linux/drivers/staging/rtl8723bs/core/rtw_security.c

// SPDX-License-Identifier: GPL-2.0
/******************************************************************************
 *
 * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
 *
 ******************************************************************************/
#include <linux/crc32.h>
#include <drv_types.h>
#include <crypto/aes.h>

static const char * const _security_type_str[] = {
	"N/A",
	"WEP40",
	"TKIP",
	"TKIP_WM",
	"AES",
	"WEP104",
	"SMS4",
	"WEP_WPA",
	"BIP",
};

const char *security_type_str(u8 value)
{
	if (value <= _BIP_)
		return _security_type_str[value];
	return NULL;
}

/* WEP related ===== */

/*
	Need to consider the fragment  situation
*/
void rtw_wep_encrypt(struct adapter *padapter, u8 *pxmitframe)
{																	/*  exclude ICV */
	union {
		__le32 f0;
		unsigned char f1[4];
	} crc;

	signed int	curfragnum, length;
	u32 keylength;

	u8 *pframe, *payload, *iv;    /* wepkey */
	u8 wepkey[16];
	u8 hw_hdr_offset = 0;
	struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
	struct security_priv *psecuritypriv = &padapter->securitypriv;
	struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
	struct arc4_ctx *ctx = &psecuritypriv->xmit_arc4_ctx;

	if (!((struct xmit_frame *)pxmitframe)->buf_addr)
		return;

	hw_hdr_offset = TXDESC_OFFSET;
	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;

	/* start to encrypt each fragment */
	if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
		keylength = psecuritypriv->dot11DefKeylen[psecuritypriv->dot11PrivacyKeyIndex];

		for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
			iv = pframe+pattrib->hdrlen;
			memcpy(&wepkey[0], iv, 3);
			memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength);
			payload = pframe+pattrib->iv_len+pattrib->hdrlen;

			if ((curfragnum+1) == pattrib->nr_frags) {	/* the last fragment */

				length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;

				crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length));

				arc4_setkey(ctx, wepkey, 3 + keylength);
				arc4_crypt(ctx, payload, payload, length);
				arc4_crypt(ctx, payload + length, crc.f1, 4);

			} else {
				length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
				crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length));
				arc4_setkey(ctx, wepkey, 3 + keylength);
				arc4_crypt(ctx, payload, payload, length);
				arc4_crypt(ctx, payload + length, crc.f1, 4);

				pframe += pxmitpriv->frag_len;
				pframe = (u8 *)round_up((SIZE_PTR)(pframe), 4);
			}
		}
	}
}

void rtw_wep_decrypt(struct adapter  *padapter, u8 *precvframe)
{
	/*  exclude ICV */
	u8 crc[4];
	signed int	length;
	u32 keylength;
	u8 *pframe, *payload, *iv, wepkey[16];
	u8  keyindex;
	struct	rx_pkt_attrib	 *prxattrib = &(((union recv_frame *)precvframe)->u.hdr.attrib);
	struct	security_priv *psecuritypriv = &padapter->securitypriv;
	struct arc4_ctx *ctx = &psecuritypriv->recv_arc4_ctx;

	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;

	/* start to decrypt recvframe */
	if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt == _WEP104_)) {
		iv = pframe+prxattrib->hdrlen;
		/* keyindex =(iv[3]&0x3); */
		keyindex = prxattrib->key_index;
		keylength = psecuritypriv->dot11DefKeylen[keyindex];
		memcpy(&wepkey[0], iv, 3);
		/* memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength); */
		memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[keyindex].skey[0], keylength);
		length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;

		payload = pframe+prxattrib->iv_len+prxattrib->hdrlen;

		/* decrypt payload include icv */
		arc4_setkey(ctx, wepkey, 3 + keylength);
		arc4_crypt(ctx, payload, payload,  length);

		/* calculate icv and compare the icv */
		*((u32 *)crc) = ~crc32_le(~0, payload, length - 4);

