// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/ni_labpc_common.c
*
* Common support code for "ni_labpc", "ni_labpc_pci" and "ni_labpc_cs".
*
* Copyright (C) 2001-2003 Frank Mori Hess <[email protected]>
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/comedi/comedidev.h>
#include <linux/comedi/comedi_8255.h>
#include <linux/comedi/comedi_8254.h>
#include "ni_labpc.h"
#include "ni_labpc_regs.h"
#include "ni_labpc_isadma.h"
enum scan_mode {
MODE_SINGLE_CHAN,
MODE_SINGLE_CHAN_INTERVAL,
MODE_MULT_CHAN_UP,
MODE_MULT_CHAN_DOWN,
};
static const struct comedi_lrange range_labpc_plus_ai = {
16, {
BIP_RANGE(5),
BIP_RANGE(4),
BIP_RANGE(2.5),
BIP_RANGE(1),
BIP_RANGE(0.5),
BIP_RANGE(0.25),
BIP_RANGE(0.1),
BIP_RANGE(0.05),
UNI_RANGE(10),
UNI_RANGE(8),
UNI_RANGE(5),
UNI_RANGE(2),
UNI_RANGE(1),
UNI_RANGE(0.5),
UNI_RANGE(0.2),
UNI_RANGE(0.1)
}
};
static const struct comedi_lrange range_labpc_1200_ai = {
14, {
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1),
BIP_RANGE(0.5),
BIP_RANGE(0.25),
BIP_RANGE(0.1),
BIP_RANGE(0.05),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2),
UNI_RANGE(1),
UNI_RANGE(0.5),
UNI_RANGE(0.2),
UNI_RANGE(0.1)
}
};
static const struct comedi_lrange range_labpc_ao = {
2, {
BIP_RANGE(5),
UNI_RANGE(10)
}
};
/*
* functions that do inb/outb and readb/writeb so we can use
* function pointers to decide which to use
*/
#ifdef CONFIG_HAS_IOPORT
static unsigned int labpc_inb(struct comedi_device *dev, unsigned long reg)
{
return inb(dev->iobase + reg);
}
static void labpc_outb(struct comedi_device *dev,
unsigned int byte, unsigned long reg)
{
outb(byte, dev->iobase + reg);
}
#endif /* CONFIG_HAS_IOPORT */
static unsigned int labpc_readb(struct comedi_device *dev, unsigned long reg)
{
return readb(dev->mmio + reg);
}
static void labpc_writeb(struct comedi_device *dev,
unsigned int byte, unsigned long reg)
{
writeb(byte, dev->mmio + reg);
}
static int labpc_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct labpc_private *devpriv = dev->private;
unsigned long flags;
spin_lock_irqsave(&dev->spinlock, flags);
devpriv->cmd2 &= ~(CMD2_SWTRIG | CMD2_HWTRIG | CMD2_PRETRIG);
devpriv->write_byte(dev, devpriv->cmd2, CMD2_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
devpriv->cmd3 = 0;
devpriv->write_byte(dev, devpriv->cmd3, CMD3_REG);
return 0;
}
static void labpc_ai_set_chan_and_gain(struct comedi_device *dev,
enum scan_mode mode,
unsigned int chan,
unsigned int range,
unsigned int aref)
{
const struct labpc_boardinfo *board = dev->board_ptr;
struct labpc_private *devpriv = dev->private;
if (board->is_labpc1200) {
/*
* The LabPC-1200 boards do not have a gain
* of '0x10'. Skip the range values that would
* result in this gain.
*/
range += (range > 0) + (range > 7);
}
/* munge channel bits for differential/scan disabled mode */
if ((mode == MODE_SINGLE_CHAN || mode == MODE_SINGLE_CHAN_INTERVAL) &&
aref == AREF_DIFF)
chan *= 2;
devpriv->cmd1 = CMD1_MA(chan);
devpriv->cmd1 |= CMD1_GAIN(range);
devpriv->write_byte(dev, devpriv->cmd1, CMD1_REG);
}
static void labpc_setup_cmd6_reg(struct comedi_device *dev,
struct comedi_subdevice *s,
enum scan_mode mode,
enum transfer_type xfer,
unsigned int range,
unsigned int aref,
bool ena_intr)
{
const struct labpc_boardinfo *board = dev->board_ptr;
struct labpc_private *devpriv = dev->private;
if (!board->is_labpc1200)
return;
/* reference inputs to ground or common? */
if (aref != AREF_GROUND)
devpriv->cmd6 |= CMD6_NRSE;
else
devpriv->cmd6 &= ~CMD6_NRSE;
/* bipolar or unipolar range? */
if (comedi_range_is_unipolar(s, range))
devpriv->cmd6 |= CMD6_ADCUNI;
else
devpriv->cmd6 &= ~CMD6_ADCUNI;
/* interrupt on fifo half full? */
if (xfer == fifo_half_full_transfer)
devpriv->cmd6 |= CMD6_HFINTEN;
else
devpriv->cmd6 &= ~CMD6_HFINTEN;
/* enable interrupt on counter a1 terminal count? */
if (ena_intr)
devpriv->cmd6 |= CMD6_DQINTEN;
