BOARD_DAQBOARD2001
};
struct db2k_boardtype {
const char *name;
unsigned int has_2_ao:1;/* false: 4 AO chans; true: 2 AO chans */
};
static const struct db2k_boardtype db2k_boardtypes[] = {
[BOARD_DAQBOARD2000] = {
.name = "daqboard2000",
.has_2_ao = true,
},
[BOARD_DAQBOARD2001] = {
.name = "daqboard2001",
},
};
struct db2k_private {
void __iomem *plx;
};
static void db2k_write_acq_scan_list_entry(struct comedi_device *dev, u16 entry)
{
writew(entry & 0x00ff, dev->mmio + DB2K_REG_ACQ_SCAN_LIST_FIFO);
writew((entry >> 8) & 0x00ff,
dev->mmio + DB2K_REG_ACQ_SCAN_LIST_FIFO);
}
static void db2k_setup_sampling(struct comedi_device *dev, int chan, int gain)
{
u16 word0, word1, word2, word3;
/* Channel 0-7 diff, channel 8-23 single ended */
word0 = 0;
word1 = 0x0004; /* Last scan */
word2 = (chan << 6) & 0x00c0;
switch (chan / 4) {
case 0:
word3 = 0x0001;
break;
case 1:
word3 = 0x0002;
break;
case 2:
word3 = 0x0005;
break;
case 3:
word3 = 0x0006;
break;
case 4:
word3 = 0x0041;
break;
case 5:
word3 = 0x0042;
break;
default:
word3 = 0;
break;
}
/* These should be read from EEPROM */
word2 |= 0x0800; /* offset */
word3 |= 0xc000; /* gain */
db2k_write_acq_scan_list_entry(dev, word0);
db2k_write_acq_scan_list_entry(dev, word1);
db2k_write_acq_scan_list_entry(dev, word2);
db2k_write_acq_scan_list_entry(dev, word3);
}
static int db2k_ai_status(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned long context)
{
unsigned int status;
status = readw(dev->mmio + DB2K_REG_ACQ_STATUS);
if (status & context)
return 0;
return -EBUSY;
}
static int db2k_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int gain, chan;
int ret;
int i;
writew(DB2K_ACQ_CONTROL_RESET_SCAN_LIST_FIFO |
DB2K_ACQ_CONTROL_RESET_RESULTS_FIFO |
DB2K_ACQ_CONTROL_RESET_CONFIG_PIPE,
dev->mmio + DB2K_REG_ACQ_CONTROL);
/*
* If pacer clock is not set to some high value (> 10 us), we
* risk multiple samples to be put into the result FIFO.
*/
/* 1 second, should be long enough */
writel(1000000, dev->mmio + DB2K_REG_ACQ_PACER_CLOCK_DIV_LOW);
writew(0, dev->mmio + DB2K_REG_ACQ_PACER_CLOCK_DIV_HIGH);
gain = CR_RANGE(insn->chanspec);
chan = CR_CHAN(insn->chanspec);
/*
* This doesn't look efficient. I decided to take the conservative
* approach when I did the insn conversion. Perhaps it would be
* better to have broken it completely, then someone would have been
* forced to fix it. --ds
*/
for (i = 0; i < insn->n; i++) {
db2k_setup_sampling(dev, chan, gain);
/* Enable reading from the scanlist FIFO */
writew(DB2K_ACQ_CONTROL_SEQ_START_SCAN_LIST,
dev->mmio + DB2K_REG_ACQ_CONTROL);
ret = comedi_timeout(dev, s, insn, db2k_ai_status,
DB2K_ACQ_STATUS_CONFIG_PIPE_FULL);
if (ret)
return ret;
writew(DB2K_ACQ_CONTROL_ADC_PACER_ENABLE,
dev->mmio + DB2K_REG_ACQ_CONTROL);
ret = comedi_timeout(dev, s, insn, db2k_ai_status,
DB2K_ACQ_STATUS_LOGIC_SCANNING);
if (ret)
return ret;
ret =
comedi_timeout(dev, s, insn, db2k_ai_status,
DB2K_ACQ_STATUS_RESULTS_FIFO_HAS_DATA);
if (ret)
return ret;
data[i] = readw(dev->mmio + DB2K_REG_ACQ_RESULTS_FIFO);
writew(DB2K_ACQ_CONTROL_ADC_PACER_DISABLE,