	}
}

/* 3		=====TKIP related ===== */

static u32 secmicgetuint32(u8 *p)
/*  Convert from Byte[] to Us3232 in a portable way */
{
	s32 i;
	u32 res = 0;

	for (i = 0; i < 4; i++)
		res |= ((u32)(*p++)) << (8 * i);

	return res;
}

static void secmicputuint32(u8 *p, u32 val)
/*  Convert from Us3232 to Byte[] in a portable way */
{
	long i;

	for (i = 0; i < 4; i++) {
		*p++ = (u8) (val & 0xff);
		val >>= 8;
	}
}

static void secmicclear(struct mic_data *pmicdata)
{
/*  Reset the state to the empty message. */
	pmicdata->L = pmicdata->K0;
	pmicdata->R = pmicdata->K1;
	pmicdata->nBytesInM = 0;
	pmicdata->M = 0;
}

void rtw_secmicsetkey(struct mic_data *pmicdata, u8 *key)
{
	/*  Set the key */
	pmicdata->K0 = secmicgetuint32(key);
	pmicdata->K1 = secmicgetuint32(key + 4);
	/*  and reset the message */
	secmicclear(pmicdata);
}

void rtw_secmicappendbyte(struct mic_data *pmicdata, u8 b)
{
	/*  Append the byte to our word-sized buffer */
	pmicdata->M |= ((unsigned long)b) << (8*pmicdata->nBytesInM);
	pmicdata->nBytesInM++;
	/*  Process the word if it is full. */
	if (pmicdata->nBytesInM >= 4) {
		pmicdata->L ^= pmicdata->M;
		pmicdata->R ^= ROL32(pmicdata->L, 17);
		pmicdata->L += pmicdata->R;
		pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) | ((pmicdata->L & 0x00ff00ff) << 8);
		pmicdata->L += pmicdata->R;
		pmicdata->R ^= ROL32(pmicdata->L, 3);
		pmicdata->L += pmicdata->R;
		pmicdata->R ^= ROR32(pmicdata->L, 2);
		pmicdata->L += pmicdata->R;
		/*  Clear the buffer */
		pmicdata->M = 0;
		pmicdata->nBytesInM = 0;
	}
}

void rtw_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
{
	/*  This is simple */
	while (nbytes > 0) {
		rtw_secmicappendbyte(pmicdata, *src++);
		nbytes--;
	}
}

void rtw_secgetmic(struct mic_data *pmicdata, u8 *dst)
{
	/*  Append the minimum padding */
	rtw_secmicappendbyte(pmicdata, 0x5a);
	rtw_secmicappendbyte(pmicdata, 0);
	rtw_secmicappendbyte(pmicdata, 0);
	rtw_secmicappendbyte(pmicdata, 0);
	rtw_secmicappendbyte(pmicdata, 0);
	/*  and then zeroes until the length is a multiple of 4 */
	while (pmicdata->nBytesInM != 0)
		rtw_secmicappendbyte(pmicdata, 0);
	/*  The appendByte function has already computed the result. */
	secmicputuint32(dst, pmicdata->L);
	secmicputuint32(dst + 4, pmicdata->R);
	/*  Reset to the empty message. */
	secmicclear(pmicdata);
}


void rtw_seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code, u8 pri)
{

	struct mic_data	micdata;
	u8 priority[4] = {0x0, 0x0, 0x0, 0x0};

	rtw_secmicsetkey(&micdata, key);
	priority[0] = pri;