else
devpriv->cmd6 &= ~CMD6_DQINTEN;
/* are we scanning up or down through channels? */
if (mode == MODE_MULT_CHAN_UP)
devpriv->cmd6 |= CMD6_SCANUP;
else
devpriv->cmd6 &= ~CMD6_SCANUP;
devpriv->write_byte(dev, devpriv->cmd6, CMD6_REG);
}
static unsigned int labpc_read_adc_fifo(struct comedi_device *dev)
{
struct labpc_private *devpriv = dev->private;
unsigned int lsb = devpriv->read_byte(dev, ADC_FIFO_REG);
unsigned int msb = devpriv->read_byte(dev, ADC_FIFO_REG);
return (msb << 8) | lsb;
}
static void labpc_clear_adc_fifo(struct comedi_device *dev)
{
struct labpc_private *devpriv = dev->private;
devpriv->write_byte(dev, 0x1, ADC_FIFO_CLEAR_REG);
labpc_read_adc_fifo(dev);
}
static int labpc_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
struct labpc_private *devpriv = dev->private;
devpriv->stat1 = devpriv->read_byte(dev, STAT1_REG);
if (devpriv->stat1 & STAT1_DAVAIL)
return 0;
return -EBUSY;
}
static int labpc_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct labpc_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int range = CR_RANGE(insn->chanspec);
unsigned int aref = CR_AREF(insn->chanspec);
int ret;
int i;
/* disable timed conversions, interrupt generation and dma */
labpc_cancel(dev, s);
labpc_ai_set_chan_and_gain(dev, MODE_SINGLE_CHAN, chan, range, aref);
labpc_setup_cmd6_reg(dev, s, MODE_SINGLE_CHAN, fifo_not_empty_transfer,
range, aref, false);
/* setup cmd4 register */
devpriv->cmd4 = 0;
devpriv->cmd4 |= CMD4_ECLKRCV;
/* single-ended/differential */
if (aref == AREF_DIFF)
devpriv->cmd4 |= CMD4_SEDIFF;
devpriv->write_byte(dev, devpriv->cmd4, CMD4_REG);
/* initialize pacer counter to prevent any problems */
comedi_8254_set_mode(devpriv->counter, 0, I8254_MODE2 | I8254_BINARY);
labpc_clear_adc_fifo(dev);
for (i = 0; i < insn->n; i++) {
/* trigger conversion */
devpriv->write_byte(dev, 0x1, ADC_START_CONVERT_REG);
ret = comedi_timeout(dev, s, insn, labpc_ai_eoc, 0);
if (ret)
return ret;
data[i] = labpc_read_adc_fifo(dev);
}
return insn->n;
}
static bool labpc_use_continuous_mode(const struct comedi_cmd *cmd,
enum scan_mode mode)
{
if (mode == MODE_SINGLE_CHAN || cmd->scan_begin_src == TRIG_FOLLOW)
return true;
return false;
}
static unsigned int labpc_ai_convert_period(const struct comedi_cmd *cmd,
enum scan_mode mode)
{
if (cmd->convert_src != TRIG_TIMER)
return 0;
if (mode == MODE_SINGLE_CHAN && cmd->scan_begin_src == TRIG_TIMER)
return cmd->scan_begin_arg;
return cmd->convert_arg;
}
static void labpc_set_ai_convert_period(struct comedi_cmd *cmd,
enum scan_mode mode, unsigned int ns)
{
if (cmd->convert_src != TRIG_TIMER)
return;
if (mode == MODE_SINGLE_CHAN &&
cmd->scan_begin_src == TRIG_TIMER) {
cmd->scan_begin_arg = ns;
if (cmd->convert_arg > cmd->scan_begin_arg)
cmd->convert_arg = cmd->scan_begin_arg;
} else {
cmd->convert_arg = ns;
}
}
static unsigned int labpc_ai_scan_period(const struct comedi_cmd *cmd,
enum scan_mode mode)
{
if (cmd->scan_begin_src != TRIG_TIMER)
return 0;
if (mode == MODE_SINGLE_CHAN && cmd->convert_src == TRIG_TIMER)
return 0;
return cmd->scan_begin_arg;
}
static void labpc_set_ai_scan_period(struct comedi_cmd *cmd,
enum scan_mode mode, unsigned int ns)
{
if (cmd->scan_begin_src != TRIG_TIMER)
return;
if (mode == MODE_SINGLE_CHAN && cmd->convert_src == TRIG_TIMER)
return;
cmd->scan_begin_arg = ns;
}
/* figures out what counter values to use based on command */
static void labpc_adc_timing(struct comedi_device *dev, struct comedi_cmd *cmd,
enum scan_mode mode)
{
struct comedi_8254 *pacer = dev->pacer;
unsigned int convert_period = labpc_ai_convert_period(cmd, mode);
unsigned int scan_period = labpc_ai_scan_period(cmd, mode);
unsigned int base_period;
/*
* If both convert and scan triggers are TRIG_TIMER, then they
* both rely on counter b0. If only one TRIG_TIMER is used, we
* can use the generic cascaded timing functions.
