// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/me_daq.c
* Hardware driver for Meilhaus data acquisition cards:
* ME-2000i, ME-2600i, ME-3000vm1
*
* Copyright (C) 2002 Michael Hillmann <[email protected]>
*/
/*
* Driver: me_daq
* Description: Meilhaus PCI data acquisition cards
* Devices: [Meilhaus] ME-2600i (me-2600i), ME-2000i (me-2000i)
* Author: Michael Hillmann <[email protected]>
* Status: experimental
*
* Configuration options: not applicable, uses PCI auto config
*
* Supports:
* Analog Input, Analog Output, Digital I/O
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/comedi/comedi_pci.h>
#include "plx9052.h"
#define ME2600_FIRMWARE "me2600_firmware.bin"
#define XILINX_DOWNLOAD_RESET 0x42 /* Xilinx registers */
/*
* PCI BAR2 Memory map (dev->mmio)
*/
#define ME_CTRL1_REG 0x00 /* R (ai start) | W */
#define ME_CTRL1_INT_ENA BIT(15)
#define ME_CTRL1_COUNTER_B_IRQ BIT(12)
#define ME_CTRL1_COUNTER_A_IRQ BIT(11)
#define ME_CTRL1_CHANLIST_READY_IRQ BIT(10)
#define ME_CTRL1_EXT_IRQ BIT(9)
#define ME_CTRL1_ADFIFO_HALFFULL_IRQ BIT(8)
#define ME_CTRL1_SCAN_COUNT_ENA BIT(5)
#define ME_CTRL1_SIMULTANEOUS_ENA BIT(4)
#define ME_CTRL1_TRIGGER_FALLING_EDGE BIT(3)
#define ME_CTRL1_CONTINUOUS_MODE BIT(2)
#define ME_CTRL1_ADC_MODE(x) (((x) & 0x3) << 0)
#define ME_CTRL1_ADC_MODE_DISABLE ME_CTRL1_ADC_MODE(0)
#define ME_CTRL1_ADC_MODE_SOFT_TRIG ME_CTRL1_ADC_MODE(1)
#define ME_CTRL1_ADC_MODE_SCAN_TRIG ME_CTRL1_ADC_MODE(2)
#define ME_CTRL1_ADC_MODE_EXT_TRIG ME_CTRL1_ADC_MODE(3)
#define ME_CTRL1_ADC_MODE_MASK ME_CTRL1_ADC_MODE(3)
#define ME_CTRL2_REG 0x02 /* R (dac update) | W */
#define ME_CTRL2_ADFIFO_ENA BIT(10)
#define ME_CTRL2_CHANLIST_ENA BIT(9)
#define ME_CTRL2_PORT_B_ENA BIT(7)
#define ME_CTRL2_PORT_A_ENA BIT(6)
#define ME_CTRL2_COUNTER_B_ENA BIT(4)
#define ME_CTRL2_COUNTER_A_ENA BIT(3)
#define ME_CTRL2_DAC_ENA BIT(1)
#define ME_CTRL2_BUFFERED_DAC BIT(0)
#define ME_STATUS_REG 0x04 /* R | W (clears interrupts) */
#define ME_STATUS_COUNTER_B_IRQ BIT(12)
#define ME_STATUS_COUNTER_A_IRQ BIT(11)
#define ME_STATUS_CHANLIST_READY_IRQ BIT(10)
#define ME_STATUS_EXT_IRQ BIT(9)
#define ME_STATUS_ADFIFO_HALFFULL_IRQ BIT(8)
#define ME_STATUS_ADFIFO_FULL BIT(4)
#define ME_STATUS_ADFIFO_HALFFULL BIT(3)
#define ME_STATUS_ADFIFO_EMPTY BIT(2)
#define ME_STATUS_CHANLIST_FULL BIT(1)
#define ME_STATUS_FST_ACTIVE BIT(0)
#define ME_DIO_PORT_A_REG 0x06 /* R | W */
#define ME_DIO_PORT_B_REG 0x08 /* R | W */
#define ME_TIMER_DATA_REG(x) (0x0a + ((x) * 2)) /* - | W */
#define ME_AI_FIFO_REG 0x10 /* R (fifo) | W (chanlist) */
#define ME_AI_FIFO_CHANLIST_DIFF BIT(7)
#define ME_AI_FIFO_CHANLIST_UNIPOLAR BIT(6)
#define ME_AI_FIFO_CHANLIST_GAIN(x) (((x) & 0x3) << 4)
#define ME_AI_FIFO_CHANLIST_CHAN(x) (((x) & 0xf) << 0)
#define ME_DAC_CTRL_REG 0x12 /* R (updates) | W */
#define ME_DAC_CTRL_BIPOLAR(x) BIT(7 - ((x) & 0x3))
#define ME_DAC_CTRL_GAIN(x) BIT(11 - ((x) & 0x3))
#define ME_DAC_CTRL_MASK(x) (ME_DAC_CTRL_BIPOLAR(x) | \
ME_DAC_CTRL_GAIN(x))