	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
	if (header[1] & 1) {   /* ToDS == 1 */
		rtw_secmicappend(&micdata, &header[16], 6);  /* DA */
		if (header[1] & 2)  /* From Ds == 1 */
			rtw_secmicappend(&micdata, &header[24], 6);
		else
			rtw_secmicappend(&micdata, &header[10], 6);
	} else {	/* ToDS == 0 */
		rtw_secmicappend(&micdata, &header[4], 6);   /* DA */
		if (header[1] & 2)  /* From Ds == 1 */
			rtw_secmicappend(&micdata, &header[16], 6);
		else
			rtw_secmicappend(&micdata, &header[10], 6);
	}
	rtw_secmicappend(&micdata, &priority[0], 4);


	rtw_secmicappend(&micdata, data, data_len);

	rtw_secgetmic(&micdata, mic_code);
}

/* macros for extraction/creation of unsigned char/unsigned short values  */
#define RotR1(v16)   ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
#define   Lo8(v16)   ((u8)((v16)       & 0x00FF))
#define   Hi8(v16)   ((u8)(((v16) >> 8) & 0x00FF))
#define  Lo16(v32)   ((u16)((v32)       & 0xFFFF))
#define  Hi16(v32)   ((u16)(((v32) >> 16) & 0xFFFF))
#define  Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))

/* select the Nth 16-bit word of the temporal key unsigned char array TK[]   */
#define  TK16(N)     Mk16(tk[2*(N)+1], tk[2*(N)])

/* S-box lookup: 16 bits --> 16 bits */
#define _S_(v16)     (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])

/* fixed algorithm "parameters" */
#define PHASE1_LOOP_CNT   8    /* this needs to be "big enough"     */

/* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
static const unsigned short Sbox1[2][256] = {      /* Sbox for hash (can be in ROM)     */
{
	 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
	 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
	 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
	 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
	 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
	 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
	 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
	 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
	 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
	 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
	 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
	 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
	 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
	 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
	 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
	 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
	 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
	 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
	 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
	 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
	 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
	 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
	 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
	 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
	 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
	 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
	 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
	 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
	 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
	 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
	 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
	 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
	},


	{  /* second half of table is unsigned char-reversed version of first! */
	 0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
	 0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
	 0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
	 0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
	 0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
	 0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
	 0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
	 0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
	 0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
	 0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
	 0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
	 0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
	 0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
	 0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
	 0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
	 0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
	 0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
	 0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
	 0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
	 0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
	 0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
	 0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
	 0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
	 0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
	 0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
	 0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
	 0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
	 0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
	 0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
	 0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
	 0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
	 0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
	}
};

 /*
**********************************************************************
* Routine: Phase 1 -- generate P1K, given TA, TK, IV32
*
* Inputs:
*     tk[]      = temporal key                         [128 bits]
*     ta[]      = transmitter's MAC address            [ 48 bits]
*     iv32      = upper 32 bits of IV                  [ 32 bits]
* Output:
*     p1k[]     = Phase 1 key                          [ 80 bits]
*
* Note:
*     This function only needs to be called every 2**16 packets,
*     although in theory it could be called every packet.
*
**********************************************************************
*/
static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
{
	signed int  i;

	/* Initialize the 80 bits of P1K[] from IV32 and TA[0..5]     */
	p1k[0]      = Lo16(iv32);
	p1k[1]      = Hi16(iv32);
	p1k[2]      = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
	p1k[3]      = Mk16(ta[3], ta[2]);
	p1k[4]      = Mk16(ta[5], ta[4]);

	/* Now compute an unbalanced Feistel cipher with 80-bit block */
	/* size on the 80-bit block P1K[], using the 128-bit key TK[] */
	for (i = 0; i < PHASE1_LOOP_CNT; i++) {
		/* Each add operation here is mod 2**16 */
		p1k[0] += _S_(p1k[4] ^ TK16((i&1)+0));
		p1k[1] += _S_(p1k[0] ^ TK16((i&1)+2));
		p1k[2] += _S_(p1k[1] ^ TK16((i&1)+4));
		p1k[3] += _S_(p1k[2] ^ TK16((i&1)+6));
		p1k[4] += _S_(p1k[3] ^ TK16((i&1)+0));
		p1k[4] +=  (unsigned short)i;          /* avoid "slide attacks" */
	}
}