dev->mmio + DB2K_REG_ACQ_CONTROL);
writew(DB2K_ACQ_CONTROL_SEQ_STOP_SCAN_LIST,
dev->mmio + DB2K_REG_ACQ_CONTROL);
}
return i;
}
static int db2k_ao_eoc(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned long context)
{
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int status;
status = readw(dev->mmio + DB2K_REG_DAC_STATUS);
if ((status & DB2K_DAC_STATUS_DAC_BUSY(chan)) == 0)
return 0;
return -EBUSY;
}
static int db2k_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
int i;
for (i = 0; i < insn->n; i++) {
unsigned int val = data[i];
int ret;
writew(val, dev->mmio + DB2K_REG_DAC_SETTING(chan));
ret = comedi_timeout(dev, s, insn, db2k_ao_eoc, 0);
if (ret)
return ret;
s->readback[chan] = val;
}
return insn->n;
}
static void db2k_reset_local_bus(struct comedi_device *dev)
{
struct db2k_private *devpriv = dev->private;
u32 cntrl;
cntrl = readl(devpriv->plx + PLX_REG_CNTRL);
cntrl |= PLX_CNTRL_RESET;
writel(cntrl, devpriv->plx + PLX_REG_CNTRL);
mdelay(10);
cntrl &= ~PLX_CNTRL_RESET;
writel(cntrl, devpriv->plx + PLX_REG_CNTRL);
mdelay(10);
}
static void db2k_reload_plx(struct comedi_device *dev)
{
struct db2k_private *devpriv = dev->private;
u32 cntrl;
cntrl = readl(devpriv->plx + PLX_REG_CNTRL);
cntrl &= ~PLX_CNTRL_EERELOAD;
writel(cntrl, devpriv->plx + PLX_REG_CNTRL);
mdelay(10);
cntrl |= PLX_CNTRL_EERELOAD;
writel(cntrl, devpriv->plx + PLX_REG_CNTRL);
mdelay(10);
cntrl &= ~PLX_CNTRL_EERELOAD;
writel(cntrl, devpriv->plx + PLX_REG_CNTRL);
mdelay(10);
}
static void db2k_pulse_prog_pin(struct comedi_device *dev)
{
struct db2k_private *devpriv = dev->private;
u32 cntrl;
cntrl = readl(devpriv->plx + PLX_REG_CNTRL);
cntrl |= PLX_CNTRL_USERO;
writel(cntrl, devpriv->plx + PLX_REG_CNTRL);
mdelay(10);
cntrl &= ~PLX_CNTRL_USERO;
writel(cntrl, devpriv->plx + PLX_REG_CNTRL);
mdelay(10); /* Not in the original code, but I like symmetry... */
}
static int db2k_wait_cpld_init(struct comedi_device *dev)
{
int result = -ETIMEDOUT;
int i;
u16 cpld;
/* timeout after 50 tries -> 5ms */
for (i = 0; i < 50; i++) {
cpld = readw(dev->mmio + DB2K_REG_CPLD_STATUS);
if (cpld & DB2K_CPLD_STATUS_INIT) {
result = 0;
break;
}
usleep_range(100, 1000);
}
udelay(5);
return result;
}
static int db2k_wait_cpld_txready(struct comedi_device *dev)
{
int i;
for (i = 0; i < 100; i++) {
if (readw(dev->mmio + DB2K_REG_CPLD_STATUS) &
DB2K_CPLD_STATUS_TXREADY) {
return 0;
}
udelay(1);
}
return -ETIMEDOUT;
}
static int db2k_write_cpld(struct comedi_device *dev, u16 data, bool new_cpld)
{
int result = 0;
if (new_cpld) {
result = db2k_wait_cpld_txready(dev);
if (result)
return result;
} else {
usleep_range(10, 20);
}
writew(data, dev->mmio + DB2K_REG_CPLD_WDATA);
if (!(readw(dev->mmio + DB2K_REG_CPLD_STATUS) & DB2K_CPLD_STATUS_INIT))
result = -EIO;
return result;
}
static int db2k_wait_fpga_programmed(struct comedi_device *dev)
{
struct db2k_private *devpriv = dev->private;
int i;
/* Time out after 200 tries -> 20ms */
for (i = 0; i < 200; i++) {
u32 cntrl = readl(devpriv->plx + PLX_REG_CNTRL);
/* General Purpose Input (USERI) set on FPGA "DONE". */