*/
if (convert_period && scan_period) {
/*
* pick the lowest divisor value we can (for maximum input
* clock speed on convert and scan counters)
*/
pacer->next_div1 = (scan_period - 1) /
(pacer->osc_base * I8254_MAX_COUNT) + 1;
comedi_check_trigger_arg_min(&pacer->next_div1, 2);
comedi_check_trigger_arg_max(&pacer->next_div1,
I8254_MAX_COUNT);
base_period = pacer->osc_base * pacer->next_div1;
/* set a0 for conversion frequency and b1 for scan frequency */
switch (cmd->flags & CMDF_ROUND_MASK) {
default:
case CMDF_ROUND_NEAREST:
pacer->next_div = DIV_ROUND_CLOSEST(convert_period,
base_period);
pacer->next_div2 = DIV_ROUND_CLOSEST(scan_period,
base_period);
break;
case CMDF_ROUND_UP:
pacer->next_div = DIV_ROUND_UP(convert_period,
base_period);
pacer->next_div2 = DIV_ROUND_UP(scan_period,
base_period);
break;
case CMDF_ROUND_DOWN:
pacer->next_div = convert_period / base_period;
pacer->next_div2 = scan_period / base_period;
break;
}
/* make sure a0 and b1 values are acceptable */
comedi_check_trigger_arg_min(&pacer->next_div, 2);
comedi_check_trigger_arg_max(&pacer->next_div, I8254_MAX_COUNT);
comedi_check_trigger_arg_min(&pacer->next_div2, 2);
comedi_check_trigger_arg_max(&pacer->next_div2,
I8254_MAX_COUNT);
/* write corrected timings to command */
labpc_set_ai_convert_period(cmd, mode,
base_period * pacer->next_div);
labpc_set_ai_scan_period(cmd, mode,
base_period * pacer->next_div2);
} else if (scan_period) {
/*
* calculate cascaded counter values
* that give desired scan timing
* (pacer->next_div2 / pacer->next_div1)
*/
comedi_8254_cascade_ns_to_timer(pacer, &scan_period,
cmd->flags);
labpc_set_ai_scan_period(cmd, mode, scan_period);
} else if (convert_period) {
/*
* calculate cascaded counter values
* that give desired conversion timing
* (pacer->next_div / pacer->next_div1)
*/
comedi_8254_cascade_ns_to_timer(pacer, &convert_period,
cmd->flags);
/* transfer div2 value so correct timer gets updated */
pacer->next_div = pacer->next_div2;
labpc_set_ai_convert_period(cmd, mode, convert_period);
}
}
static enum scan_mode labpc_ai_scan_mode(const struct comedi_cmd *cmd)
{
unsigned int chan0;
unsigned int chan1;
if (cmd->chanlist_len == 1)
return MODE_SINGLE_CHAN;
/* chanlist may be NULL during cmdtest */
if (!cmd->chanlist)
return MODE_MULT_CHAN_UP;
chan0 = CR_CHAN(cmd->chanlist[0]);
chan1 = CR_CHAN(cmd->chanlist[1]);
if (chan0 < chan1)
return MODE_MULT_CHAN_UP;
if (chan0 > chan1)
return MODE_MULT_CHAN_DOWN;
return MODE_SINGLE_CHAN_INTERVAL;
}
static int labpc_ai_check_chanlist(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
enum scan_mode mode = labpc_ai_scan_mode(cmd);
unsigned int chan0 = CR_CHAN(cmd->chanlist[0]);
unsigned int range0 = CR_RANGE(cmd->chanlist[0]);
unsigned int aref0 = CR_AREF(cmd->chanlist[0]);
int i;
for (i = 0; i < cmd->chanlist_len; i++) {
unsigned int chan = CR_CHAN(cmd->chanlist[i]);
unsigned int range = CR_RANGE(cmd->chanlist[i]);
unsigned int aref = CR_AREF(cmd->chanlist[i]);
switch (mode) {
case MODE_SINGLE_CHAN:
break;
case MODE_SINGLE_CHAN_INTERVAL:
if (chan != chan0) {
dev_dbg(dev->class_dev,
"channel scanning order specified in chanlist is not supported by hardware\n");
return -EINVAL;
}
break;
case MODE_MULT_CHAN_UP:
if (chan != i) {
dev_dbg(dev->class_dev,
"channel scanning order specified in chanlist is not supported by hardware\n");
return -EINVAL;
}
break;
case MODE_MULT_CHAN_DOWN:
if (chan != (cmd->chanlist_len - i - 1)) {
dev_dbg(dev->class_dev,
"channel scanning order specified in chanlist is not supported by hardware\n");
return -EINVAL;
}
break;
}
if (range != range0) {
dev_dbg(dev->class_dev,
"entries in chanlist must all have the same range\n");
return -EINVAL;
}
if (aref != aref0) {
dev_dbg(dev->class_dev,
"entries in chanlist must all have the same reference\n");
return -EINVAL;
}
}
return 0;
}
static int labpc_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
const struct labpc_boardinfo *board = dev->board_ptr;
int err = 0;
int tmp, tmp2;
unsigned int stop_mask;
enum scan_mode mode;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
TRIG_TIMER | TRIG_FOLLOW | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->convert_src,