/*
**********************************************************************
* Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
*
* Inputs:
*     tk[]      = Temporal key                         [128 bits]
*     p1k[]     = Phase 1 output key                   [ 80 bits]
*     iv16      = low 16 bits of IV counter            [ 16 bits]
* Output:
*     rc4key[]  = the key used to encrypt the packet   [128 bits]
*
* Note:
*     The value {TA, IV32, IV16} for Phase1/Phase2 must be unique
*     across all packets using the same key TK value. Then, for a
*     given value of TK[], this TKIP48 construction guarantees that
*     the final RC4KEY value is unique across all packets.
*
* Suggested implementation optimization: if PPK[] is "overlaid"
*     appropriately on RC4KEY[], there is no need for the final
*     for loop below that copies the PPK[] result into RC4KEY[].
*
**********************************************************************
*/
static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
{
	signed int  i;
	u16 PPK[6];                          /* temporary key for mixing    */

	/* Note: all adds in the PPK[] equations below are mod 2**16         */
	for (i = 0; i < 5; i++)
		PPK[i] = p1k[i];      /* first, copy P1K to PPK      */

	PPK[5]  =  p1k[4]+iv16;             /* next,  add in IV16          */

	/* Bijective non-linear mixing of the 96 bits of PPK[0..5]           */
	PPK[0] +=    _S_(PPK[5] ^ TK16(0));   /* Mix key in each "round"     */
	PPK[1] +=    _S_(PPK[0] ^ TK16(1));
	PPK[2] +=    _S_(PPK[1] ^ TK16(2));
	PPK[3] +=    _S_(PPK[2] ^ TK16(3));
	PPK[4] +=    _S_(PPK[3] ^ TK16(4));
	PPK[5] +=    _S_(PPK[4] ^ TK16(5));   /* Total # S-box lookups == 6  */

	/* Final sweep: bijective, "linear". Rotates kill LSB correlations   */
	PPK[0] +=  RotR1(PPK[5] ^ TK16(6));
	PPK[1] +=  RotR1(PPK[0] ^ TK16(7));   /* Use all of TK[] in Phase2   */
	PPK[2] +=  RotR1(PPK[1]);
	PPK[3] +=  RotR1(PPK[2]);
	PPK[4] +=  RotR1(PPK[3]);
	PPK[5] +=  RotR1(PPK[4]);
	/* Note: At this point, for a given key TK[0..15], the 96-bit output */
	/*       value PPK[0..5] is guaranteed to be unique, as a function   */
	/*       of the 96-bit "input" value   {TA, IV32, IV16}. That is, P1K  */
	/*       is now a keyed permutation of {TA, IV32, IV16}.               */

	/* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key   */
	rc4key[0] = Hi8(iv16);                /* RC4KEY[0..2] is the WEP IV  */
	rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys  */
	rc4key[2] = Lo8(iv16);
	rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);


	/* Copy 96 bits of PPK[0..5] to RC4KEY[4..15]  (little-endian)       */
	for (i = 0; i < 6; i++) {
		rc4key[4+2*i] = Lo8(PPK[i]);
		rc4key[5+2*i] = Hi8(PPK[i]);
	}
}


/* The hlen isn't include the IV */
u32 rtw_tkip_encrypt(struct adapter *padapter, u8 *pxmitframe)
{																	/*  exclude ICV */
	u16 pnl;
	u32 pnh;
	u8 rc4key[16];
	u8   ttkey[16];
	union {
		__le32 f0;
		u8 f1[4];
	} crc;
	u8   hw_hdr_offset = 0;
	signed int			curfragnum, length;

	u8 *pframe, *payload, *iv, *prwskey;
	union pn48 dot11txpn;
	struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
	struct security_priv *psecuritypriv = &padapter->securitypriv;
	struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
	struct arc4_ctx *ctx = &psecuritypriv->xmit_arc4_ctx;
	u32 res = _SUCCESS;

	if (!((struct xmit_frame *)pxmitframe)->buf_addr)
		return _FAIL;

	hw_hdr_offset = TXDESC_OFFSET;
	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;

