// SPDX-License-Identifier: GPL-2.0
/*
* quatech_daqp_cs.c
* Quatech DAQP PCMCIA data capture cards COMEDI client driver
* Copyright (C) 2000, 2003 Brent Baccala <[email protected]>
* The DAQP interface code in this file is released into the public domain.
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 1998 David A. Schleef <[email protected]>
* https://www.comedi.org/
*
* Documentation for the DAQP PCMCIA cards can be found on Quatech's site:
* ftp://ftp.quatech.com/Manuals/daqp-208.pdf
*
* This manual is for both the DAQP-208 and the DAQP-308.
*
* What works:
* - A/D conversion
* - 8 channels
* - 4 gain ranges
* - ground ref or differential
* - single-shot and timed both supported
* - D/A conversion, single-shot
* - digital I/O
*
* What doesn't:
* - any kind of triggering - external or D/A channel 1
* - the card's optional expansion board
* - the card's timer (for anything other than A/D conversion)
* - D/A update modes other than immediate (i.e, timed)
* - fancier timing modes
* - setting card's FIFO buffer thresholds to anything but default
*/
/*
* Driver: quatech_daqp_cs
* Description: Quatech DAQP PCMCIA data capture cards
* Devices: [Quatech] DAQP-208 (daqp), DAQP-308
* Author: Brent Baccala <[email protected]>
* Status: works
*/
#include <linux/module.h>
#include <linux/comedi/comedi_pcmcia.h>
/*
* Register I/O map
*
* The D/A and timer registers can be accessed with 16-bit or 8-bit I/O
* instructions. All other registers can only use 8-bit instructions.
*
* The FIFO and scanlist registers require two 8-bit instructions to
* access the 16-bit data. Data is transferred LSB then MSB.
*/
#define DAQP_AI_FIFO_REG 0x00
#define DAQP_SCANLIST_REG 0x01
#define DAQP_SCANLIST_DIFFERENTIAL BIT(14)
#define DAQP_SCANLIST_GAIN(x) (((x) & 0x3) << 12)
#define DAQP_SCANLIST_CHANNEL(x) (((x) & 0xf) << 8)
#define DAQP_SCANLIST_START BIT(7)
#define DAQP_SCANLIST_EXT_GAIN(x) (((x) & 0x3) << 4)
#define DAQP_SCANLIST_EXT_CHANNEL(x) (((x) & 0xf) << 0)
#define DAQP_CTRL_REG 0x02
#define DAQP_CTRL_PACER_CLK(x) (((x) & 0x3) << 6)
#define DAQP_CTRL_PACER_CLK_EXT DAQP_CTRL_PACER_CLK(0)
#define DAQP_CTRL_PACER_CLK_5MHZ DAQP_CTRL_PACER_CLK(1)
#define DAQP_CTRL_PACER_CLK_1MHZ DAQP_CTRL_PACER_CLK(2)
#define DAQP_CTRL_PACER_CLK_100KHZ DAQP_CTRL_PACER_CLK(3)
#define DAQP_CTRL_EXPANSION BIT(5)
#define DAQP_CTRL_EOS_INT_ENA BIT(4)
#define DAQP_CTRL_FIFO_INT_ENA BIT(3)
#define DAQP_CTRL_TRIG_MODE BIT(2) /* 0=one-shot; 1=continuous */
#define DAQP_CTRL_TRIG_SRC BIT(1) /* 0=internal; 1=external */
#define DAQP_CTRL_TRIG_EDGE BIT(0) /* 0=rising; 1=falling */
#define DAQP_STATUS_REG 0x02
#define DAQP_STATUS_IDLE BIT(7)
#define DAQP_STATUS_RUNNING BIT(6)
#define DAQP_STATUS_DATA_LOST BIT(5)
#define DAQP_STATUS_END_OF_SCAN BIT(4)
#define DAQP_STATUS_FIFO_THRESHOLD BIT(3)
#define DAQP_STATUS_FIFO_FULL BIT(2)
#define DAQP_STATUS_FIFO_NEARFULL BIT(1)
#define DAQP_STATUS_FIFO_EMPTY BIT(0)
/* these bits clear when the status register is read */
