// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/device.h>
#include <linux/host1x.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-fwnode.h>
#include "csi.h"
#include "video.h"
#define MHZ 1000000
static inline struct tegra_csi *
host1x_client_to_csi(struct host1x_client *client)
{
return container_of(client, struct tegra_csi, client);
}
static inline struct tegra_csi_channel *to_csi_chan(struct v4l2_subdev *subdev)
{
return container_of(subdev, struct tegra_csi_channel, subdev);
}
/*
* CSI is a separate subdevice which has 6 source pads to generate
* test pattern. CSI subdevice pad ops are used only for TPG and
* allows below TPG formats.
*/
static const struct v4l2_mbus_framefmt tegra_csi_tpg_fmts[] = {
{
TEGRA_DEF_WIDTH,
TEGRA_DEF_HEIGHT,
MEDIA_BUS_FMT_SRGGB10_1X10,
V4L2_FIELD_NONE,
V4L2_COLORSPACE_SRGB
},
{
TEGRA_DEF_WIDTH,
TEGRA_DEF_HEIGHT,
MEDIA_BUS_FMT_RGB888_1X32_PADHI,
V4L2_FIELD_NONE,
V4L2_COLORSPACE_SRGB
},
};
static const struct v4l2_frmsize_discrete tegra_csi_tpg_sizes[] = {
{ 1280, 720 },
{ 1920, 1080 },
{ 3840, 2160 },
};
/*
* V4L2 Subdevice Pad Operations
*/
static int csi_enum_bus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
return -ENOIOCTLCMD;
if (code->index >= ARRAY_SIZE(tegra_csi_tpg_fmts))
return -EINVAL;
code->code = tegra_csi_tpg_fmts[code->index].code;
return 0;
}
static int csi_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
return -ENOIOCTLCMD;
fmt->format = csi_chan->format;
return 0;
}
static int csi_get_frmrate_table_index(struct tegra_csi *csi, u32 code,
u32 width, u32 height)
{
const struct tpg_framerate *frmrate;
unsigned int i;
frmrate = csi->soc->tpg_frmrate_table;
for (i = 0; i < csi->soc->tpg_frmrate_table_size; i++) {
if (frmrate[i].code == code &&
frmrate[i].frmsize.width == width &&
frmrate[i].frmsize.height == height) {
return i;
}
}
return -EINVAL;
}
static void csi_chan_update_blank_intervals(struct tegra_csi_channel *csi_chan,
u32 code, u32 width, u32 height)
{
struct tegra_csi *csi = csi_chan->csi;
const struct tpg_framerate *frmrate = csi->soc->tpg_frmrate_table;
int index;
index = csi_get_frmrate_table_index(csi_chan->csi, code,
width, height);
if (index >= 0) {
csi_chan->h_blank = frmrate[index].h_blank;
csi_chan->v_blank = frmrate[index].v_blank;
csi_chan->framerate = frmrate[index].framerate;
}
}
static int csi_enum_framesizes(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
unsigned int i;
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
return -ENOIOCTLCMD;
if (fse->index >= ARRAY_SIZE(tegra_csi_tpg_sizes))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(tegra_csi_tpg_fmts); i++)
if (fse->code == tegra_csi_tpg_fmts[i].code)
break;
if (i == ARRAY_SIZE(tegra_csi_tpg_fmts))
return -EINVAL;
fse->min_width = tegra_csi_tpg_sizes[fse->index].width;
fse->max_width = tegra_csi_tpg_sizes[fse->index].width;
fse->min_height = tegra_csi_tpg_sizes[fse->index].height;
fse->max_height = tegra_csi_tpg_sizes[fse->index].height;
return 0;
}
static int csi_enum_frameintervals(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
struct tegra_csi *csi = csi_chan->csi;
const struct tpg_framerate *frmrate = csi->soc->tpg_frmrate_table;
int index;
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
return -ENOIOCTLCMD;
/* one framerate per format and resolution */
if (fie->index > 0)
return -EINVAL;
index = csi_get_frmrate_table_index(csi_chan->csi, fie->code,
fie->width, fie->height);
if (index < 0)
return -EINVAL;
fie->interval.numerator = 1;
fie->interval.denominator = frmrate[index].framerate;
return 0;
}
static int csi_set_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
