// SPDX-License-Identifier: GPL-2.0
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <media/v4l2-subdev.h>
#include <linux/mfd/intel_soc_pmic.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include "../../include/linux/atomisp_platform.h"
#include "../../include/linux/atomisp_gmin_platform.h"
#define MAX_SUBDEVS 8
enum clock_rate {
VLV2_CLK_XTAL_25_0MHz = 0,
VLV2_CLK_PLL_19P2MHZ = 1
};
#define CLK_RATE_19_2MHZ 19200000
#define CLK_RATE_25_0MHZ 25000000
/* Valid clock number range from 0 to 5 */
#define MAX_CLK_COUNT 5
/* X-Powers AXP288 register set */
#define ALDO1_SEL_REG 0x28
#define ALDO1_CTRL3_REG 0x13
#define ALDO1_2P8V 0x16
#define ALDO1_CTRL3_SHIFT 0x05
#define ELDO_CTRL_REG 0x12
#define ELDO1_SEL_REG 0x19
#define ELDO1_1P6V 0x12
#define ELDO1_CTRL_SHIFT 0x00
#define ELDO2_SEL_REG 0x1a
#define ELDO2_1P8V 0x16
#define ELDO2_CTRL_SHIFT 0x01
/* TI SND9039 PMIC register set */
#define LDO9_REG 0x49
#define LDO10_REG 0x4a
#define LDO11_REG 0x4b
#define LDO_2P8V_ON 0x2f /* 0x2e selects 2.85V ... */
#define LDO_2P8V_OFF 0x2e /* ... bottom bit is "enabled" */
#define LDO_1P8V_ON 0x59 /* 0x58 selects 1.80V ... */
#define LDO_1P8V_OFF 0x58 /* ... bottom bit is "enabled" */
/* CRYSTAL COVE PMIC register set */
#define CRYSTAL_BYT_1P8V_REG 0x5d
#define CRYSTAL_BYT_2P8V_REG 0x66
#define CRYSTAL_CHT_1P8V_REG 0x57
#define CRYSTAL_CHT_2P8V_REG 0x5d
#define CRYSTAL_ON 0x63
#define CRYSTAL_OFF 0x62
struct gmin_subdev {
struct v4l2_subdev *subdev;
enum clock_rate clock_src;
struct clk *pmc_clk;
struct gpio_desc *gpio0;
struct gpio_desc *gpio1;
struct regulator *v1p8_reg;
struct regulator *v2p8_reg;
struct regulator *v1p2_reg;
enum atomisp_camera_port csi_port;
unsigned int csi_lanes;
enum atomisp_input_format csi_fmt;
enum atomisp_bayer_order csi_bayer;
bool clock_on;
bool v1p8_on;
bool v2p8_on;
bool v1p2_on;
int v1p8_gpio;
int v2p8_gpio;
u8 pwm_i2c_addr;
/* For PMIC AXP */
int eldo1_sel_reg, eldo1_1p6v, eldo1_ctrl_shift;
int eldo2_sel_reg, eldo2_1p8v, eldo2_ctrl_shift;
};
static struct gmin_subdev gmin_subdevs[MAX_SUBDEVS];
/* ACPI HIDs for the PMICs that could be used by this driver */
#define PMIC_ACPI_AXP "INT33F4" /* XPower AXP288 PMIC */
#define PMIC_ACPI_TI "INT33F5" /* Dollar Cove TI PMIC */
#define PMIC_ACPI_CRYSTALCOVE "INT33FD" /* Crystal Cove PMIC */
#define PMIC_PLATFORM_TI "intel_soc_pmic_chtdc_ti"
static enum {
PMIC_UNSET = 0,
PMIC_REGULATOR,
PMIC_AXP,
PMIC_TI,
PMIC_CRYSTALCOVE
} pmic_id;
static const char *pmic_name[] = {
[PMIC_UNSET] = "ACPI device PM",
[PMIC_REGULATOR] = "regulator driver",
[PMIC_AXP] = "XPower AXP288 PMIC",
[PMIC_TI] = "Dollar Cove TI PMIC",
[PMIC_CRYSTALCOVE] = "Crystal Cove PMIC",
};
static DEFINE_MUTEX(gmin_regulator_mutex);
static int gmin_v1p8_enable_count;
static int gmin_v2p8_enable_count;
/* The atomisp uses subdev==NULL for the end-of-list marker, so leave space. */
static struct intel_v4l2_subdev_table pdata_subdevs[MAX_SUBDEVS + 1];
static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev);
const struct intel_v4l2_subdev_table *atomisp_platform_get_subdevs(void)
{
return pdata_subdevs;
}
EXPORT_SYMBOL_GPL(atomisp_platform_get_subdevs);
int atomisp_register_i2c_module(struct v4l2_subdev *subdev,
struct camera_sensor_platform_data *plat_data)
{
int i;
struct gmin_subdev *gs;
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct acpi_device *adev = ACPI_COMPANION(&client->dev);
/* The windows driver model (and thus most BIOSes by default)
* uses ACPI runtime power management for camera devices, but
* we don't. Disable it, or else the rails will be needlessly
* tickled during suspend/resume. This has caused power and
* performance issues on multiple devices.
*/
/*
* Turn off the device before disabling ACPI power resources
* (the sensor driver has already probed it at this point).
* This avoids leaking the reference count of the (possibly shared)
* ACPI power resources which were enabled/referenced before probe().