#define ME_AO_DATA_REG(x) (0x14 + ((x) * 2)) /* - | W */
#define ME_COUNTER_ENDDATA_REG(x) (0x1c + ((x) * 2)) /* - | W */
#define ME_COUNTER_STARTDATA_REG(x) (0x20 + ((x) * 2)) /* - | W */
#define ME_COUNTER_VALUE_REG(x) (0x20 + ((x) * 2)) /* R | - */
static const struct comedi_lrange me_ai_range = {
8, {
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1.25),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2.5),
UNI_RANGE(1.25)
}
};
static const struct comedi_lrange me_ao_range = {
3, {
BIP_RANGE(10),
BIP_RANGE(5),
UNI_RANGE(10)
}
};
enum me_boardid {
BOARD_ME2600,
BOARD_ME2000,
};
struct me_board {
const char *name;
int needs_firmware;
int has_ao;
};
static const struct me_board me_boards[] = {
[BOARD_ME2600] = {
.name = "me-2600i",
.needs_firmware = 1,
.has_ao = 1,
},
[BOARD_ME2000] = {
.name = "me-2000i",
},
};
struct me_private_data {
void __iomem *plx_regbase; /* PLX configuration base address */
unsigned short ctrl1; /* Mirror of CONTROL_1 register */
unsigned short ctrl2; /* Mirror of CONTROL_2 register */
unsigned short dac_ctrl; /* Mirror of the DAC_CONTROL register */
};
static inline void sleep(unsigned int sec)
{
schedule_timeout_interruptible(sec * HZ);
}
static int me_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct me_private_data *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int mask;
int ret;
if (chan < 16)
mask = 0x0000ffff;
else
mask = 0xffff0000;
ret = comedi_dio_insn_config(dev, s, insn, data, mask);
if (ret)
return ret;
if (s->io_bits & 0x0000ffff)
devpriv->ctrl2 |= ME_CTRL2_PORT_A_ENA;
else
devpriv->ctrl2 &= ~ME_CTRL2_PORT_A_ENA;
if (s->io_bits & 0xffff0000)
devpriv->ctrl2 |= ME_CTRL2_PORT_B_ENA;
else
devpriv->ctrl2 &= ~ME_CTRL2_PORT_B_ENA;
writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG);
return insn->n;
}
static int me_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
void __iomem *mmio_porta = dev->mmio + ME_DIO_PORT_A_REG;
void __iomem *mmio_portb = dev->mmio + ME_DIO_PORT_B_REG;
unsigned int mask;
unsigned int val;
mask = comedi_dio_update_state(s, data);
if (mask) {
if (mask & 0x0000ffff)
writew((s->state & 0xffff), mmio_porta);
if (mask & 0xffff0000)
writew(((s->state >> 16) & 0xffff), mmio_portb);
}
if (s->io_bits & 0x0000ffff)
val = s->state & 0xffff;
else
val = readw(mmio_porta);
if (s->io_bits & 0xffff0000)
val |= (s->state & 0xffff0000);
else
val |= (readw(mmio_portb) << 16);
data[1] = val;
return insn->n;
}
static int me_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = readw(dev->mmio + ME_STATUS_REG);
if ((status & ME_STATUS_ADFIFO_EMPTY) == 0)
return 0;
return -EBUSY;
}
static int me_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct me_private_data *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int range = CR_RANGE(insn->chanspec);
unsigned int aref = CR_AREF(insn->chanspec);
unsigned int val;
int ret = 0;
int i;
/*
* For differential operation, there are only 8 input channels
* and only bipolar ranges are available.