TRIG_TIMER | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
stop_mask = TRIG_COUNT | TRIG_NONE;
if (board->is_labpc1200)
stop_mask |= TRIG_EXT;
err |= comedi_check_trigger_src(&cmd->stop_src, stop_mask);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->start_src);
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
err |= comedi_check_trigger_is_unique(cmd->convert_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
/* can't have external stop and start triggers at once */
if (cmd->start_src == TRIG_EXT && cmd->stop_src == TRIG_EXT)
err++;
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
switch (cmd->start_src) {
case TRIG_NOW:
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
break;
case TRIG_EXT:
/* start_arg value is ignored */
break;
}
if (!cmd->chanlist_len)
err |= -EINVAL;
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
if (cmd->convert_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
board->ai_speed);
}
/* make sure scan timing is not too fast */
if (cmd->scan_begin_src == TRIG_TIMER) {
if (cmd->convert_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(
&cmd->scan_begin_arg,
cmd->convert_arg * cmd->chanlist_len);
}
err |= comedi_check_trigger_arg_min(
&cmd->scan_begin_arg,
board->ai_speed * cmd->chanlist_len);
}
switch (cmd->stop_src) {
case TRIG_COUNT:
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
break;
case TRIG_NONE:
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
break;
/*
* TRIG_EXT doesn't care since it doesn't
* trigger off a numbered channel
*/
default:
break;
}
if (err)
return 3;
/* step 4: fix up any arguments */
tmp = cmd->convert_arg;
tmp2 = cmd->scan_begin_arg;
mode = labpc_ai_scan_mode(cmd);
labpc_adc_timing(dev, cmd, mode);
if (tmp != cmd->convert_arg || tmp2 != cmd->scan_begin_arg)
err++;
if (err)
return 4;
/* Step 5: check channel list if it exists */
if (cmd->chanlist && cmd->chanlist_len > 0)
err |= labpc_ai_check_chanlist(dev, s, cmd);
if (err)
return 5;
return 0;
}
static int labpc_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
const struct labpc_boardinfo *board = dev->board_ptr;
struct labpc_private *devpriv = dev->private;
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
enum scan_mode mode = labpc_ai_scan_mode(cmd);
unsigned int chanspec = (mode == MODE_MULT_CHAN_UP) ?
cmd->chanlist[cmd->chanlist_len - 1] :
cmd->chanlist[0];
unsigned int chan = CR_CHAN(chanspec);
unsigned int range = CR_RANGE(chanspec);
unsigned int aref = CR_AREF(chanspec);
enum transfer_type xfer;
unsigned long flags;
/* make sure board is disabled before setting up acquisition */
labpc_cancel(dev, s);
/* initialize software conversion count */
if (cmd->stop_src == TRIG_COUNT)
devpriv->count = cmd->stop_arg * cmd->chanlist_len;
/* setup hardware conversion counter */
if (cmd->stop_src == TRIG_EXT) {
/*
* load counter a1 with count of 3
* (pc+ manual says this is minimum allowed) using mode 0
*/
comedi_8254_load(devpriv->counter, 1,
3, I8254_MODE0 | I8254_BINARY);
} else {
/* just put counter a1 in mode 0 to set its output low */
comedi_8254_set_mode(devpriv->counter, 1,
I8254_MODE0 | I8254_BINARY);
}
/* figure out what method we will use to transfer data */
if (devpriv->dma &&
(cmd->flags & (CMDF_WAKE_EOS | CMDF_PRIORITY)) == 0) {
/*
* dma unsafe at RT priority,
* and too much setup time for CMDF_WAKE_EOS
*/
xfer = isa_dma_transfer;
} else if (board->is_labpc1200 &&
(cmd->flags & CMDF_WAKE_EOS) == 0 &&
(cmd->stop_src != TRIG_COUNT || devpriv->count > 256)) {
/*
* pc-plus has no fifo-half full interrupt
* wake-end-of-scan should interrupt on fifo not empty
* make sure we are taking more than just a few points
*/
xfer = fifo_half_full_transfer;
} else {
xfer = fifo_not_empty_transfer;
}
devpriv->current_transfer = xfer;
labpc_ai_set_chan_and_gain(dev, mode, chan, range, aref);
labpc_setup_cmd6_reg(dev, s, mode, xfer, range, aref,
(cmd->stop_src == TRIG_EXT));
/* manual says to set scan enable bit on second pass */
if (mode == MODE_MULT_CHAN_UP || mode == MODE_MULT_CHAN_DOWN) {
devpriv->cmd1 |= CMD1_SCANEN;
/*
* Need a brief delay before enabling scan, or scan
* list will get screwed when you switch between
* scan up to scan down mode - dunno why.