if (cntrl & PLX_CNTRL_USERI)
return 0;
usleep_range(100, 1000);
}
return -ETIMEDOUT;
}
static int db2k_load_firmware(struct comedi_device *dev, const u8 *cpld_array,
size_t len, unsigned long context)
{
struct db2k_private *devpriv = dev->private;
int result = -EIO;
u32 cntrl;
int retry;
size_t i;
bool new_cpld;
/* Look for FPGA start sequence in firmware. */
for (i = 0; i + 1 < len; i++) {
if (cpld_array[i] == 0xff && cpld_array[i + 1] == 0x20)
break;
}
if (i + 1 >= len) {
dev_err(dev->class_dev, "bad firmware - no start sequence\n");
return -EINVAL;
}
/* Check length is even. */
if ((len - i) & 1) {
dev_err(dev->class_dev,
"bad firmware - odd length (%zu = %zu - %zu)\n",
len - i, len, i);
return -EINVAL;
}
/* Strip firmware header. */
cpld_array += i;
len -= i;
/* Check to make sure the serial eeprom is present on the board */
cntrl = readl(devpriv->plx + PLX_REG_CNTRL);
if (!(cntrl & PLX_CNTRL_EEPRESENT))
return -EIO;
for (retry = 0; retry < 3; retry++) {
db2k_reset_local_bus(dev);
db2k_reload_plx(dev);
db2k_pulse_prog_pin(dev);
result = db2k_wait_cpld_init(dev);
if (result)
continue;
new_cpld = (readw(dev->mmio + DB2K_REG_CPLD_STATUS) &
DB2K_CPLD_VERSION_MASK) == DB2K_CPLD_VERSION_NEW;
for (; i < len; i += 2) {
u16 data = (cpld_array[i] << 8) + cpld_array[i + 1];
result = db2k_write_cpld(dev, data, new_cpld);
if (result)
break;
}
if (result == 0)
result = db2k_wait_fpga_programmed(dev);
if (result == 0) {
db2k_reset_local_bus(dev);
db2k_reload_plx(dev);
break;
}
}
return result;
}
static void db2k_adc_stop_dma_transfer(struct comedi_device *dev)
{
}
static void db2k_adc_disarm(struct comedi_device *dev)
{
/* Disable hardware triggers */
udelay(2);
writew(DB2K_TRIG_CONTROL_TYPE_ANALOG | DB2K_TRIG_CONTROL_DISABLE,
dev->mmio + DB2K_REG_TRIG_CONTROL);
udelay(2);
writew(DB2K_TRIG_CONTROL_TYPE_TTL | DB2K_TRIG_CONTROL_DISABLE,
dev->mmio + DB2K_REG_TRIG_CONTROL);
/* Stop the scan list FIFO from loading the configuration pipe */
udelay(2);
writew(DB2K_ACQ_CONTROL_SEQ_STOP_SCAN_LIST,
dev->mmio + DB2K_REG_ACQ_CONTROL);
/* Stop the pacer clock */
udelay(2);
writew(DB2K_ACQ_CONTROL_ADC_PACER_DISABLE,
dev->mmio + DB2K_REG_ACQ_CONTROL);
/* Stop the input dma (abort channel 1) */
db2k_adc_stop_dma_transfer(dev);
}
static void db2k_activate_reference_dacs(struct comedi_device *dev)
{
unsigned int val;
int timeout;
/* Set the + reference dac value in the FPGA */
writew(DB2K_REF_DACS_SET | DB2K_REF_DACS_SELECT_POS_REF,
dev->mmio + DB2K_REG_REF_DACS);
for (timeout = 0; timeout < 20; timeout++) {
val = readw(dev->mmio + DB2K_REG_DAC_STATUS);
if ((val & DB2K_DAC_STATUS_REF_BUSY) == 0)
break;
udelay(2);
}
/* Set the - reference dac value in the FPGA */
writew(DB2K_REF_DACS_SET | DB2K_REF_DACS_SELECT_NEG_REF,
dev->mmio + DB2K_REG_REF_DACS);
for (timeout = 0; timeout < 20; timeout++) {
val = readw(dev->mmio + DB2K_REG_DAC_STATUS);
if ((val & DB2K_DAC_STATUS_REF_BUSY) == 0)
break;
udelay(2);
}
}
static void db2k_initialize_ctrs(struct comedi_device *dev)
{
}
static void db2k_initialize_tmrs(struct comedi_device *dev)
{
}
static void db2k_dac_disarm(struct comedi_device *dev)