#define DAQP_STATUS_EVENTS (DAQP_STATUS_DATA_LOST | \
DAQP_STATUS_END_OF_SCAN | \
DAQP_STATUS_FIFO_THRESHOLD)
#define DAQP_DI_REG 0x03
#define DAQP_DO_REG 0x03
#define DAQP_PACER_LOW_REG 0x04
#define DAQP_PACER_MID_REG 0x05
#define DAQP_PACER_HIGH_REG 0x06
#define DAQP_CMD_REG 0x07
/* the monostable bits are self-clearing after the function is complete */
#define DAQP_CMD_ARM BIT(7) /* monostable */
#define DAQP_CMD_RSTF BIT(6) /* monostable */
#define DAQP_CMD_RSTQ BIT(5) /* monostable */
#define DAQP_CMD_STOP BIT(4) /* monostable */
#define DAQP_CMD_LATCH BIT(3) /* monostable */
#define DAQP_CMD_SCANRATE(x) (((x) & 0x3) << 1)
#define DAQP_CMD_SCANRATE_100KHZ DAQP_CMD_SCANRATE(0)
#define DAQP_CMD_SCANRATE_50KHZ DAQP_CMD_SCANRATE(1)
#define DAQP_CMD_SCANRATE_25KHZ DAQP_CMD_SCANRATE(2)
#define DAQP_CMD_FIFO_DATA BIT(0)
#define DAQP_AO_REG 0x08 /* and 0x09 (16-bit) */
#define DAQP_TIMER_REG 0x0a /* and 0x0b (16-bit) */
#define DAQP_AUX_REG 0x0f
/* Auxiliary Control register bits (write) */
#define DAQP_AUX_EXT_ANALOG_TRIG BIT(7)
#define DAQP_AUX_PRETRIG BIT(6)
#define DAQP_AUX_TIMER_INT_ENA BIT(5)
#define DAQP_AUX_TIMER_MODE(x) (((x) & 0x3) << 3)
#define DAQP_AUX_TIMER_MODE_RELOAD DAQP_AUX_TIMER_MODE(0)
#define DAQP_AUX_TIMER_MODE_PAUSE DAQP_AUX_TIMER_MODE(1)
#define DAQP_AUX_TIMER_MODE_GO DAQP_AUX_TIMER_MODE(2)
#define DAQP_AUX_TIMER_MODE_EXT DAQP_AUX_TIMER_MODE(3)
#define DAQP_AUX_TIMER_CLK_SRC_EXT BIT(2)
#define DAQP_AUX_DA_UPDATE(x) (((x) & 0x3) << 0)
#define DAQP_AUX_DA_UPDATE_DIRECT DAQP_AUX_DA_UPDATE(0)
#define DAQP_AUX_DA_UPDATE_OVERFLOW DAQP_AUX_DA_UPDATE(1)
#define DAQP_AUX_DA_UPDATE_EXTERNAL DAQP_AUX_DA_UPDATE(2)
#define DAQP_AUX_DA_UPDATE_PACER DAQP_AUX_DA_UPDATE(3)
/* Auxiliary Status register bits (read) */
#define DAQP_AUX_RUNNING BIT(7)
#define DAQP_AUX_TRIGGERED BIT(6)
#define DAQP_AUX_DA_BUFFER BIT(5)
#define DAQP_AUX_TIMER_OVERFLOW BIT(4)
#define DAQP_AUX_CONVERSION BIT(3)
#define DAQP_AUX_DATA_LOST BIT(2)
#define DAQP_AUX_FIFO_NEARFULL BIT(1)
#define DAQP_AUX_FIFO_EMPTY BIT(0)
#define DAQP_FIFO_SIZE 4096
#define DAQP_MAX_TIMER_SPEED 10000 /* 100 kHz in nanoseconds */
struct daqp_private {
unsigned int pacer_div;
int stop;
};
static const struct comedi_lrange range_daqp_ai = {
4, {
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1.25)
}
};
static int daqp_clear_events(struct comedi_device *dev, int loops)
{
unsigned int status;
/*
* Reset any pending interrupts (my card has a tendency to require
* multiple reads on the status register to achieve this).
*/
while (--loops) {
status = inb(dev->iobase + DAQP_STATUS_REG);
if ((status & DAQP_STATUS_EVENTS) == 0)
return 0;
}
dev_err(dev->class_dev, "couldn't clear events in status register\n");
return -EBUSY;
}
static int daqp_ai_cancel(struct comedi_device *dev,
struct comedi_subdevice *s)
{
struct daqp_private *devpriv = dev->private;
if (devpriv->stop)
return -EIO;
/*
* Stop any conversions, disable interrupts, and clear
* the status event flags.