*/
udelay(1);
devpriv->write_byte(dev, devpriv->cmd1, CMD1_REG);
}
devpriv->write_byte(dev, cmd->chanlist_len, INTERVAL_COUNT_REG);
/* load count */
devpriv->write_byte(dev, 0x1, INTERVAL_STROBE_REG);
if (cmd->convert_src == TRIG_TIMER ||
cmd->scan_begin_src == TRIG_TIMER) {
struct comedi_8254 *pacer = dev->pacer;
struct comedi_8254 *counter = devpriv->counter;
comedi_8254_update_divisors(pacer);
/* set up pacing */
comedi_8254_load(pacer, 0, pacer->divisor1,
I8254_MODE3 | I8254_BINARY);
/* set up conversion pacing */
comedi_8254_set_mode(counter, 0, I8254_MODE2 | I8254_BINARY);
if (labpc_ai_convert_period(cmd, mode))
comedi_8254_write(counter, 0, pacer->divisor);
/* set up scan pacing */
if (labpc_ai_scan_period(cmd, mode))
comedi_8254_load(pacer, 1, pacer->divisor2,
I8254_MODE2 | I8254_BINARY);
}
labpc_clear_adc_fifo(dev);
if (xfer == isa_dma_transfer)
labpc_setup_dma(dev, s);
/* enable error interrupts */
devpriv->cmd3 |= CMD3_ERRINTEN;
/* enable fifo not empty interrupt? */
if (xfer == fifo_not_empty_transfer)
devpriv->cmd3 |= CMD3_FIFOINTEN;
devpriv->write_byte(dev, devpriv->cmd3, CMD3_REG);
/* setup any external triggering/pacing (cmd4 register) */
devpriv->cmd4 = 0;
if (cmd->convert_src != TRIG_EXT)
devpriv->cmd4 |= CMD4_ECLKRCV;
/*
* XXX should discard first scan when using interval scanning
* since manual says it is not synced with scan clock.
*/
if (!labpc_use_continuous_mode(cmd, mode)) {
devpriv->cmd4 |= CMD4_INTSCAN;
if (cmd->scan_begin_src == TRIG_EXT)
devpriv->cmd4 |= CMD4_EOIRCV;
}
/* single-ended/differential */
if (aref == AREF_DIFF)
devpriv->cmd4 |= CMD4_SEDIFF;
devpriv->write_byte(dev, devpriv->cmd4, CMD4_REG);
/* startup acquisition */
spin_lock_irqsave(&dev->spinlock, flags);
/* use 2 cascaded counters for pacing */
devpriv->cmd2 |= CMD2_TBSEL;
devpriv->cmd2 &= ~(CMD2_SWTRIG | CMD2_HWTRIG | CMD2_PRETRIG);
if (cmd->start_src == TRIG_EXT)
devpriv->cmd2 |= CMD2_HWTRIG;
else
devpriv->cmd2 |= CMD2_SWTRIG;
if (cmd->stop_src == TRIG_EXT)
devpriv->cmd2 |= (CMD2_HWTRIG | CMD2_PRETRIG);
devpriv->write_byte(dev, devpriv->cmd2, CMD2_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
return 0;
}
/* read all available samples from ai fifo */
static int labpc_drain_fifo(struct comedi_device *dev)
{
struct labpc_private *devpriv = dev->private;
struct comedi_async *async = dev->read_subdev->async;
struct comedi_cmd *cmd = &async->cmd;
unsigned short data;
const int timeout = 10000;
unsigned int i;
devpriv->stat1 = devpriv->read_byte(dev, STAT1_REG);
for (i = 0; (devpriv->stat1 & STAT1_DAVAIL) && i < timeout;
i++) {
/* quit if we have all the data we want */
if (cmd->stop_src == TRIG_COUNT) {
if (devpriv->count == 0)
break;
devpriv->count--;
}
data = labpc_read_adc_fifo(dev);
comedi_buf_write_samples(dev->read_subdev, &data, 1);
devpriv->stat1 = devpriv->read_byte(dev, STAT1_REG);
}
if (i == timeout) {
dev_err(dev->class_dev, "ai timeout, fifo never empties\n");
async->events |= COMEDI_CB_ERROR;
return -1;
}
return 0;
}
/*
* Makes sure all data acquired by board is transferred to comedi (used
* when acquisition is terminated by stop_src == TRIG_EXT).