struct v4l2_mbus_framefmt *format = &fmt->format;
const struct v4l2_frmsize_discrete *sizes;
unsigned int i;
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
return -ENOIOCTLCMD;
sizes = v4l2_find_nearest_size(tegra_csi_tpg_sizes,
ARRAY_SIZE(tegra_csi_tpg_sizes),
width, height,
format->width, format->width);
format->width = sizes->width;
format->height = sizes->height;
for (i = 0; i < ARRAY_SIZE(tegra_csi_tpg_fmts); i++)
if (format->code == tegra_csi_tpg_fmts[i].code)
break;
if (i == ARRAY_SIZE(tegra_csi_tpg_fmts))
i = 0;
format->code = tegra_csi_tpg_fmts[i].code;
format->field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY)
return 0;
/* update blanking intervals from frame rate table and format */
csi_chan_update_blank_intervals(csi_chan, format->code,
format->width, format->height);
csi_chan->format = *format;
return 0;
}
/*
* V4L2 Subdevice Video Operations
*/
static int tegra_csi_get_frame_interval(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval *vfi)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
return -ENOIOCTLCMD;
/*
* FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
* subdev active state API.
*/
if (vfi->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return -EINVAL;
vfi->interval.numerator = 1;
vfi->interval.denominator = csi_chan->framerate;
return 0;
}
static unsigned int csi_get_pixel_rate(struct tegra_csi_channel *csi_chan)
{
struct tegra_vi_channel *chan;
struct v4l2_subdev *src_subdev;
struct v4l2_ctrl *ctrl;
chan = v4l2_get_subdev_hostdata(&csi_chan->subdev);
src_subdev = tegra_channel_get_remote_source_subdev(chan);
ctrl = v4l2_ctrl_find(src_subdev->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (ctrl)
return v4l2_ctrl_g_ctrl_int64(ctrl);
return 0;
}
void tegra_csi_calc_settle_time(struct tegra_csi_channel *csi_chan,
u8 csi_port_num,
u8 *clk_settle_time,
u8 *ths_settle_time)
{
struct tegra_csi *csi = csi_chan->csi;
unsigned int cil_clk_mhz;
unsigned int pix_clk_mhz;
int clk_idx = (csi_port_num >> 1) + 1;
cil_clk_mhz = clk_get_rate(csi->clks[clk_idx].clk) / MHZ;
pix_clk_mhz = csi_get_pixel_rate(csi_chan) / MHZ;
/*
* CLK Settle time is the interval during which HS receiver should
* ignore any clock lane HS transitions, starting from the beginning
* of T-CLK-PREPARE.
* Per DPHY specification, T-CLK-SETTLE should be between 95ns ~ 300ns
*
* 95ns < (clk-settle-programmed + 7) * lp clk period < 300ns
* midpoint = 197.5 ns
*/
*clk_settle_time = ((95 + 300) * cil_clk_mhz - 14000) / 2000;
/*
* THS Settle time is the interval during which HS receiver should
* ignore any data lane HS transitions, starting from the beginning
* of THS-PREPARE.
*
* Per DPHY specification, T-HS-SETTLE should be between 85ns + 6UI
* and 145ns+10UI.
* 85ns + 6UI < (Ths-settle-prog + 5) * lp_clk_period < 145ns + 10UI
* midpoint = 115ns + 8UI
*/
if (pix_clk_mhz)
*ths_settle_time = (115 * cil_clk_mhz + 8000 * cil_clk_mhz
/ (2 * pix_clk_mhz) - 5000) / 1000;
}
static int tegra_csi_enable_stream(struct v4l2_subdev *subdev)
{
struct tegra_vi_channel *chan = v4l2_get_subdev_hostdata(subdev);
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
struct tegra_csi *csi = csi_chan->csi;
int ret, err;
ret = pm_runtime_resume_and_get(csi->dev);
if (ret < 0) {
dev_err(csi->dev, "failed to get runtime PM: %d\n", ret);
return ret;
}
if (csi_chan->mipi) {
ret = tegra_mipi_enable(csi_chan->mipi);
if (ret < 0) {
dev_err(csi->dev,
"failed to enable MIPI pads: %d\n", ret);
goto rpm_put;
}
/*
* CSI MIPI pads PULLUP, PULLDN and TERM impedances need to
* be calibrated after power on.