*/
if (aref & AREF_DIFF) {
if (chan > 7 || comedi_range_is_unipolar(s, range))
return -EINVAL;
}
/* clear chanlist and ad fifo */
devpriv->ctrl2 &= ~(ME_CTRL2_ADFIFO_ENA | ME_CTRL2_CHANLIST_ENA);
writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG);
writew(0x00, dev->mmio + ME_STATUS_REG); /* clear interrupts */
/* enable the chanlist and ADC fifo */
devpriv->ctrl2 |= (ME_CTRL2_ADFIFO_ENA | ME_CTRL2_CHANLIST_ENA);
writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG);
/* write to channel list fifo */
val = ME_AI_FIFO_CHANLIST_CHAN(chan) | ME_AI_FIFO_CHANLIST_GAIN(range);
if (comedi_range_is_unipolar(s, range))
val |= ME_AI_FIFO_CHANLIST_UNIPOLAR;
if (aref & AREF_DIFF)
val |= ME_AI_FIFO_CHANLIST_DIFF;
writew(val, dev->mmio + ME_AI_FIFO_REG);
/* set ADC mode to software trigger */
devpriv->ctrl1 |= ME_CTRL1_ADC_MODE_SOFT_TRIG;
writew(devpriv->ctrl1, dev->mmio + ME_CTRL1_REG);
for (i = 0; i < insn->n; i++) {
/* start ai conversion */
readw(dev->mmio + ME_CTRL1_REG);
/* wait for ADC fifo not empty flag */
ret = comedi_timeout(dev, s, insn, me_ai_eoc, 0);
if (ret)
break;
/* get value from ADC fifo */
val = readw(dev->mmio + ME_AI_FIFO_REG) & s->maxdata;
/* munge 2's complement value to offset binary */
data[i] = comedi_offset_munge(s, val);
}
/* stop any running conversion */
devpriv->ctrl1 &= ~ME_CTRL1_ADC_MODE_MASK;
writew(devpriv->ctrl1, dev->mmio + ME_CTRL1_REG);
return ret ? ret : insn->n;
}
static int me_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct me_private_data *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int range = CR_RANGE(insn->chanspec);
unsigned int val = s->readback[chan];
int i;
/* Enable all DAC */
devpriv->ctrl2 |= ME_CTRL2_DAC_ENA;
writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG);
/* and set DAC to "buffered" mode */
devpriv->ctrl2 |= ME_CTRL2_BUFFERED_DAC;
writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG);
/* Set dac-control register */
devpriv->dac_ctrl &= ~ME_DAC_CTRL_MASK(chan);
if (range == 0)
devpriv->dac_ctrl |= ME_DAC_CTRL_GAIN(chan);
if (comedi_range_is_bipolar(s, range))
devpriv->dac_ctrl |= ME_DAC_CTRL_BIPOLAR(chan);
writew(devpriv->dac_ctrl, dev->mmio + ME_DAC_CTRL_REG);
/* Update dac-control register */
readw(dev->mmio + ME_DAC_CTRL_REG);
/* Set data register */
for (i = 0; i < insn->n; i++) {
val = data[i];
writew(val, dev->mmio + ME_AO_DATA_REG(chan));
}
s->readback[chan] = val;
/* Update dac with data registers */
readw(dev->mmio + ME_CTRL2_REG);
return insn->n;
}
static int me2600_xilinx_download(struct comedi_device *dev,
const u8 *data, size_t size,
unsigned long context)
{
struct me_private_data *devpriv = dev->private;
unsigned int value;
unsigned int file_length;
unsigned int i;
/* disable irq's on PLX */
writel(0x00, devpriv->plx_regbase + PLX9052_INTCSR);
/* First, make a dummy read to reset xilinx */
value = readw(dev->mmio + XILINX_DOWNLOAD_RESET);
/* Wait until reset is over */
sleep(1);
/* Write a dummy value to Xilinx */
writeb(0x00, dev->mmio + 0x0);
sleep(1);
/*
* Format of the firmware
* Build longs from the byte-wise coded header
* Byte 1-3: length of the array
* Byte 4-7: version
* Byte 8-11: date
* Byte 12-15: reserved
*/
if (size < 16)
return -EINVAL;
file_length = (((unsigned int)data[0] & 0xff) << 24) +
(((unsigned int)data[1] & 0xff) << 16) +
(((unsigned int)data[2] & 0xff) << 8) +
((unsigned int)data[3] & 0xff);
/*
* Loop for writing firmware byte by byte to xilinx
* Firmware data start at offset 16
*/
for (i = 0; i < file_length; i++)
writeb((data[16 + i] & 0xff), dev->mmio + 0x0);
/* Write 5 dummy values to xilinx */
for (i = 0; i < 5; i++)
writeb(0x00, dev->mmio + 0x0);