*/
static void labpc_drain_dregs(struct comedi_device *dev)
{
struct labpc_private *devpriv = dev->private;
if (devpriv->current_transfer == isa_dma_transfer)
labpc_drain_dma(dev);
labpc_drain_fifo(dev);
}
/* interrupt service routine */
static irqreturn_t labpc_interrupt(int irq, void *d)
{
struct comedi_device *dev = d;
const struct labpc_boardinfo *board = dev->board_ptr;
struct labpc_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_async *async;
struct comedi_cmd *cmd;
if (!dev->attached) {
dev_err(dev->class_dev, "premature interrupt\n");
return IRQ_HANDLED;
}
async = s->async;
cmd = &async->cmd;
/* read board status */
devpriv->stat1 = devpriv->read_byte(dev, STAT1_REG);
if (board->is_labpc1200)
devpriv->stat2 = devpriv->read_byte(dev, STAT2_REG);
if ((devpriv->stat1 & (STAT1_GATA0 | STAT1_CNTINT | STAT1_OVERFLOW |
STAT1_OVERRUN | STAT1_DAVAIL)) == 0 &&
(devpriv->stat2 & STAT2_OUTA1) == 0 &&
(devpriv->stat2 & STAT2_FIFONHF)) {
return IRQ_NONE;
}
if (devpriv->stat1 & STAT1_OVERRUN) {
/* clear error interrupt */
devpriv->write_byte(dev, 0x1, ADC_FIFO_CLEAR_REG);
async->events |= COMEDI_CB_ERROR;
comedi_handle_events(dev, s);
dev_err(dev->class_dev, "overrun\n");
return IRQ_HANDLED;
}
if (devpriv->current_transfer == isa_dma_transfer)
labpc_handle_dma_status(dev);
else
labpc_drain_fifo(dev);
if (devpriv->stat1 & STAT1_CNTINT) {
dev_err(dev->class_dev, "handled timer interrupt?\n");
/* clear it */
devpriv->write_byte(dev, 0x1, TIMER_CLEAR_REG);
}
if (devpriv->stat1 & STAT1_OVERFLOW) {
/* clear error interrupt */
devpriv->write_byte(dev, 0x1, ADC_FIFO_CLEAR_REG);
async->events |= COMEDI_CB_ERROR;
comedi_handle_events(dev, s);
dev_err(dev->class_dev, "overflow\n");
return IRQ_HANDLED;
}
/* handle external stop trigger */
if (cmd->stop_src == TRIG_EXT) {
if (devpriv->stat2 & STAT2_OUTA1) {
labpc_drain_dregs(dev);
async->events |= COMEDI_CB_EOA;
}
}
/* TRIG_COUNT end of acquisition */
if (cmd->stop_src == TRIG_COUNT) {
if (devpriv->count == 0)
async->events |= COMEDI_CB_EOA;
}
comedi_handle_events(dev, s);
return IRQ_HANDLED;
}
static void labpc_ao_write(struct comedi_device *dev,
struct comedi_subdevice *s,
unsigned int chan, unsigned int val)
{
struct labpc_private *devpriv = dev->private;
devpriv->write_byte(dev, val & 0xff, DAC_LSB_REG(chan));
devpriv->write_byte(dev, (val >> 8) & 0xff, DAC_MSB_REG(chan));
s->readback[chan] = val;
}
static int labpc_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
const struct labpc_boardinfo *board = dev->board_ptr;
struct labpc_private *devpriv = dev->private;
unsigned int channel;
unsigned int range;
unsigned int i;
unsigned long flags;
channel = CR_CHAN(insn->chanspec);
/*
* Turn off pacing of analog output channel.
* NOTE: hardware bug in daqcard-1200 means pacing cannot
* be independently enabled/disabled for its the two channels.
*/
spin_lock_irqsave(&dev->spinlock, flags);
devpriv->cmd2 &= ~CMD2_LDAC(channel);
devpriv->write_byte(dev, devpriv->cmd2, CMD2_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
/* set range */
if (board->is_labpc1200) {
range = CR_RANGE(insn->chanspec);
if (comedi_range_is_unipolar(s, range))
devpriv->cmd6 |= CMD6_DACUNI(channel);
else
devpriv->cmd6 &= ~CMD6_DACUNI(channel);
/* write to register */
devpriv->write_byte(dev, devpriv->cmd6, CMD6_REG);
}
/* send data */
for (i = 0; i < insn->n; i++)
labpc_ao_write(dev, s, channel, data[i]);
return insn->n;
}
/* lowlevel write to eeprom/dac */
static void labpc_serial_out(struct comedi_device *dev, unsigned int value,
unsigned int value_width)
{
struct labpc_private *devpriv = dev->private;
int i;
for (i = 1; i <= value_width; i++) {
/* clear serial clock */
devpriv->cmd5 &= ~CMD5_SCLK;
/* send bits most significant bit first */
if (value & (1 << (value_width - i)))
devpriv->cmd5 |= CMD5_SDATA;
else
devpriv->cmd5 &= ~CMD5_SDATA;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* set clock to load bit */
devpriv->cmd5 |= CMD5_SCLK;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
}
}
/* lowlevel read from eeprom */
static unsigned int labpc_serial_in(struct comedi_device *dev)
{
struct labpc_private *devpriv = dev->private;
unsigned int value = 0;
int i;
const int value_width = 8; /* number of bits wide values are */
for (i = 1; i <= value_width; i++) {
/* set serial clock */
devpriv->cmd5 |= CMD5_SCLK;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* clear clock bit */
devpriv->cmd5 &= ~CMD5_SCLK;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* read bits most significant bit first */
udelay(1);
devpriv->stat2 = devpriv->read_byte(dev, STAT2_REG);