*/
outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG);
outb(0, dev->iobase + DAQP_CTRL_REG);
inb(dev->iobase + DAQP_STATUS_REG);
return 0;
}
static unsigned int daqp_ai_get_sample(struct comedi_device *dev,
struct comedi_subdevice *s)
{
unsigned int val;
/*
* Get a two's complement sample from the FIFO and
* return the munged offset binary value.
*/
val = inb(dev->iobase + DAQP_AI_FIFO_REG);
val |= inb(dev->iobase + DAQP_AI_FIFO_REG) << 8;
return comedi_offset_munge(s, val);
}
static irqreturn_t daqp_interrupt(int irq, void *dev_id)
{
struct comedi_device *dev = dev_id;
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_cmd *cmd = &s->async->cmd;
int loop_limit = 10000;
int status;
if (!dev->attached)
return IRQ_NONE;
status = inb(dev->iobase + DAQP_STATUS_REG);
if (!(status & DAQP_STATUS_EVENTS))
return IRQ_NONE;
while (!(status & DAQP_STATUS_FIFO_EMPTY)) {
unsigned short data;
if (status & DAQP_STATUS_DATA_LOST) {
s->async->events |= COMEDI_CB_OVERFLOW;
dev_warn(dev->class_dev, "data lost\n");
break;
}
data = daqp_ai_get_sample(dev, s);
comedi_buf_write_samples(s, &data, 1);
if (cmd->stop_src == TRIG_COUNT &&
s->async->scans_done >= cmd->stop_arg) {
s->async->events |= COMEDI_CB_EOA;
break;
}
if ((loop_limit--) <= 0)
break;
status = inb(dev->iobase + DAQP_STATUS_REG);
}
if (loop_limit <= 0) {
dev_warn(dev->class_dev,
"loop_limit reached in %s()\n", __func__);
s->async->events |= COMEDI_CB_ERROR;
}
comedi_handle_events(dev, s);
return IRQ_HANDLED;
}
static void daqp_ai_set_one_scanlist_entry(struct comedi_device *dev,
unsigned int chanspec,
int start)
{
unsigned int chan = CR_CHAN(chanspec);
unsigned int range = CR_RANGE(chanspec);
unsigned int aref = CR_AREF(chanspec);
unsigned int val;
val = DAQP_SCANLIST_CHANNEL(chan) | DAQP_SCANLIST_GAIN(range);
if (aref == AREF_DIFF)
val |= DAQP_SCANLIST_DIFFERENTIAL;
if (start)
val |= DAQP_SCANLIST_START;
outb(val & 0xff, dev->iobase + DAQP_SCANLIST_REG);
outb((val >> 8) & 0xff, dev->iobase + DAQP_SCANLIST_REG);
}
static int daqp_ai_eos(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = inb(dev->iobase + DAQP_AUX_REG);
if (status & DAQP_AUX_CONVERSION)
return 0;
return -EBUSY;
}
static int daqp_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct daqp_private *devpriv = dev->private;
int ret = 0;
int i;
if (devpriv->stop)
return -EIO;
outb(0, dev->iobase + DAQP_AUX_REG);
/* Reset scan list queue */
outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG);
/* Program one scan list entry */
daqp_ai_set_one_scanlist_entry(dev, insn->chanspec, 1);
/* Reset data FIFO (see page 28 of DAQP User's Manual) */
outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG);
/* Set trigger - one-shot, internal, no interrupts */
outb(DAQP_CTRL_PACER_CLK_100KHZ, dev->iobase + DAQP_CTRL_REG);
ret = daqp_clear_events(dev, 10000);
if (ret)
return ret;
for (i = 0; i < insn->n; i++) {
/* Start conversion */
outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA,
dev->iobase + DAQP_CMD_REG);
ret = comedi_timeout(dev, s, insn, daqp_ai_eos, 0);
if (ret)
break;
/* clear the status event flags */
inb(dev->iobase + DAQP_STATUS_REG);
data[i] = daqp_ai_get_sample(dev, s);
}
/* stop any conversions and clear the status event flags */
outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG);
inb(dev->iobase + DAQP_STATUS_REG);
return ret ? ret : insn->n;
}
/* This function converts ns nanoseconds to a counter value suitable
* for programming the device. We always use the DAQP's 5 MHz clock,
* which with its 24-bit counter, allows values up to 84 seconds.
* Also, the function adjusts ns so that it cooresponds to the actual
* time that the device will use.