*/
acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
adev->power.flags.power_resources = 0;
for (i = 0; i < MAX_SUBDEVS; i++)
if (!pdata_subdevs[i].subdev)
break;
if (i == MAX_SUBDEVS)
return -ENOMEM;
/* Note subtlety of initialization order: at the point where
* this registration API gets called, the platform data
* callbacks have probably already been invoked, so the
* gmin_subdev struct is already initialized for us.
*/
gs = find_gmin_subdev(subdev);
if (!gs)
return -ENODEV;
pdata_subdevs[i].port = gs->csi_port;
pdata_subdevs[i].lanes = gs->csi_lanes;
pdata_subdevs[i].subdev = subdev;
return 0;
}
EXPORT_SYMBOL_GPL(atomisp_register_i2c_module);
int atomisp_gmin_remove_subdev(struct v4l2_subdev *sd)
{
int i, j;
if (!sd)
return 0;
for (i = 0; i < MAX_SUBDEVS; i++) {
if (pdata_subdevs[i].subdev == sd) {
for (j = i + 1; j <= MAX_SUBDEVS; j++)
pdata_subdevs[j - 1] = pdata_subdevs[j];
}
if (gmin_subdevs[i].subdev == sd) {
if (gmin_subdevs[i].gpio0)
gpiod_put(gmin_subdevs[i].gpio0);
gmin_subdevs[i].gpio0 = NULL;
if (gmin_subdevs[i].gpio1)
gpiod_put(gmin_subdevs[i].gpio1);
gmin_subdevs[i].gpio1 = NULL;
if (pmic_id == PMIC_REGULATOR) {
regulator_put(gmin_subdevs[i].v1p8_reg);
regulator_put(gmin_subdevs[i].v2p8_reg);
regulator_put(gmin_subdevs[i].v1p2_reg);
}
gmin_subdevs[i].subdev = NULL;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(atomisp_gmin_remove_subdev);
struct gmin_cfg_var {
const char *name, *val;
};
static struct gmin_cfg_var ffrd8_vars[] = {
{ "INTCF1B:00_ImxId", "0x134" },
{ "INTCF1B:00_CsiPort", "1" },
{ "INTCF1B:00_CsiLanes", "4" },
{ "INTCF1B:00_CamClk", "0" },
{},
};
/* Cribbed from MCG defaults in the mt9m114 driver, not actually verified
* vs. T100 hardware
*/
static struct gmin_cfg_var t100_vars[] = {
{ "INT33F0:00_CsiPort", "0" },
{ "INT33F0:00_CsiLanes", "1" },
{ "INT33F0:00_CamClk", "1" },
{},
};
static struct gmin_cfg_var mrd7_vars[] = {
{"INT33F8:00_CamType", "1"},
{"INT33F8:00_CsiPort", "1"},
{"INT33F8:00_CsiLanes", "2"},
{"INT33F8:00_CsiFmt", "13"},
{"INT33F8:00_CsiBayer", "0"},
{"INT33F8:00_CamClk", "0"},
{"INT33F9:00_CamType", "1"},
{"INT33F9:00_CsiPort", "0"},
{"INT33F9:00_CsiLanes", "1"},
{"INT33F9:00_CsiFmt", "13"},
{"INT33F9:00_CsiBayer", "0"},
{"INT33F9:00_CamClk", "1"},
{},
};
static struct gmin_cfg_var ecs7_vars[] = {
{"INT33BE:00_CsiPort", "1"},
{"INT33BE:00_CsiLanes", "2"},
{"INT33BE:00_CsiFmt", "13"},
{"INT33BE:00_CsiBayer", "2"},
{"INT33BE:00_CamClk", "0"},
{"INT33F0:00_CsiPort", "0"},
{"INT33F0:00_CsiLanes", "1"},
{"INT33F0:00_CsiFmt", "13"},
{"INT33F0:00_CsiBayer", "0"},
{"INT33F0:00_CamClk", "1"},
{"gmin_V2P8GPIO", "402"},
{},
};
static struct gmin_cfg_var i8880_vars[] = {
{"XXOV2680:00_CsiPort", "1"},
{"XXOV2680:00_CsiLanes", "1"},
{"XXOV2680:00_CamClk", "0"},
{"XXGC0310:00_CsiPort", "0"},
{"XXGC0310:00_CsiLanes", "1"},
{"XXGC0310:00_CamClk", "1"},
{},
};
/*
* Surface 3 does not describe CsiPort/CsiLanes in both DSDT and EFI.
*/
static struct gmin_cfg_var surface3_vars[] = {
{"APTA0330:00_CsiPort", "0"},
{"APTA0330:00_CsiLanes", "2"},
{"OVTI8835:00_CsiPort", "1"},
{"OVTI8835:00_CsiLanes", "4"},
{},
};
static struct gmin_cfg_var lenovo_ideapad_miix_310_vars[] = {
/* _DSM contains the wrong CsiPort! */
{ "OVTI2680:01_CsiPort", "0" },
{}
};
static const struct dmi_system_id gmin_vars[] = {
/*
* These DMI IDs were present when the atomisp driver was merged into
* drivers/staging and it is unclear if they are really necessary.