if (devpriv->stat2 & STAT2_PROMOUT)
value |= 1 << (value_width - i);
}
return value;
}
static unsigned int labpc_eeprom_read(struct comedi_device *dev,
unsigned int address)
{
struct labpc_private *devpriv = dev->private;
unsigned int value;
/* bits to tell eeprom to expect a read */
const int read_instruction = 0x3;
/* 8 bit write lengths to eeprom */
const int write_length = 8;
/* enable read/write to eeprom */
devpriv->cmd5 &= ~CMD5_EEPROMCS;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
devpriv->cmd5 |= (CMD5_EEPROMCS | CMD5_WRTPRT);
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* send read instruction */
labpc_serial_out(dev, read_instruction, write_length);
/* send 8 bit address to read from */
labpc_serial_out(dev, address, write_length);
/* read result */
value = labpc_serial_in(dev);
/* disable read/write to eeprom */
devpriv->cmd5 &= ~(CMD5_EEPROMCS | CMD5_WRTPRT);
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
return value;
}
static unsigned int labpc_eeprom_read_status(struct comedi_device *dev)
{
struct labpc_private *devpriv = dev->private;
unsigned int value;
const int read_status_instruction = 0x5;
const int write_length = 8; /* 8 bit write lengths to eeprom */
/* enable read/write to eeprom */
devpriv->cmd5 &= ~CMD5_EEPROMCS;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
devpriv->cmd5 |= (CMD5_EEPROMCS | CMD5_WRTPRT);
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* send read status instruction */
labpc_serial_out(dev, read_status_instruction, write_length);
/* read result */
value = labpc_serial_in(dev);
/* disable read/write to eeprom */
devpriv->cmd5 &= ~(CMD5_EEPROMCS | CMD5_WRTPRT);
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
return value;
}
static void labpc_eeprom_write(struct comedi_device *dev,
unsigned int address, unsigned int value)
{
struct labpc_private *devpriv = dev->private;
const int write_enable_instruction = 0x6;
const int write_instruction = 0x2;
const int write_length = 8; /* 8 bit write lengths to eeprom */
/* enable read/write to eeprom */
devpriv->cmd5 &= ~CMD5_EEPROMCS;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
devpriv->cmd5 |= (CMD5_EEPROMCS | CMD5_WRTPRT);
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* send write_enable instruction */
labpc_serial_out(dev, write_enable_instruction, write_length);
devpriv->cmd5 &= ~CMD5_EEPROMCS;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* send write instruction */
devpriv->cmd5 |= CMD5_EEPROMCS;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
labpc_serial_out(dev, write_instruction, write_length);
/* send 8 bit address to write to */
labpc_serial_out(dev, address, write_length);
/* write value */
labpc_serial_out(dev, value, write_length);
devpriv->cmd5 &= ~CMD5_EEPROMCS;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* disable read/write to eeprom */
devpriv->cmd5 &= ~(CMD5_EEPROMCS | CMD5_WRTPRT);
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
}
/* writes to 8 bit calibration dacs */
static void write_caldac(struct comedi_device *dev, unsigned int channel,
unsigned int value)
{
struct labpc_private *devpriv = dev->private;
/* clear caldac load bit and make sure we don't write to eeprom */
devpriv->cmd5 &= ~(CMD5_CALDACLD | CMD5_EEPROMCS | CMD5_WRTPRT);
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
/* write 4 bit channel */
labpc_serial_out(dev, channel, 4);
/* write 8 bit caldac value */
labpc_serial_out(dev, value, 8);
/* set and clear caldac bit to load caldac value */
devpriv->cmd5 |= CMD5_CALDACLD;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
devpriv->cmd5 &= ~CMD5_CALDACLD;
udelay(1);
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
}
static int labpc_calib_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
/*
* Only write the last data value to the caldac. Preceding
* data would be overwritten anyway.
*/
if (insn->n > 0) {
unsigned int val = data[insn->n - 1];
if (s->readback[chan] != val) {
write_caldac(dev, chan, val);
s->readback[chan] = val;
}
}
return insn->n;
}
static int labpc_eeprom_ready(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned int status;
/* make sure there isn't already a write in progress */
status = labpc_eeprom_read_status(dev);
if ((status & 0x1) == 0)
return 0;
return -EBUSY;
}
static int labpc_eeprom_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
int ret;
/* only allow writes to user area of eeprom */
if (chan < 16 || chan > 127)
return -EINVAL;
/*
* Only write the last data value to the eeprom. Preceding
* data would be overwritten anyway.