* So, trigger the calibration start here and results will
* be latched and applied to the pads when link is in LP11
* state during start of sensor streaming.
*/
ret = tegra_mipi_start_calibration(csi_chan->mipi);
if (ret < 0) {
dev_err(csi->dev,
"failed to start MIPI calibration: %d\n", ret);
goto disable_mipi;
}
}
csi_chan->pg_mode = chan->pg_mode;
/*
* Tegra CSI receiver can detect the first LP to HS transition.
* So, start the CSI stream-on prior to sensor stream-on and
* vice-versa for stream-off.
*/
ret = csi->ops->csi_start_streaming(csi_chan);
if (ret < 0)
goto finish_calibration;
if (csi_chan->mipi) {
struct v4l2_subdev *src_subdev;
/*
* TRM has incorrectly documented to wait for done status from
* calibration logic after CSI interface power on.
* As per the design, calibration results are latched and applied
* to the pads only when the link is in LP11 state which will happen
* during the sensor stream-on.
* CSI subdev stream-on triggers start of MIPI pads calibration.
* Wait for calibration to finish here after sensor subdev stream-on.
*/
src_subdev = tegra_channel_get_remote_source_subdev(chan);
ret = v4l2_subdev_call(src_subdev, video, s_stream, true);
if (ret < 0 && ret != -ENOIOCTLCMD)
goto disable_csi_stream;
err = tegra_mipi_finish_calibration(csi_chan->mipi);
if (err < 0)
dev_warn(csi->dev, "MIPI calibration failed: %d\n", err);
}
return 0;
disable_csi_stream:
csi->ops->csi_stop_streaming(csi_chan);
finish_calibration:
if (csi_chan->mipi)
tegra_mipi_finish_calibration(csi_chan->mipi);
disable_mipi:
if (csi_chan->mipi) {
err = tegra_mipi_disable(csi_chan->mipi);
if (err < 0)
dev_err(csi->dev,
"failed to disable MIPI pads: %d\n", err);
}
rpm_put:
pm_runtime_put(csi->dev);
return ret;
}
static int tegra_csi_disable_stream(struct v4l2_subdev *subdev)
{
struct tegra_vi_channel *chan = v4l2_get_subdev_hostdata(subdev);
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
struct tegra_csi *csi = csi_chan->csi;
int err;
/*
* Stream-off subdevices in reverse order to stream-on.
* Remote source subdev in TPG mode is same as CSI subdev.
*/
if (csi_chan->mipi) {
struct v4l2_subdev *src_subdev;
src_subdev = tegra_channel_get_remote_source_subdev(chan);
err = v4l2_subdev_call(src_subdev, video, s_stream, false);
if (err < 0 && err != -ENOIOCTLCMD)
dev_err_probe(csi->dev, err, "source subdev stream off failed\n");
}
csi->ops->csi_stop_streaming(csi_chan);
if (csi_chan->mipi) {
err = tegra_mipi_disable(csi_chan->mipi);
if (err < 0)
dev_err(csi->dev,
"failed to disable MIPI pads: %d\n", err);
}
pm_runtime_put(csi->dev);
return 0;
}
static int tegra_csi_s_stream(struct v4l2_subdev *subdev, int enable)
{
int ret;
if (enable)
ret = tegra_csi_enable_stream(subdev);
else
ret = tegra_csi_disable_stream(subdev);
return ret;
}
/*
* V4L2 Subdevice Operations
*/
static const struct v4l2_subdev_video_ops tegra_csi_video_ops = {
.s_stream = tegra_csi_s_stream,
};
static const struct v4l2_subdev_pad_ops tegra_csi_pad_ops = {
.enum_mbus_code = csi_enum_bus_code,
.enum_frame_size = csi_enum_framesizes,
.enum_frame_interval = csi_enum_frameintervals,
.get_fmt = csi_get_format,
.set_fmt = csi_set_format,
.get_frame_interval = tegra_csi_get_frame_interval,
.set_frame_interval = tegra_csi_get_frame_interval,
};
static const struct v4l2_subdev_ops tegra_csi_ops = {
.video = &tegra_csi_video_ops,
.pad = &tegra_csi_pad_ops,
};
static int tegra_csi_channel_alloc(struct tegra_csi *csi,
struct device_node *node,
unsigned int port_num, unsigned int lanes,
unsigned int num_pads)
{
struct tegra_csi_channel *chan;
int ret = 0, i;
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
list_add_tail(&chan->list, &csi->csi_chans);
chan->csi = csi;
/*
* Each CSI brick has maximum of 4 lanes.