*/
static int daqp_ns_to_timer(unsigned int *ns, unsigned int flags)
{
int timer;
timer = *ns / 200;
*ns = timer * 200;
return timer;
}
static void daqp_set_pacer(struct comedi_device *dev, unsigned int val)
{
outb(val & 0xff, dev->iobase + DAQP_PACER_LOW_REG);
outb((val >> 8) & 0xff, dev->iobase + DAQP_PACER_MID_REG);
outb((val >> 16) & 0xff, dev->iobase + DAQP_PACER_HIGH_REG);
}
static int daqp_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
struct daqp_private *devpriv = dev->private;
int err = 0;
unsigned int arg;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW);
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
TRIG_TIMER | TRIG_FOLLOW);
err |= comedi_check_trigger_src(&cmd->convert_src,
TRIG_TIMER | TRIG_NOW);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
err |= comedi_check_trigger_is_unique(cmd->convert_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
/* the async command requires a pacer */
if (cmd->scan_begin_src != TRIG_TIMER && cmd->convert_src != TRIG_TIMER)
err |= -EINVAL;
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1);
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
if (cmd->scan_begin_src == TRIG_TIMER)
err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
DAQP_MAX_TIMER_SPEED);
if (cmd->convert_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
DAQP_MAX_TIMER_SPEED);
if (cmd->scan_begin_src == TRIG_TIMER) {
/*
* If both scan_begin and convert are both timer
* values, the only way that can make sense is if
* the scan time is the number of conversions times
* the convert time.
*/
arg = cmd->convert_arg * cmd->scan_end_arg;
err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg,
arg);
}
}
if (cmd->stop_src == TRIG_COUNT)
err |= comedi_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff);
else /* TRIG_NONE */
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->convert_src == TRIG_TIMER) {
arg = cmd->convert_arg;
devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags);
err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
} else if (cmd->scan_begin_src == TRIG_TIMER) {
arg = cmd->scan_begin_arg;
devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags);
err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
}
if (err)
return 4;
return 0;
}
static int daqp_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct daqp_private *devpriv = dev->private;
struct comedi_cmd *cmd = &s->async->cmd;
int scanlist_start_on_every_entry;
int threshold;
int ret;
int i;
if (devpriv->stop)
return -EIO;
outb(0, dev->iobase + DAQP_AUX_REG);
/* Reset scan list queue */
outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG);
/* Program pacer clock
*
* There's two modes we can operate in. If convert_src is
* TRIG_TIMER, then convert_arg specifies the time between
* each conversion, so we program the pacer clock to that
* frequency and set the SCANLIST_START bit on every scanlist
* entry. Otherwise, convert_src is TRIG_NOW, which means
* we want the fastest possible conversions, scan_begin_src
* is TRIG_TIMER, and scan_begin_arg specifies the time between
* each scan, so we program the pacer clock to this frequency
* and only set the SCANLIST_START bit on the first entry.
*/
daqp_set_pacer(dev, devpriv->pacer_div);
if (cmd->convert_src == TRIG_TIMER)
scanlist_start_on_every_entry = 1;
else
scanlist_start_on_every_entry = 0;
/* Program scan list */
for (i = 0; i < cmd->chanlist_len; i++) {
int start = (i == 0 || scanlist_start_on_every_entry);
daqp_ai_set_one_scanlist_entry(dev, cmd->chanlist[i], start);
}
/* Now it's time to program the FIFO threshold, basically the
* number of samples the card will buffer before it interrupts
* the CPU.
*
* If we don't have a stop count, then use half the size of
* the FIFO (the manufacturer's recommendation). Consider
* that the FIFO can hold 2K samples (4K bytes). With the
* threshold set at half the FIFO size, we have a margin of
* error of 1024 samples. At the chip's maximum sample rate
* of 100,000 Hz, the CPU would have to delay interrupt
* service for a full 10 milliseconds in order to lose data
* here (as opposed to higher up in the kernel). I've never
* seen it happen. However, for slow sample rates it may
* buffer too much data and introduce too much delay for the
* user application.
*
* If we have a stop count, then things get more interesting.
* If the stop count is less than the FIFO size (actually
* three-quarters of the FIFO size - see below), we just use
* the stop count itself as the threshold, the card interrupts
* us when that many samples have been taken, and we kill the
* acquisition at that point and are done. If the stop count
* is larger than that, then we divide it by 2 until it's less
* than three quarters of the FIFO size (we always leave the
* top quarter of the FIFO as protection against sluggish CPU
* interrupt response) and use that as the threshold. So, if
* the stop count is 4000 samples, we divide by two twice to
* get 1000 samples, use that as the threshold, take four
* interrupts to get our 4000 samples and are done.