*/
if (insn->n > 0) {
unsigned int val = data[insn->n - 1];
ret = comedi_timeout(dev, s, insn, labpc_eeprom_ready, 0);
if (ret)
return ret;
labpc_eeprom_write(dev, chan, val);
s->readback[chan] = val;
}
return insn->n;
}
int labpc_common_attach(struct comedi_device *dev,
unsigned int irq, unsigned long isr_flags)
{
const struct labpc_boardinfo *board = dev->board_ptr;
struct labpc_private *devpriv;
struct comedi_subdevice *s;
int ret;
int i;
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
if (dev->mmio) {
devpriv->read_byte = labpc_readb;
devpriv->write_byte = labpc_writeb;
} else {
#ifdef CONFIG_HAS_IOPORT
devpriv->read_byte = labpc_inb;
devpriv->write_byte = labpc_outb;
#else
return -ENXIO;
#endif
}
/* initialize board's command registers */
devpriv->write_byte(dev, devpriv->cmd1, CMD1_REG);
devpriv->write_byte(dev, devpriv->cmd2, CMD2_REG);
devpriv->write_byte(dev, devpriv->cmd3, CMD3_REG);
devpriv->write_byte(dev, devpriv->cmd4, CMD4_REG);
if (board->is_labpc1200) {
devpriv->write_byte(dev, devpriv->cmd5, CMD5_REG);
devpriv->write_byte(dev, devpriv->cmd6, CMD6_REG);
}
if (irq) {
ret = request_irq(irq, labpc_interrupt, isr_flags,
dev->board_name, dev);
if (ret == 0)
dev->irq = irq;
}
if (dev->mmio) {
dev->pacer =
comedi_8254_mm_alloc(dev->mmio + COUNTER_B_BASE_REG,
I8254_OSC_BASE_2MHZ, I8254_IO8, 0);
devpriv->counter =
comedi_8254_mm_alloc(dev->mmio + COUNTER_A_BASE_REG,
I8254_OSC_BASE_2MHZ, I8254_IO8, 0);
} else {
dev->pacer =
comedi_8254_io_alloc(dev->iobase + COUNTER_B_BASE_REG,
I8254_OSC_BASE_2MHZ, I8254_IO8, 0);
devpriv->counter =
comedi_8254_io_alloc(dev->iobase + COUNTER_A_BASE_REG,
I8254_OSC_BASE_2MHZ, I8254_IO8, 0);
}
if (IS_ERR(dev->pacer))
return PTR_ERR(dev->pacer);
if (IS_ERR(devpriv->counter))
return PTR_ERR(devpriv->counter);
ret = comedi_alloc_subdevices(dev, 5);
if (ret)
return ret;
/* analog input subdevice */
s = &dev->subdevices[0];
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF;
s->n_chan = 8;
s->len_chanlist = 8;
s->maxdata = 0x0fff;
s->range_table = board->is_labpc1200 ?
&range_labpc_1200_ai : &range_labpc_plus_ai;
s->insn_read = labpc_ai_insn_read;
if (dev->irq) {
dev->read_subdev = s;
s->subdev_flags |= SDF_CMD_READ;
s->do_cmd = labpc_ai_cmd;
s->do_cmdtest = labpc_ai_cmdtest;
s->cancel = labpc_cancel;
}
/* analog output */
s = &dev->subdevices[1];
if (board->has_ao) {
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE | SDF_GROUND;
s->n_chan = 2;
s->maxdata = 0x0fff;
s->range_table = &range_labpc_ao;
s->insn_write = labpc_ao_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
/* initialize analog outputs to a known value */
for (i = 0; i < s->n_chan; i++)
labpc_ao_write(dev, s, i, s->maxdata / 2);
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* 8255 dio */
s = &dev->subdevices[2];
if (dev->mmio)
ret = subdev_8255_mm_init(dev, s, DIO_BASE_REG);
else
ret = subdev_8255_io_init(dev, s, DIO_BASE_REG);
if (ret)
return ret;
/* calibration subdevices for boards that have one */
s = &dev->subdevices[3];
if (board->is_labpc1200) {
s->type = COMEDI_SUBD_CALIB;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE | SDF_INTERNAL;
s->n_chan = 16;
s->maxdata = 0xff;
s->insn_write = labpc_calib_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
for (i = 0; i < s->n_chan; i++) {
write_caldac(dev, i, s->maxdata / 2);
s->readback[i] = s->maxdata / 2;
}
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* EEPROM (256 bytes) */
s = &dev->subdevices[4];
if (board->is_labpc1200) {
s->type = COMEDI_SUBD_MEMORY;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE | SDF_INTERNAL;
s->n_chan = 256;
s->maxdata = 0xff;
s->insn_write = labpc_eeprom_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
for (i = 0; i < s->n_chan; i++)
s->readback[i] = labpc_eeprom_read(dev, i);
} else {
s->type = COMEDI_SUBD_UNUSED;
}
return 0;
}
EXPORT_SYMBOL_GPL(labpc_common_attach);
void labpc_common_detach(struct comedi_device *dev)
{
struct labpc_private *devpriv = dev->private;
if (devpriv) {
if (!IS_ERR(devpriv->counter))
kfree(devpriv->counter);
}
}
EXPORT_SYMBOL_GPL(labpc_common_detach);
static int __init labpc_common_init(void)
{
return 0;
}
module_init(labpc_common_init);
static void __exit labpc_common_exit(void)
{
}
module_exit(labpc_common_exit);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi helper for ni_labpc, ni_labpc_pci, ni_labpc_cs");
MODULE_LICENSE("GPL");