*/
{
.ident = "BYT-T FFD8",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "BYT-T FFD8"),
},
.driver_data = ffrd8_vars,
},
{
.ident = "T100TA",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "T100TA"),
},
.driver_data = t100_vars,
},
{
.ident = "MRD7",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "TABLET"),
DMI_MATCH(DMI_BOARD_VERSION, "MRD 7"),
},
.driver_data = mrd7_vars,
},
{
.ident = "ST70408",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "ST70408"),
},
.driver_data = ecs7_vars,
},
{
.ident = "VTA0803",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "VTA0803"),
},
.driver_data = i8880_vars,
},
/* Later added DMI ids, these are confirmed to really be necessary! */
{
.ident = "Surface 3",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "Surface 3"),
},
.driver_data = surface3_vars,
},
{
.ident = "Lenovo Ideapad Miix 310",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_VERSION, "MIIX 310-10"),
},
.driver_data = lenovo_ideapad_miix_310_vars,
},
{}
};
#define GMIN_CFG_VAR_EFI_GUID EFI_GUID(0xecb54cd9, 0xe5ae, 0x4fdc, \
0xa9, 0x71, 0xe8, 0x77, \
0x75, 0x60, 0x68, 0xf7)
static const guid_t atomisp_dsm_guid = GUID_INIT(0xdc2f6c4f, 0x045b, 0x4f1d,
0x97, 0xb9, 0x88, 0x2a,
0x68, 0x60, 0xa4, 0xbe);
#define CFG_VAR_NAME_MAX 64
#define GMIN_PMC_CLK_NAME 14 /* "pmc_plt_clk_[0..5]" */
static char gmin_pmc_clk_name[GMIN_PMC_CLK_NAME];
static struct i2c_client *gmin_i2c_dev_exists(struct device *dev, char *name,
struct i2c_client **client)
{
struct acpi_device *adev;
adev = acpi_dev_get_first_match_dev(name, NULL, -1);
if (!adev)
return NULL;
*client = i2c_find_device_by_fwnode(acpi_fwnode_handle(adev));
acpi_dev_put(adev);
if (!*client)
return NULL;
dev_dbg(dev, "found '%s' at address 0x%02x, adapter %d\n",
(*client)->name, (*client)->addr, (*client)->adapter->nr);
return *client;
}
static int gmin_i2c_write(struct device *dev, u16 i2c_addr, u8 reg,
u32 value, u32 mask)
{
int ret;
/*
* FIXME: Right now, the intel_pmic driver just write values
* directly at the regmap, instead of properly implementing
* i2c_transfer() mechanism. Let's use the same interface here,
* as otherwise we may face issues.
*/
dev_dbg(dev,
"I2C write, addr: 0x%02x, reg: 0x%02x, value: 0x%02x, mask: 0x%02x\n",
i2c_addr, reg, value, mask);
ret = intel_soc_pmic_exec_mipi_pmic_seq_element(i2c_addr, reg, value, mask);
if (ret == -EOPNOTSUPP)
dev_err(dev,
"ACPI didn't mapped the OpRegion needed to access I2C address 0x%02x.\n"
"Need to compile the kernel using CONFIG_*_PMIC_OPREGION settings\n",
i2c_addr);
return ret;
}
static int atomisp_get_acpi_power(struct device *dev)
{
char name[5];
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_buffer b_name = { sizeof(name), name };
union acpi_object *package, *element;
acpi_handle handle = ACPI_HANDLE(dev);
acpi_handle rhandle;
acpi_status status;
int clock_num = -1;
int i;
status = acpi_evaluate_object(handle, "_PR0", NULL, &buffer);
if (!ACPI_SUCCESS(status))
return -1;
package = buffer.pointer;
if (!buffer.length || !package
|| package->type != ACPI_TYPE_PACKAGE
|| !package->package.count)
goto fail;
for (i = 0; i < package->package.count; i++) {
element = &package->package.elements[i];
if (element->type != ACPI_TYPE_LOCAL_REFERENCE)
continue;
rhandle = element->reference.handle;
if (!rhandle)
goto fail;
acpi_get_name(rhandle, ACPI_SINGLE_NAME, &b_name);
dev_dbg(dev, "Found PM resource '%s'\n", name);
if (strlen(name) == 4 && !strncmp(name, "CLK", 3)) {
if (name[3] >= '0' && name[3] <= '4')
clock_num = name[3] - '0';
#if 0
/*
* We could abort here, but let's parse all resources,
* as this is helpful for debugging purposes
*/
if (clock_num >= 0)
break;
#endif
}
}
fail:
ACPI_FREE(buffer.pointer);
return clock_num;
}
static u8 gmin_get_pmic_id_and_addr(struct device *dev)
{
struct i2c_client *power = NULL;
static u8 pmic_i2c_addr;
if (pmic_id)
return pmic_i2c_addr;
if (gmin_i2c_dev_exists(dev, PMIC_ACPI_TI, &power)) {
pmic_id = PMIC_TI;
} else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_AXP, &power)) {
pmic_id = PMIC_AXP;
} else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_CRYSTALCOVE, &power)) {
pmic_id = PMIC_CRYSTALCOVE;
} else {
pmic_id = PMIC_REGULATOR;
return 0;
}
pmic_i2c_addr = power->addr;
put_device(&power->dev);
return pmic_i2c_addr;
}
static int gmin_detect_pmic(struct v4l2_subdev *subdev)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct device *dev = &client->dev;
u8 pmic_i2c_addr;
pmic_i2c_addr = gmin_get_pmic_id_and_addr(dev);
dev_info(dev, "gmin: power management provided via %s (i2c addr 0x%02x)\n",
pmic_name[pmic_id], pmic_i2c_addr);
return pmic_i2c_addr;
}
static int gmin_subdev_add(struct gmin_subdev *gs)
{
struct i2c_client *client = v4l2_get_subdevdata(gs->subdev);
struct device *dev = &client->dev;
struct acpi_device *adev = ACPI_COMPANION(dev);
int ret, default_val, clock_num = -1;
dev_info(dev, "%s: ACPI path is %pfw\n", __func__, dev_fwnode(dev));
/*WA:CHT requires XTAL clock as PLL is not stable.*/
gs->clock_src = gmin_get_var_int(dev, false, "ClkSrc",
VLV2_CLK_PLL_19P2MHZ);
/*
* Get ACPI _PR0 derived clock here already because it is used
* to determine the csi_port default.