* For lanes more than 4, use multiple of immediate CSI bricks as gang.
*/
if (lanes <= CSI_LANES_PER_BRICK) {
chan->numlanes = lanes;
chan->numgangports = 1;
} else {
chan->numlanes = CSI_LANES_PER_BRICK;
chan->numgangports = lanes / CSI_LANES_PER_BRICK;
}
for (i = 0; i < chan->numgangports; i++)
chan->csi_port_nums[i] = port_num + i * CSI_PORTS_PER_BRICK;
chan->of_node = of_node_get(node);
chan->numpads = num_pads;
if (num_pads & 0x2) {
chan->pads[0].flags = MEDIA_PAD_FL_SINK;
chan->pads[1].flags = MEDIA_PAD_FL_SOURCE;
} else {
chan->pads[0].flags = MEDIA_PAD_FL_SOURCE;
}
if (IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
return 0;
chan->mipi = tegra_mipi_request(csi->dev, node);
if (IS_ERR(chan->mipi)) {
ret = PTR_ERR(chan->mipi);
chan->mipi = NULL;
dev_err(csi->dev, "failed to get mipi device: %d\n", ret);
}
return ret;
}
static int tegra_csi_tpg_channels_alloc(struct tegra_csi *csi)
{
struct device_node *node = csi->dev->of_node;
unsigned int port_num;
unsigned int tpg_channels = csi->soc->csi_max_channels;
int ret;
/* allocate CSI channel for each CSI x2 ports */
for (port_num = 0; port_num < tpg_channels; port_num++) {
ret = tegra_csi_channel_alloc(csi, node, port_num, 2, 1);
if (ret < 0)
return ret;
}
return 0;
}
static int tegra_csi_channels_alloc(struct tegra_csi *csi)
{
struct device_node *node = csi->dev->of_node;
struct v4l2_fwnode_endpoint v4l2_ep = {
.bus_type = V4L2_MBUS_CSI2_DPHY
};
struct fwnode_handle *fwh;
struct device_node *channel;
struct device_node *ep;
unsigned int lanes, portno, num_pads;
int ret;
for_each_child_of_node(node, channel) {
if (!of_node_name_eq(channel, "channel"))
continue;
ret = of_property_read_u32(channel, "reg", &portno);
if (ret < 0)
continue;
if (portno >= csi->soc->csi_max_channels) {
dev_err(csi->dev, "invalid port num %d for %pOF\n",
portno, channel);
ret = -EINVAL;
goto err_node_put;
}
ep = of_graph_get_endpoint_by_regs(channel, 0, 0);
if (!ep)
continue;
fwh = of_fwnode_handle(ep);
ret = v4l2_fwnode_endpoint_parse(fwh, &v4l2_ep);
of_node_put(ep);
if (ret) {
dev_err(csi->dev,
"failed to parse v4l2 endpoint for %pOF: %d\n",
channel, ret);
goto err_node_put;
}
lanes = v4l2_ep.bus.mipi_csi2.num_data_lanes;
/*
* Each CSI brick has maximum 4 data lanes.
* For lanes more than 4, validate lanes to be multiple of 4
* so multiple of consecutive CSI bricks can be ganged up for
* streaming.