	/* 4 start to encrypt each fragment */
	if (pattrib->encrypt == _TKIP_) {

		{
			if (is_multicast_ether_addr(pattrib->ra))
				prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey;
			else
				prwskey = pattrib->dot118021x_UncstKey.skey;

			for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
				iv = pframe+pattrib->hdrlen;
				payload = pframe+pattrib->iv_len+pattrib->hdrlen;

				GET_TKIP_PN(iv, dot11txpn);

				pnl = (u16)(dot11txpn.val);
				pnh = (u32)(dot11txpn.val>>16);

				phase1((u16 *)&ttkey[0], prwskey, &pattrib->ta[0], pnh);

				phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0], pnl);

				if ((curfragnum+1) == pattrib->nr_frags) {	/* 4 the last fragment */
					length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
					crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length));

					arc4_setkey(ctx, rc4key, 16);
					arc4_crypt(ctx, payload, payload, length);
					arc4_crypt(ctx, payload + length, crc.f1, 4);

				} else {
					length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
					crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length));

					arc4_setkey(ctx, rc4key, 16);
					arc4_crypt(ctx, payload, payload, length);
					arc4_crypt(ctx, payload + length, crc.f1, 4);

					pframe += pxmitpriv->frag_len;
					pframe = (u8 *)round_up((SIZE_PTR)(pframe), 4);
				}
			}
		}
	}
	return res;
}


/* The hlen isn't include the IV */
u32 rtw_tkip_decrypt(struct adapter *padapter, u8 *precvframe)
{																	/*  exclude ICV */
	u16 pnl;
	u32 pnh;
	u8   rc4key[16];
	u8   ttkey[16];
	u8 crc[4];
	signed int			length;

	u8 *pframe, *payload, *iv, *prwskey;
	union pn48 dot11txpn;
	struct sta_info *stainfo;
	struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
	struct security_priv *psecuritypriv = &padapter->securitypriv;
	struct arc4_ctx *ctx = &psecuritypriv->recv_arc4_ctx;
	u32 res = _SUCCESS;

	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;

	/* 4 start to decrypt recvframe */
	if (prxattrib->encrypt == _TKIP_) {
		stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]);
		if (stainfo) {
			if (is_multicast_ether_addr(prxattrib->ra)) {
				static unsigned long start;
				static u32 no_gkey_bc_cnt;
				static u32 no_gkey_mc_cnt;

				if (!psecuritypriv->binstallGrpkey) {
					res = _FAIL;

					if (start == 0)
						start = jiffies;

					if (is_broadcast_mac_addr(prxattrib->ra))
						no_gkey_bc_cnt++;
					else
						no_gkey_mc_cnt++;

					if (jiffies_to_msecs(jiffies - start) > 1000) {
						if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
							netdev_dbg(padapter->pnetdev,
								   FUNC_ADPT_FMT " no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
								   FUNC_ADPT_ARG(padapter),
								   no_gkey_bc_cnt,
								   no_gkey_mc_cnt);
						}
						start = jiffies;
						no_gkey_bc_cnt = 0;
						no_gkey_mc_cnt = 0;
					}
					goto exit;
				}

				if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
					netdev_dbg(padapter->pnetdev,
						   FUNC_ADPT_FMT " gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
						   FUNC_ADPT_ARG(padapter),
						   no_gkey_bc_cnt,
						   no_gkey_mc_cnt);
				}
				start = 0;
				no_gkey_bc_cnt = 0;
				no_gkey_mc_cnt = 0;

				prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey;
			} else {
				prwskey = &stainfo->dot118021x_UncstKey.skey[0];
			}

			iv = pframe+prxattrib->hdrlen;
			payload = pframe+prxattrib->iv_len+prxattrib->hdrlen;
			length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;

			GET_TKIP_PN(iv, dot11txpn);

			pnl = (u16)(dot11txpn.val);
			pnh = (u32)(dot11txpn.val>>16);

			phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0], pnh);
			phase2(&rc4key[0], prwskey, (unsigned short *)&ttkey[0], pnl);