*/
if (acpi_device_power_manageable(adev))
clock_num = atomisp_get_acpi_power(dev);
/* Compare clock to CsiPort 1 pmc-clock used in the CHT/BYT reference designs */
if (IS_ISP2401)
default_val = clock_num == 4 ? 1 : 0;
else
default_val = clock_num == 0 ? 1 : 0;
gs->csi_port = gmin_get_var_int(dev, false, "CsiPort", default_val);
gs->csi_lanes = gmin_get_var_int(dev, false, "CsiLanes", 1);
gs->gpio0 = gpiod_get_index(dev, NULL, 0, GPIOD_OUT_LOW);
if (IS_ERR(gs->gpio0))
gs->gpio0 = NULL;
else
dev_info(dev, "will handle gpio0 via ACPI\n");
gs->gpio1 = gpiod_get_index(dev, NULL, 1, GPIOD_OUT_LOW);
if (IS_ERR(gs->gpio1))
gs->gpio1 = NULL;
else
dev_info(dev, "will handle gpio1 via ACPI\n");
/*
* Those are used only when there is an external regulator apart
* from the PMIC that would be providing power supply, like on the
* two cases below:
*
* The ECS E7 board drives camera 2.8v from an external regulator
* instead of the PMIC. There's a gmin_CamV2P8 config variable
* that specifies the GPIO to handle this particular case,
* but this needs a broader architecture for handling camera power.
*
* The CHT RVP board drives camera 1.8v from an* external regulator
* instead of the PMIC just like ECS E7 board.
*/
gs->v1p8_gpio = gmin_get_var_int(dev, true, "V1P8GPIO", -1);
gs->v2p8_gpio = gmin_get_var_int(dev, true, "V2P8GPIO", -1);
/*
* FIXME:
*
* The ACPI handling code checks for the _PR? tables in order to
* know what is required to switch the device from power state
* D0 (_PR0) up to D3COLD (_PR3).
*
* The adev->flags.power_manageable is set to true if the device
* has a _PR0 table, which can be checked by calling
* acpi_device_power_manageable(adev).
*
* However, this only says that the device can be set to power off
* mode.
*
* At least on the DSDT tables we've seen so far, there's no _PR3,
* nor _PS3 (which would have a somewhat similar effect).
* So, using ACPI for power management won't work, except if adding
* an ACPI override logic somewhere.
*
* So, at least for the existing devices we know, the check below
* will always be false.
*/
if (acpi_device_can_wakeup(adev) &&
acpi_device_can_poweroff(adev)) {
dev_info(dev,
"gmin: power management provided via device PM\n");
return 0;
}
/*
* The code below is here due to backward compatibility with devices
* whose ACPI BIOS may not contain everything that would be needed
* in order to set clocks and do power management.
*/
/*
* According with :
* https://github.com/projectceladon/hardware-intel-kernelflinger/blob/master/doc/fastboot.md
*
* The "CamClk" EFI var is set via fastboot on some Android devices,
* and seems to contain the number of the clock used to feed the
* sensor.
*
* On systems with a proper ACPI table, this is given via the _PR0
* power resource table. The logic below should first check if there
* is a power resource already, falling back to the EFI vars detection
* otherwise.
*/
/* If getting the clock from _PR0 above failed, fall-back to EFI and/or DMI match */
if (clock_num < 0)
clock_num = gmin_get_var_int(dev, false, "CamClk", 0);
if (clock_num < 0 || clock_num > MAX_CLK_COUNT) {
dev_err(dev, "Invalid clock number\n");
return -EINVAL;
}
snprintf(gmin_pmc_clk_name, sizeof(gmin_pmc_clk_name),
"%s_%d", "pmc_plt_clk", clock_num);
gs->pmc_clk = devm_clk_get(dev, gmin_pmc_clk_name);
if (IS_ERR(gs->pmc_clk)) {
ret = PTR_ERR(gs->pmc_clk);
dev_err(dev, "Failed to get clk from %s: %d\n", gmin_pmc_clk_name, ret);
return ret;
}
dev_info(dev, "Will use CLK%d (%s)\n", clock_num, gmin_pmc_clk_name);
/*
* The firmware might enable the clock at
* boot (this information may or may not
* be reflected in the enable clock register).
* To change the rate we must disable the clock
* first to cover these cases. Due to common
* clock framework restrictions that do not allow
* to disable a clock that has not been enabled,
* we need to enable the clock first.
*/
ret = clk_prepare_enable(gs->pmc_clk);
if (!ret)
clk_disable_unprepare(gs->pmc_clk);
switch (pmic_id) {
case PMIC_REGULATOR:
gs->v1p8_reg = regulator_get(dev, "V1P8SX");
gs->v2p8_reg = regulator_get(dev, "V2P8SX");
gs->v1p2_reg = regulator_get(dev, "V1P2A");
/* Note: ideally we would initialize v[12]p8_on to the
* output of regulator_is_enabled(), but sadly that
* API is broken with the current drivers, returning
* "1" for a regulator that will then emit a
* "unbalanced disable" WARNing if we try to disable
* it.