*/
if (!lanes || ((lanes & (lanes - 1)) != 0) ||
(lanes > CSI_LANES_PER_BRICK && ((portno & 1) != 0))) {
dev_err(csi->dev, "invalid data-lanes %d for %pOF\n",
lanes, channel);
ret = -EINVAL;
goto err_node_put;
}
num_pads = of_graph_get_endpoint_count(channel);
if (num_pads == TEGRA_CSI_PADS_NUM) {
ret = tegra_csi_channel_alloc(csi, channel, portno,
lanes, num_pads);
if (ret < 0)
goto err_node_put;
}
}
return 0;
err_node_put:
of_node_put(channel);
return ret;
}
static int tegra_csi_channel_init(struct tegra_csi_channel *chan)
{
struct tegra_csi *csi = chan->csi;
struct v4l2_subdev *subdev;
int ret;
/* initialize the default format */
chan->format.code = MEDIA_BUS_FMT_SRGGB10_1X10;
chan->format.field = V4L2_FIELD_NONE;
chan->format.colorspace = V4L2_COLORSPACE_SRGB;
chan->format.width = TEGRA_DEF_WIDTH;
chan->format.height = TEGRA_DEF_HEIGHT;
csi_chan_update_blank_intervals(chan, chan->format.code,
chan->format.width,
chan->format.height);
/* initialize V4L2 subdevice and media entity */
subdev = &chan->subdev;
v4l2_subdev_init(subdev, &tegra_csi_ops);
subdev->dev = csi->dev;
if (IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
snprintf(subdev->name, sizeof(subdev->name), "%s-%d", "tpg",
chan->csi_port_nums[0]);
else
snprintf(subdev->name, sizeof(subdev->name), "%s",
kbasename(chan->of_node->full_name));
v4l2_set_subdevdata(subdev, chan);
subdev->fwnode = of_fwnode_handle(chan->of_node);
subdev->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
/* initialize media entity pads */
ret = media_entity_pads_init(&subdev->entity, chan->numpads,
chan->pads);
if (ret < 0) {
dev_err(csi->dev,
"failed to initialize media entity: %d\n", ret);
subdev->dev = NULL;
return ret;
}
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG)) {
ret = v4l2_async_register_subdev(subdev);
if (ret < 0) {
dev_err(csi->dev,
"failed to register subdev: %d\n", ret);
return ret;
}
}
return 0;
}
void tegra_csi_error_recover(struct v4l2_subdev *sd)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(sd);
struct tegra_csi *csi = csi_chan->csi;
/* stop streaming during error recovery */
csi->ops->csi_stop_streaming(csi_chan);
csi->ops->csi_err_recover(csi_chan);
csi->ops->csi_start_streaming(csi_chan);
}
static int tegra_csi_channels_init(struct tegra_csi *csi)
{
struct tegra_csi_channel *chan;
int ret;
list_for_each_entry(chan, &csi->csi_chans, list) {
ret = tegra_csi_channel_init(chan);
if (ret) {
dev_err(csi->dev,
"failed to initialize channel-%d: %d\n",
chan->csi_port_nums[0], ret);
return ret;
}
}
return 0;
}
static void tegra_csi_channels_cleanup(struct tegra_csi *csi)
{
struct v4l2_subdev *subdev;
struct tegra_csi_channel *chan, *tmp;
list_for_each_entry_safe(chan, tmp, &csi->csi_chans, list) {
if (chan->mipi)
tegra_mipi_free(chan->mipi);
subdev = &chan->subdev;
if (subdev->dev) {
if (!IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
v4l2_async_unregister_subdev(subdev);
media_entity_cleanup(&subdev->entity);
}
of_node_put(chan->of_node);
list_del(&chan->list);
kfree(chan);
}
}
static int __maybe_unused csi_runtime_suspend(struct device *dev)
{
struct tegra_csi *csi = dev_get_drvdata(dev);
clk_bulk_disable_unprepare(csi->soc->num_clks, csi->clks);
return 0;
}
static int __maybe_unused csi_runtime_resume(struct device *dev)