{
}
static void db2k_initialize_adc(struct comedi_device *dev)
{
db2k_adc_disarm(dev);
db2k_activate_reference_dacs(dev);
db2k_initialize_ctrs(dev);
db2k_initialize_tmrs(dev);
}
static int db2k_8255_cb(struct comedi_device *dev, int dir, int port, int data,
unsigned long iobase)
{
if (dir) {
writew(data, dev->mmio + iobase + port * 2);
return 0;
}
return readw(dev->mmio + iobase + port * 2);
}
static int db2k_auto_attach(struct comedi_device *dev, unsigned long context)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
const struct db2k_boardtype *board;
struct db2k_private *devpriv;
struct comedi_subdevice *s;
int result;
if (context >= ARRAY_SIZE(db2k_boardtypes))
return -ENODEV;
board = &db2k_boardtypes[context];
if (!board->name)
return -ENODEV;
dev->board_ptr = board;
dev->board_name = board->name;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
result = comedi_pci_enable(dev);
if (result)
return result;
devpriv->plx = pci_ioremap_bar(pcidev, 0);
dev->mmio = pci_ioremap_bar(pcidev, 2);
if (!devpriv->plx || !dev->mmio)
return -ENOMEM;
result = comedi_alloc_subdevices(dev, 3);
if (result)
return result;
result = comedi_load_firmware(dev, &comedi_to_pci_dev(dev)->dev,
DB2K_FIRMWARE, db2k_load_firmware, 0);
if (result < 0)
return result;
db2k_initialize_adc(dev);
db2k_dac_disarm(dev);
s = &dev->subdevices[0];
/* ai subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND;
s->n_chan = 24;
s->maxdata = 0xffff;
s->insn_read = db2k_ai_insn_read;
s->range_table = &db2k_ai_range;
s = &dev->subdevices[1];
/* ao subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = board->has_2_ao ? 2 : 4;
s->maxdata = 0xffff;
s->insn_write = db2k_ao_insn_write;
s->range_table = &range_bipolar10;
result = comedi_alloc_subdev_readback(s);
if (result)
return result;
s = &dev->subdevices[2];
return subdev_8255_cb_init(dev, s, db2k_8255_cb,
DB2K_REG_DIO_P2_EXP_IO_8_BIT);
}
static void db2k_detach(struct comedi_device *dev)
{
struct db2k_private *devpriv = dev->private;
if (devpriv && devpriv->plx)
iounmap(devpriv->plx);
comedi_pci_detach(dev);
}
static struct comedi_driver db2k_driver = {
.driver_name = "daqboard2000",
.module = THIS_MODULE,
.auto_attach = db2k_auto_attach,
.detach = db2k_detach,
};
static int db2k_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
return comedi_pci_auto_config(dev, &db2k_driver, id->driver_data);
}
static const struct pci_device_id db2k_pci_table[] = {
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_IOTECH, 0x0409, PCI_VENDOR_ID_IOTECH,
0x0002), .driver_data = BOARD_DAQBOARD2000, },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_IOTECH, 0x0409, PCI_VENDOR_ID_IOTECH,
0x0004), .driver_data = BOARD_DAQBOARD2001, },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, db2k_pci_table);
static struct pci_driver db2k_pci_driver = {
.name = "daqboard2000",
.id_table = db2k_pci_table,
.probe = db2k_pci_probe,
.remove = comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(db2k_driver, db2k_pci_driver);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(DB2K_FIRMWARE);