*/
break;
case PMIC_AXP:
gs->eldo1_1p6v = gmin_get_var_int(dev, false,
"eldo1_1p8v",
ELDO1_1P6V);
gs->eldo1_sel_reg = gmin_get_var_int(dev, false,
"eldo1_sel_reg",
ELDO1_SEL_REG);
gs->eldo1_ctrl_shift = gmin_get_var_int(dev, false,
"eldo1_ctrl_shift",
ELDO1_CTRL_SHIFT);
gs->eldo2_1p8v = gmin_get_var_int(dev, false,
"eldo2_1p8v",
ELDO2_1P8V);
gs->eldo2_sel_reg = gmin_get_var_int(dev, false,
"eldo2_sel_reg",
ELDO2_SEL_REG);
gs->eldo2_ctrl_shift = gmin_get_var_int(dev, false,
"eldo2_ctrl_shift",
ELDO2_CTRL_SHIFT);
break;
default:
break;
}
return 0;
}
static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev)
{
int i;
for (i = 0; i < MAX_SUBDEVS; i++)
if (gmin_subdevs[i].subdev == subdev)
return &gmin_subdevs[i];
return NULL;
}
static struct gmin_subdev *find_free_gmin_subdev_slot(void)
{
unsigned int i;
for (i = 0; i < MAX_SUBDEVS; i++)
if (gmin_subdevs[i].subdev == NULL)
return &gmin_subdevs[i];
return NULL;
}
static int axp_regulator_set(struct device *dev, struct gmin_subdev *gs,
int sel_reg, u8 setting,
int ctrl_reg, int shift, bool on)
{
int ret;
int val;
ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, sel_reg, setting, 0xff);
if (ret)
return ret;
val = on ? 1 << shift : 0;
ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, ctrl_reg, val, 1 << shift);
if (ret)
return ret;
return 0;
}
/*
* Some boards contain a hw-bug where turning eldo2 back on after having turned
* it off causes the CPLM3218 ambient-light-sensor on the image-sensor's I2C bus
* to crash, hanging the bus. Do not turn eldo2 off on these systems.
*/
static const struct dmi_system_id axp_leave_eldo2_on_ids[] = {
{
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TrekStor"),
DMI_MATCH(DMI_PRODUCT_NAME, "SurfTab duo W1 10.1 (VT4)"),
},
},
{ }
};
static int axp_v1p8_on(struct device *dev, struct gmin_subdev *gs)
{
int ret;
ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
ELDO_CTRL_REG, gs->eldo2_ctrl_shift, true);
if (ret)
return ret;
/*
* This sleep comes out of the gc2235 driver, which is the
* only one I currently see that wants to set both 1.8v rails.
*/
usleep_range(110, 150);
ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p6v,
ELDO_CTRL_REG, gs->eldo1_ctrl_shift, true);
return ret;
}
static int axp_v1p8_off(struct device *dev, struct gmin_subdev *gs)
{
int ret;
ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p6v,
ELDO_CTRL_REG, gs->eldo1_ctrl_shift, false);
if (ret)
return ret;
if (dmi_check_system(axp_leave_eldo2_on_ids))
return 0;
ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
ELDO_CTRL_REG, gs->eldo2_ctrl_shift, false);
return ret;
}
static int gmin_gpio0_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
if (gs) {
gpiod_set_value(gs->gpio0, on);
return 0;
}
return -EINVAL;
}
static int gmin_gpio1_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
if (gs) {
gpiod_set_value(gs->gpio1, on);
return 0;
}
return -EINVAL;
}
static int gmin_v1p2_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
if (!gs || gs->v1p2_on == on)
return 0;
gs->v1p2_on = on;
/* use regulator for PMIC */
if (gs->v1p2_reg) {
if (on)
return regulator_enable(gs->v1p2_reg);
else
return regulator_disable(gs->v1p2_reg);
}
/* TODO:v1p2 may need to extend to other PMICs */
return -EINVAL;
}
static int gmin_v1p8_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
int ret;
int value;
int reg;
if (!gs || gs->v1p8_on == on)
return 0;
if (gs->v1p8_gpio >= 0) {
pr_info("atomisp_gmin_platform: 1.8v power on GPIO %d\n",
gs->v1p8_gpio);
ret = gpio_request(gs->v1p8_gpio, "camera_v1p8_en");
if (!ret)
ret = gpio_direction_output(gs->v1p8_gpio, 0);
if (ret)
pr_err("V1P8 GPIO initialization failed\n");
}
gs->v1p8_on = on;
ret = 0;
mutex_lock(&gmin_regulator_mutex);
if (on) {
gmin_v1p8_enable_count++;
if (gmin_v1p8_enable_count > 1)
goto out; /* Already on */
} else {
gmin_v1p8_enable_count--;
if (gmin_v1p8_enable_count > 0)
goto out; /* Still needed */
}
if (gs->v1p8_gpio >= 0)
gpio_set_value(gs->v1p8_gpio, on);