*
* The algorithm could be more clever. For example, if 81000
* samples are requested, we could set the threshold to 1500
* samples and take 54 interrupts to get 81000. But 54 isn't
* a power of two, so this algorithm won't find that option.
* Instead, it'll set the threshold at 1266 and take 64
* interrupts to get 81024 samples, of which the last 24 will
* be discarded... but we won't get the last interrupt until
* they've been collected. To find the first option, the
* computer could look at the prime decomposition of the
* sample count (81000 = 3^4 * 5^3 * 2^3) and factor it into a
* threshold (1500 = 3 * 5^3 * 2^2) and an interrupt count (54
* = 3^3 * 2). Hmmm... a one-line while loop or prime
* decomposition of integers... I'll leave it the way it is.
*
* I'll also note a mini-race condition before ignoring it in
* the code. Let's say we're taking 4000 samples, as before.
* After 1000 samples, we get an interrupt. But before that
* interrupt is completely serviced, another sample is taken
* and loaded into the FIFO. Since the interrupt handler
* empties the FIFO before returning, it will read 1001 samples.
* If that happens four times, we'll end up taking 4004 samples,
* not 4000. The interrupt handler will discard the extra four
* samples (by halting the acquisition with four samples still
* in the FIFO), but we will have to wait for them.
*
* In short, this code works pretty well, but for either of
* the two reasons noted, might end up waiting for a few more
* samples than actually requested. Shouldn't make too much
* of a difference.
*/
/* Save away the number of conversions we should perform, and
* compute the FIFO threshold (in bytes, not samples - that's
* why we multiple devpriv->count by 2 = sizeof(sample))
*/
if (cmd->stop_src == TRIG_COUNT) {
unsigned long long nsamples;
unsigned long long nbytes;
nsamples = (unsigned long long)cmd->stop_arg *
cmd->scan_end_arg;
nbytes = nsamples * comedi_bytes_per_sample(s);
while (nbytes > DAQP_FIFO_SIZE * 3 / 4)
nbytes /= 2;
threshold = nbytes;
} else {
threshold = DAQP_FIFO_SIZE / 2;
}
/* Reset data FIFO (see page 28 of DAQP User's Manual) */
outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG);
/* Set FIFO threshold. First two bytes are near-empty
* threshold, which is unused; next two bytes are near-full
* threshold. We computed the number of bytes we want in the
* FIFO when the interrupt is generated, what the card wants
* is actually the number of available bytes left in the FIFO
* when the interrupt is to happen.
*/
outb(0x00, dev->iobase + DAQP_AI_FIFO_REG);
outb(0x00, dev->iobase + DAQP_AI_FIFO_REG);
outb((DAQP_FIFO_SIZE - threshold) & 0xff,
dev->iobase + DAQP_AI_FIFO_REG);
outb((DAQP_FIFO_SIZE - threshold) >> 8, dev->iobase + DAQP_AI_FIFO_REG);
/* Set trigger - continuous, internal */
outb(DAQP_CTRL_TRIG_MODE | DAQP_CTRL_PACER_CLK_5MHZ |
DAQP_CTRL_FIFO_INT_ENA, dev->iobase + DAQP_CTRL_REG);
ret = daqp_clear_events(dev, 100);
if (ret)
return ret;
/* Start conversion */
outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA, dev->iobase + DAQP_CMD_REG);
return 0;
}
static int daqp_ao_empty(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
status = inb(dev->iobase + DAQP_AUX_REG);
if ((status & DAQP_AUX_DA_BUFFER) == 0)
return 0;
return -EBUSY;
}
static int daqp_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct daqp_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
int i;
if (devpriv->stop)
return -EIO;
/* Make sure D/A update mode is direct update */
outb(0, dev->iobase + DAQP_AUX_REG);
for (i = 0; i < insn->n; i++) {
unsigned int val = data[i];
int ret;
/* D/A transfer rate is about 8ms */
ret = comedi_timeout(dev, s, insn, daqp_ao_empty, 0);
if (ret)
return ret;
/* write the two's complement value to the channel */
outw((chan << 12) | comedi_offset_munge(s, val),
dev->iobase + DAQP_AO_REG);
s->readback[chan] = val;