{
struct tegra_csi *csi = dev_get_drvdata(dev);
int ret;
ret = clk_bulk_prepare_enable(csi->soc->num_clks, csi->clks);
if (ret < 0) {
dev_err(csi->dev, "failed to enable clocks: %d\n", ret);
return ret;
}
return 0;
}
static int tegra_csi_init(struct host1x_client *client)
{
struct tegra_csi *csi = host1x_client_to_csi(client);
struct tegra_video_device *vid = dev_get_drvdata(client->host);
int ret;
INIT_LIST_HEAD(&csi->csi_chans);
if (IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG))
ret = tegra_csi_tpg_channels_alloc(csi);
else
ret = tegra_csi_channels_alloc(csi);
if (ret < 0) {
dev_err(csi->dev,
"failed to allocate channels: %d\n", ret);
goto cleanup;
}
ret = tegra_csi_channels_init(csi);
if (ret < 0)
goto cleanup;
vid->csi = csi;
return 0;
cleanup:
tegra_csi_channels_cleanup(csi);
return ret;
}
static int tegra_csi_exit(struct host1x_client *client)
{
struct tegra_csi *csi = host1x_client_to_csi(client);
tegra_csi_channels_cleanup(csi);
return 0;
}
static const struct host1x_client_ops csi_client_ops = {
.init = tegra_csi_init,
.exit = tegra_csi_exit,
};
static int tegra_csi_probe(struct platform_device *pdev)
{
struct tegra_csi *csi;
unsigned int i;
int ret;
csi = devm_kzalloc(&pdev->dev, sizeof(*csi), GFP_KERNEL);
if (!csi)
return -ENOMEM;
csi->iomem = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(csi->iomem))
return PTR_ERR(csi->iomem);
csi->soc = of_device_get_match_data(&pdev->dev);
csi->clks = devm_kcalloc(&pdev->dev, csi->soc->num_clks,
sizeof(*csi->clks), GFP_KERNEL);
if (!csi->clks)
return -ENOMEM;
for (i = 0; i < csi->soc->num_clks; i++)
csi->clks[i].id = csi->soc->clk_names[i];
ret = devm_clk_bulk_get(&pdev->dev, csi->soc->num_clks, csi->clks);
if (ret) {
dev_err(&pdev->dev, "failed to get the clocks: %d\n", ret);
return ret;
}
if (!pdev->dev.pm_domain) {
ret = -ENOENT;
dev_warn(&pdev->dev, "PM domain is not attached: %d\n", ret);
return ret;
}
csi->dev = &pdev->dev;
csi->ops = csi->soc->ops;
platform_set_drvdata(pdev, csi);
pm_runtime_enable(&pdev->dev);
/* initialize host1x interface */
INIT_LIST_HEAD(&csi->client.list);
csi->client.ops = &csi_client_ops;
csi->client.dev = &pdev->dev;
ret = host1x_client_register(&csi->client);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to register host1x client: %d\n", ret);
goto rpm_disable;
}
return 0;
rpm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static void tegra_csi_remove(struct platform_device *pdev)
{
struct tegra_csi *csi = platform_get_drvdata(pdev);
host1x_client_unregister(&csi->client);
pm_runtime_disable(&pdev->dev);
}
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
extern const struct tegra_csi_soc tegra210_csi_soc;
#endif
static const struct of_device_id tegra_csi_of_id_table[] = {
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
{ .compatible = "nvidia,tegra210-csi", .data = &tegra210_csi_soc },
#endif
{ }
};
MODULE_DEVICE_TABLE(of, tegra_csi_of_id_table);
static const struct dev_pm_ops tegra_csi_pm_ops = {
SET_RUNTIME_PM_OPS(csi_runtime_suspend, csi_runtime_resume, NULL)
};
struct platform_driver tegra_csi_driver = {
.driver = {
.name = "tegra-csi",
.of_match_table = tegra_csi_of_id_table,
.pm = &tegra_csi_pm_ops,
},
.probe = tegra_csi_probe,
.remove_new = tegra_csi_remove,
};