if (gs->v1p8_reg) {
regulator_set_voltage(gs->v1p8_reg, 1800000, 1800000);
if (on)
ret = regulator_enable(gs->v1p8_reg);
else
ret = regulator_disable(gs->v1p8_reg);
goto out;
}
switch (pmic_id) {
case PMIC_AXP:
if (on)
ret = axp_v1p8_on(subdev->dev, gs);
else
ret = axp_v1p8_off(subdev->dev, gs);
break;
case PMIC_TI:
value = on ? LDO_1P8V_ON : LDO_1P8V_OFF;
ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
LDO10_REG, value, 0xff);
break;
case PMIC_CRYSTALCOVE:
if (IS_ISP2401)
reg = CRYSTAL_CHT_1P8V_REG;
else
reg = CRYSTAL_BYT_1P8V_REG;
value = on ? CRYSTAL_ON : CRYSTAL_OFF;
ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
reg, value, 0xff);
break;
default:
dev_err(subdev->dev, "Couldn't set power mode for v1p8\n");
ret = -EINVAL;
}
out:
mutex_unlock(&gmin_regulator_mutex);
return ret;
}
static int gmin_v2p8_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
int ret;
int value;
int reg;
if (WARN_ON(!gs))
return -ENODEV;
if (gs->v2p8_gpio >= 0) {
pr_info("atomisp_gmin_platform: 2.8v power on GPIO %d\n",
gs->v2p8_gpio);
ret = gpio_request(gs->v2p8_gpio, "camera_v2p8");
if (!ret)
ret = gpio_direction_output(gs->v2p8_gpio, 0);
if (ret)
pr_err("V2P8 GPIO initialization failed\n");
}
if (gs->v2p8_on == on)
return 0;
gs->v2p8_on = on;
ret = 0;
mutex_lock(&gmin_regulator_mutex);
if (on) {
gmin_v2p8_enable_count++;
if (gmin_v2p8_enable_count > 1)
goto out; /* Already on */
} else {
gmin_v2p8_enable_count--;
if (gmin_v2p8_enable_count > 0)
goto out; /* Still needed */
}
if (gs->v2p8_gpio >= 0)
gpio_set_value(gs->v2p8_gpio, on);
if (gs->v2p8_reg) {
regulator_set_voltage(gs->v2p8_reg, 2900000, 2900000);
if (on)
ret = regulator_enable(gs->v2p8_reg);
else
ret = regulator_disable(gs->v2p8_reg);
goto out;
}
switch (pmic_id) {
case PMIC_AXP:
ret = axp_regulator_set(subdev->dev, gs, ALDO1_SEL_REG,
ALDO1_2P8V, ALDO1_CTRL3_REG,
ALDO1_CTRL3_SHIFT, on);
break;
case PMIC_TI:
value = on ? LDO_2P8V_ON : LDO_2P8V_OFF;
ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
LDO9_REG, value, 0xff);
break;
case PMIC_CRYSTALCOVE:
if (IS_ISP2401)
reg = CRYSTAL_CHT_2P8V_REG;
else
reg = CRYSTAL_BYT_2P8V_REG;
value = on ? CRYSTAL_ON : CRYSTAL_OFF;
ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
reg, value, 0xff);
break;
default:
dev_err(subdev->dev, "Couldn't set power mode for v2p8\n");
ret = -EINVAL;
}
out:
mutex_unlock(&gmin_regulator_mutex);
return ret;
}
static int gmin_acpi_pm_ctrl(struct v4l2_subdev *subdev, int on)
{
int ret = 0;
struct gmin_subdev *gs = find_gmin_subdev(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct acpi_device *adev = ACPI_COMPANION(&client->dev);
/* Use the ACPI power management to control it */
on = !!on;
if (gs->clock_on == on)
return 0;
dev_dbg(subdev->dev, "Setting power state to %s\n",
on ? "on" : "off");
if (on)
ret = acpi_device_set_power(adev,
ACPI_STATE_D0);
else
ret = acpi_device_set_power(adev,
ACPI_STATE_D3_COLD);
if (!ret)
gs->clock_on = on;
else
dev_err(subdev->dev, "Couldn't set power state to %s\n",
on ? "on" : "off");
return ret;
}
static int gmin_flisclk_ctrl(struct v4l2_subdev *subdev, int on)
{
int ret = 0;
struct gmin_subdev *gs = find_gmin_subdev(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
if (gs->clock_on == !!on)
return 0;
if (on) {
ret = clk_set_rate(gs->pmc_clk,
gs->clock_src ? CLK_RATE_19_2MHZ : CLK_RATE_25_0MHZ);
if (ret)
dev_err(&client->dev, "unable to set PMC rate %d\n",
gs->clock_src);
ret = clk_prepare_enable(gs->pmc_clk);
if (ret == 0)
gs->clock_on = true;
} else {
clk_disable_unprepare(gs->pmc_clk);
gs->clock_on = false;
}
return ret;
}
static int camera_sensor_csi_alloc(struct v4l2_subdev *sd, u32 port, u32 lanes,
u32 format, u32 bayer_order)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct camera_mipi_info *csi;
csi = kzalloc(sizeof(*csi), GFP_KERNEL);
if (!csi)
return -ENOMEM;
csi->port = port;
csi->num_lanes = lanes;
csi->input_format = format;
csi->raw_bayer_order = bayer_order;
v4l2_set_subdev_hostdata(sd, csi);