}
return insn->n;
}
static int daqp_di_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct daqp_private *devpriv = dev->private;
if (devpriv->stop)
return -EIO;
data[0] = inb(dev->iobase + DAQP_DI_REG);
return insn->n;
}
static int daqp_do_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct daqp_private *devpriv = dev->private;
if (devpriv->stop)
return -EIO;
if (comedi_dio_update_state(s, data))
outb(s->state, dev->iobase + DAQP_DO_REG);
data[1] = s->state;
return insn->n;
}
static int daqp_auto_attach(struct comedi_device *dev,
unsigned long context)
{
struct pcmcia_device *link = comedi_to_pcmcia_dev(dev);
struct daqp_private *devpriv;
struct comedi_subdevice *s;
int ret;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
link->config_flags |= CONF_AUTO_SET_IO | CONF_ENABLE_IRQ;
ret = comedi_pcmcia_enable(dev, NULL);
if (ret)
return ret;
dev->iobase = link->resource[0]->start;
link->priv = dev;
ret = pcmcia_request_irq(link, daqp_interrupt);
if (ret == 0)
dev->irq = link->irq;
ret = comedi_alloc_subdevices(dev, 4);
if (ret)
return ret;
s = &dev->subdevices[0];
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF;
s->n_chan = 8;
s->maxdata = 0xffff;
s->range_table = &range_daqp_ai;
s->insn_read = daqp_ai_insn_read;
if (dev->irq) {
dev->read_subdev = s;
s->subdev_flags |= SDF_CMD_READ;
s->len_chanlist = 2048;
s->do_cmdtest = daqp_ai_cmdtest;
s->do_cmd = daqp_ai_cmd;
s->cancel = daqp_ai_cancel;
}
s = &dev->subdevices[1];
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = 0x0fff;
s->range_table = &range_bipolar5;
s->insn_write = daqp_ao_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
/*
* Digital Input subdevice
* NOTE: The digital input lines are shared:
*
* Chan Normal Mode Expansion Mode
* ---- ----------------- ----------------------------
* 0 DI0, ext. trigger Same as normal mode
* 1 DI1 External gain select, lo bit
* 2 DI2, ext. clock Same as normal mode
* 3 DI3 External gain select, hi bit
*/
s = &dev->subdevices[2];
s->type = COMEDI_SUBD_DI;
s->subdev_flags = SDF_READABLE;
s->n_chan = 4;
s->maxdata = 1;
s->insn_bits = daqp_di_insn_bits;
/*
* Digital Output subdevice
* NOTE: The digital output lines share the same pins on the
* interface connector as the four external channel selection
* bits. If expansion mode is used the digital outputs do not
* work.
*/
s = &dev->subdevices[3];
s->type = COMEDI_SUBD_DO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 4;
s->maxdata = 1;
s->insn_bits = daqp_do_insn_bits;
return 0;
}
static struct comedi_driver driver_daqp = {
.driver_name = "quatech_daqp_cs",
.module = THIS_MODULE,
.auto_attach = daqp_auto_attach,
.detach = comedi_pcmcia_disable,
};
static int daqp_cs_suspend(struct pcmcia_device *link)
{
struct comedi_device *dev = link->priv;
struct daqp_private *devpriv = dev ? dev->private : NULL;
/* Mark the device as stopped, to block IO until later */
if (devpriv)
devpriv->stop = 1;
return 0;
}
static int daqp_cs_resume(struct pcmcia_device *link)
{
struct comedi_device *dev = link->priv;
struct daqp_private *devpriv = dev ? dev->private : NULL;
if (devpriv)
devpriv->stop = 0;
return 0;
}
static int daqp_cs_attach(struct pcmcia_device *link)
{
return comedi_pcmcia_auto_config(link, &driver_daqp);
}
static const struct pcmcia_device_id daqp_cs_id_table[] = {
PCMCIA_DEVICE_MANF_CARD(0x0137, 0x0027),
PCMCIA_DEVICE_NULL
};
MODULE_DEVICE_TABLE(pcmcia, daqp_cs_id_table);
static struct pcmcia_driver daqp_cs_driver = {
.name = "quatech_daqp_cs",
.owner = THIS_MODULE,
.id_table = daqp_cs_id_table,
.probe = daqp_cs_attach,
.remove = comedi_pcmcia_auto_unconfig,
.suspend = daqp_cs_suspend,
.resume = daqp_cs_resume,
};
module_comedi_pcmcia_driver(driver_daqp, daqp_cs_driver);
MODULE_DESCRIPTION("Comedi driver for Quatech DAQP PCMCIA data capture cards");
MODULE_AUTHOR("Brent Baccala <[email protected]>");
MODULE_LICENSE("GPL");