/* Test if there was an error during download -> INTB was thrown */
value = readl(devpriv->plx_regbase + PLX9052_INTCSR);
if (value & PLX9052_INTCSR_LI2STAT) {
/* Disable interrupt */
writel(0x00, devpriv->plx_regbase + PLX9052_INTCSR);
dev_err(dev->class_dev, "Xilinx download failed\n");
return -EIO;
}
/* Wait until the Xilinx is ready for real work */
sleep(1);
/* Enable PLX-Interrupts */
writel(PLX9052_INTCSR_LI1ENAB |
PLX9052_INTCSR_LI1POL |
PLX9052_INTCSR_PCIENAB,
devpriv->plx_regbase + PLX9052_INTCSR);
return 0;
}
static int me_reset(struct comedi_device *dev)
{
struct me_private_data *devpriv = dev->private;
/* Reset board */
writew(0x00, dev->mmio + ME_CTRL1_REG);
writew(0x00, dev->mmio + ME_CTRL2_REG);
writew(0x00, dev->mmio + ME_STATUS_REG); /* clear interrupts */
writew(0x00, dev->mmio + ME_DAC_CTRL_REG);
/* Save values in the board context */
devpriv->dac_ctrl = 0;
devpriv->ctrl1 = 0;
devpriv->ctrl2 = 0;
return 0;
}
static int me_auto_attach(struct comedi_device *dev,
unsigned long context)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
const struct me_board *board = NULL;
struct me_private_data *devpriv;
struct comedi_subdevice *s;
int ret;
if (context < ARRAY_SIZE(me_boards))
board = &me_boards[context];
if (!board)
return -ENODEV;
dev->board_ptr = board;
dev->board_name = board->name;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
ret = comedi_pci_enable(dev);
if (ret)
return ret;
devpriv->plx_regbase = pci_ioremap_bar(pcidev, 0);
if (!devpriv->plx_regbase)
return -ENOMEM;
dev->mmio = pci_ioremap_bar(pcidev, 2);
if (!dev->mmio)
return -ENOMEM;
/* Download firmware and reset card */
if (board->needs_firmware) {
ret = comedi_load_firmware(dev, &comedi_to_pci_dev(dev)->dev,
ME2600_FIRMWARE,
me2600_xilinx_download, 0);
if (ret < 0)
return ret;
}
me_reset(dev);
ret = comedi_alloc_subdevices(dev, 3);
if (ret)
return ret;
s = &dev->subdevices[0];
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_DIFF;
s->n_chan = 16;
s->maxdata = 0x0fff;
s->len_chanlist = 16;
s->range_table = &me_ai_range;
s->insn_read = me_ai_insn_read;
s = &dev->subdevices[1];
if (board->has_ao) {
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE | SDF_COMMON;
s->n_chan = 4;
s->maxdata = 0x0fff;
s->len_chanlist = 4;
s->range_table = &me_ao_range;
s->insn_write = me_ao_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
s = &dev->subdevices[2];
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 32;
s->maxdata = 1;
s->len_chanlist = 32;
s->range_table = &range_digital;
s->insn_bits = me_dio_insn_bits;
s->insn_config = me_dio_insn_config;
return 0;
}
static void me_detach(struct comedi_device *dev)
{
struct me_private_data *devpriv = dev->private;
if (devpriv) {
if (dev->mmio)
me_reset(dev);
if (devpriv->plx_regbase)
iounmap(devpriv->plx_regbase);
}
comedi_pci_detach(dev);
}
static struct comedi_driver me_daq_driver = {
.driver_name = "me_daq",
.module = THIS_MODULE,
.auto_attach = me_auto_attach,
.detach = me_detach,
};
static int me_daq_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
return comedi_pci_auto_config(dev, &me_daq_driver, id->driver_data);
}
static const struct pci_device_id me_daq_pci_table[] = {
{ PCI_VDEVICE(MEILHAUS, 0x2600), BOARD_ME2600 },
{ PCI_VDEVICE(MEILHAUS, 0x2000), BOARD_ME2000 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, me_daq_pci_table);
static struct pci_driver me_daq_pci_driver = {
.name = "me_daq",
.id_table = me_daq_pci_table,
.probe = me_daq_pci_probe,
.remove = comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(me_daq_driver, me_daq_pci_driver);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(ME2600_FIRMWARE);