csi->metadata_format = ATOMISP_INPUT_FORMAT_EMBEDDED;
csi->metadata_effective_width = NULL;
dev_info(&client->dev,
"camera pdata: port: %d lanes: %d order: %8.8x\n",
port, lanes, bayer_order);
return 0;
}
static void camera_sensor_csi_free(struct v4l2_subdev *sd)
{
struct camera_mipi_info *csi;
csi = v4l2_get_subdev_hostdata(sd);
kfree(csi);
}
static int gmin_csi_cfg(struct v4l2_subdev *sd, int flag)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct gmin_subdev *gs = find_gmin_subdev(sd);
if (!client || !gs)
return -ENODEV;
if (flag)
return camera_sensor_csi_alloc(sd, gs->csi_port, gs->csi_lanes,
gs->csi_fmt, gs->csi_bayer);
camera_sensor_csi_free(sd);
return 0;
}
int atomisp_register_sensor_no_gmin(struct v4l2_subdev *subdev, u32 lanes,
enum atomisp_input_format format,
enum atomisp_bayer_order bayer_order)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct acpi_device *adev = ACPI_COMPANION(&client->dev);
int i, ret, clock_num, port = 0;
if (adev) {
/* Get ACPI _PR0 derived clock to determine the csi_port default */
if (acpi_device_power_manageable(adev)) {
clock_num = atomisp_get_acpi_power(&client->dev);
/* Compare clock to CsiPort 1 pmc-clock used in the CHT/BYT reference designs */
if (IS_ISP2401)
port = clock_num == 4 ? 1 : 0;
else
port = clock_num == 0 ? 1 : 0;
}
port = gmin_get_var_int(&client->dev, false, "CsiPort", port);
lanes = gmin_get_var_int(&client->dev, false, "CsiLanes", lanes);
}
for (i = 0; i < MAX_SUBDEVS; i++)
if (!pdata_subdevs[i].subdev)
break;
if (i >= MAX_SUBDEVS) {
dev_err(&client->dev, "Error too many subdevs already registered\n");
return -ENOMEM;
}
ret = camera_sensor_csi_alloc(subdev, port, lanes, format, bayer_order);
if (ret)
return ret;
pdata_subdevs[i].port = port;
pdata_subdevs[i].lanes = lanes;
pdata_subdevs[i].subdev = subdev;
return 0;
}
EXPORT_SYMBOL_GPL(atomisp_register_sensor_no_gmin);
void atomisp_unregister_subdev(struct v4l2_subdev *subdev)
{
int i;
for (i = 0; i < MAX_SUBDEVS; i++) {
if (pdata_subdevs[i].subdev != subdev)
continue;
camera_sensor_csi_free(subdev);
pdata_subdevs[i].subdev = NULL;
pdata_subdevs[i].port = 0;
break;
}
}
EXPORT_SYMBOL_GPL(atomisp_unregister_subdev);
static struct camera_sensor_platform_data pmic_gmin_plat = {
.gpio0_ctrl = gmin_gpio0_ctrl,
.gpio1_ctrl = gmin_gpio1_ctrl,
.v1p8_ctrl = gmin_v1p8_ctrl,
.v2p8_ctrl = gmin_v2p8_ctrl,
.v1p2_ctrl = gmin_v1p2_ctrl,
.flisclk_ctrl = gmin_flisclk_ctrl,
.csi_cfg = gmin_csi_cfg,
};
static struct camera_sensor_platform_data acpi_gmin_plat = {
.gpio0_ctrl = gmin_gpio0_ctrl,
.gpio1_ctrl = gmin_gpio1_ctrl,
.v1p8_ctrl = gmin_acpi_pm_ctrl,
.v2p8_ctrl = gmin_acpi_pm_ctrl,
.v1p2_ctrl = gmin_acpi_pm_ctrl,
.flisclk_ctrl = gmin_acpi_pm_ctrl,
.csi_cfg = gmin_csi_cfg,
};
struct camera_sensor_platform_data *
gmin_camera_platform_data(struct v4l2_subdev *subdev,
enum atomisp_input_format csi_format,
enum atomisp_bayer_order csi_bayer)
{
u8 pmic_i2c_addr = gmin_detect_pmic(subdev);
struct gmin_subdev *gs;
gs = find_free_gmin_subdev_slot();
gs->subdev = subdev;
gs->csi_fmt = csi_format;
gs->csi_bayer = csi_bayer;
gs->pwm_i2c_addr = pmic_i2c_addr;
gmin_subdev_add(gs);
if (gs->pmc_clk)
return &pmic_gmin_plat;
else
return &acpi_gmin_plat;
}
EXPORT_SYMBOL_GPL(gmin_camera_platform_data);
static int gmin_get_hardcoded_var(struct device *dev,
struct gmin_cfg_var *varlist,
const char *var8, char *out, size_t *out_len)
{
struct gmin_cfg_var *gv;
for (gv = varlist; gv->name; gv++) {
size_t vl;
if (strcmp(var8, gv->name))
continue;
dev_info(dev, "Found DMI entry for '%s'\n", var8);
vl = strlen(gv->val);
if (vl > *out_len - 1)
return -ENOSPC;
strscpy(out, gv->val, *out_len);
*out_len = vl;
return 0;
}
return -EINVAL;
}
static int gmin_get_config_dsm_var(struct device *dev,
const char *var,
char *out, size_t *out_len)
{
acpi_handle handle = ACPI_HANDLE(dev);
union acpi_object *obj, *cur = NULL;
int i;
/*
* The data reported by "CamClk" seems to be either 0 or 1 at the
* _DSM table.
*
* At the ACPI tables we looked so far, this is not related to the
* actual clock source for the sensor, which is given by the
* _PR0 ACPI table. So, ignore it, as otherwise this will be
* set to a wrong value.
*/
if (!strcmp(var, "CamClk"))
return -EINVAL;
/* Return on unexpected object type */
obj = acpi_evaluate_dsm_typed(handle, &atomisp_dsm_guid, 0, 0, NULL,
ACPI_TYPE_PACKAGE);
if (!obj) {
dev_info_once(dev, "Didn't find ACPI _DSM table.\n");
return -EINVAL;
}
#if 0 /* Just for debugging purposes */
for (i = 0; i < obj->package.count; i++) {
union acpi_object *cur = &obj->package.elements[i];
if (cur->type == ACPI_TYPE_INTEGER)
dev_info(dev, "object #%d, type %d, value: %lld\n",
i, cur->type, cur->integer.value);
else if (cur->type == ACPI_TYPE_STRING)
dev_info(dev, "object #%d, type %d, string: %s\n",
i, cur->type, cur->string.pointer);
else
dev_info(dev, "object #%d, type %d\n",
i, cur->type);
}
#endif
/* Seek for the desired var */
for (i = 0; i < obj->package.count - 1; i += 2) {
if (obj->package.elements[i].type == ACPI_TYPE_STRING &&
!strcmp(obj->package.elements[i].string.pointer, var)) {
/* Next element should be the required value */
cur = &obj->package.elements[i + 1];
break;
}
}
if (!cur) {
dev_info(dev, "didn't found _DSM entry for '%s'\n", var);
ACPI_FREE(obj);
return -EINVAL;
}
/*
* While it could be possible to have an ACPI_TYPE_INTEGER,
* and read the value from cur->integer.value, the table
* seen so far uses the string type. So, produce a warning
* if it founds something different than string, letting it
* to fall back to the old code.
*/
if (cur && cur->type != ACPI_TYPE_STRING) {
dev_info(dev, "found non-string _DSM entry for '%s'\n", var);
ACPI_FREE(obj);
return -EINVAL;
}
dev_info(dev, "found _DSM entry for '%s': %s\n", var,
cur->string.pointer);
strscpy(out, cur->string.pointer, *out_len);
*out_len = strlen(out);
ACPI_FREE(obj);
return 0;
}
/* Retrieves a device-specific configuration variable. The dev
* argument should be a device with an ACPI companion, as all
* configuration is based on firmware ID.
*/
static int gmin_get_config_var(struct device *maindev,
bool is_gmin,
const char *var,
char *out, size_t *out_len)
{
struct acpi_device *adev = ACPI_COMPANION(maindev);
efi_char16_t var16[CFG_VAR_NAME_MAX];
const struct dmi_system_id *id;
char var8[CFG_VAR_NAME_MAX];
efi_status_t status;
int i, ret;
if (!is_gmin && adev)
ret = snprintf(var8, sizeof(var8), "%s_%s", acpi_dev_name(adev), var);
else
ret = snprintf(var8, sizeof(var8), "gmin_%s", var);
if (ret < 0 || ret >= sizeof(var8) - 1)
return -EINVAL;
/* DMI based quirks override both the _DSM table and EFI variables */
id = dmi_first_match(gmin_vars);
if (id) {
ret = gmin_get_hardcoded_var(maindev, id->driver_data, var8,
out, out_len);
if (!ret)
return 0;
}
/* For sensors, try first to use the _DSM table */
if (!is_gmin) {
ret = gmin_get_config_dsm_var(maindev, var, out, out_len);
if (!ret)
return 0;
}
/* Our variable names are ASCII by construction, but EFI names
* are wide chars. Convert and zero-pad.
*/
memset(var16, 0, sizeof(var16));
for (i = 0; i < sizeof(var8) && var8[i]; i++)
var16[i] = var8[i];
status = EFI_UNSUPPORTED;
if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
status = efi.get_variable(var16, &GMIN_CFG_VAR_EFI_GUID, NULL,
(unsigned long *)out_len, out);
if (status == EFI_SUCCESS)
dev_info(maindev, "found EFI entry for '%s'\n", var8);
else if (is_gmin)
dev_info(maindev, "Failed to find EFI gmin variable %s\n", var8);
else
dev_info(maindev, "Failed to find EFI variable %s\n", var8);
return ret;
}
int gmin_get_var_int(struct device *dev, bool is_gmin, const char *var, int def)
{
char val[CFG_VAR_NAME_MAX + 1];
size_t len = CFG_VAR_NAME_MAX;
long result;
int ret;
ret = gmin_get_config_var(dev, is_gmin, var, val, &len);
if (!ret) {
val[len] = 0;
ret = kstrtol(val, 0, &result);
} else {
dev_info(dev, "%s: using default (%d)\n", var, def);
}
return ret ? def : result;
}
EXPORT_SYMBOL_GPL(gmin_get_var_int);
/* PCI quirk: The BYT ISP advertises PCI runtime PM but it doesn't
* work. Disable so the kernel framework doesn't hang the device
* trying. The driver itself does direct calls to the PUNIT to manage
* ISP power.
*/
static void isp_pm_cap_fixup(struct pci_dev *pdev)
{
dev_info(&pdev->dev, "Disabling PCI power management on camera ISP\n");
pdev->pm_cap = 0;
}
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, 0x0f38, isp_pm_cap_fixup);
MODULE_DESCRIPTION("Ancillary routines for binding ACPI devices");
MODULE_LICENSE("GPL");