			/* 4 decrypt payload include icv */

			arc4_setkey(ctx, rc4key, 16);
			arc4_crypt(ctx, payload, payload, length);

			*((u32 *)crc) = ~crc32_le(~0, payload, length - 4);

			if (crc[3] != payload[length - 1] || crc[2] != payload[length - 2] ||
			    crc[1] != payload[length - 3] || crc[0] != payload[length - 4])
				res = _FAIL;
		} else {
			res = _FAIL;
		}
	}
exit:
	return res;
}


/* 3			=====AES related ===== */



#define MAX_MSG_SIZE	2048

/*****************************/
/**** Function Prototypes ****/
/*****************************/

static void bitwise_xor(u8 *ina, u8 *inb, u8 *out);
static void construct_mic_iv(u8 *mic_header1,
			     signed int qc_exists,
			     signed int a4_exists,
			     u8 *mpdu,
			     uint payload_length,
			     u8 *pn_vector,
			     uint frtype); /*  add for CONFIG_IEEE80211W, none 11w also can use */
static void construct_mic_header1(u8 *mic_header1,
				  signed int header_length,
				  u8 *mpdu,
				  uint frtype); /* for CONFIG_IEEE80211W, none 11w also can use */
static void construct_mic_header2(u8 *mic_header2,
				  u8 *mpdu,
				  signed int a4_exists,
				  signed int qc_exists);
static void construct_ctr_preload(u8 *ctr_preload,
				  signed int a4_exists,
				  signed int qc_exists,
				  u8 *mpdu,
				  u8 *pn_vector,
				  signed int c,
				  uint frtype); /* for CONFIG_IEEE80211W, none 11w also can use */

static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext);


/****************************************/
/* aes128k128d()                        */
/* Performs a 128 bit AES encrypt with  */
/* 128 bit data.                        */
/****************************************/
static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
{
	struct crypto_aes_ctx ctx;

	aes_expandkey(&ctx, key, 16);
	aes_encrypt(&ctx, ciphertext, data);
	memzero_explicit(&ctx, sizeof(ctx));
}

/************************************************/
/* construct_mic_iv()                           */
/* Builds the MIC IV from header fields and PN  */
/* Baron think the function is construct CCM    */
/* nonce                                        */
/************************************************/
static void construct_mic_iv(u8 *mic_iv,
			     signed int qc_exists,
			     signed int a4_exists,
			     u8 *mpdu,
			     uint payload_length,
			     u8 *pn_vector,
			     uint frtype) /* add for CONFIG_IEEE80211W, none 11w also can use */
{
		signed int i;

		mic_iv[0] = 0x59;

		if (qc_exists && a4_exists)
			mic_iv[1] = mpdu[30] & 0x0f;    /* QoS_TC           */

		if (qc_exists && !a4_exists)
			mic_iv[1] = mpdu[24] & 0x0f;   /* mute bits 7-4    */

		if (!qc_exists)
			mic_iv[1] = 0x00;

		/* 802.11w management frame should set management bit(4) */
		if (frtype == WIFI_MGT_TYPE)
			mic_iv[1] |= BIT(4);

		for (i = 2; i < 8; i++)
			mic_iv[i] = mpdu[i + 8];   /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */
		#ifdef CONSISTENT_PN_ORDER
		for (i = 8; i < 14; i++)
			mic_iv[i] = pn_vector[i - 8];           /* mic_iv[8:13] = PN[0:5] */
		#else
		for (i = 8; i < 14; i++)
			mic_iv[i] = pn_vector[13 - i];          /* mic_iv[8:13] = PN[5:0] */
		#endif
		mic_iv[14] = (unsigned char) (payload_length / 256);
		mic_iv[15] = (unsigned char) (payload_length % 256);
}

/************************************************/
/* construct_mic_header1()                      */
/* Builds the first MIC header block from       */
/* header fields.                               */
/* Build AAD SC, A1, A2                           */
/************************************************/
static void construct_mic_header1(u8 *mic_header1,
				  signed int header_length,
				  u8 *mpdu,
				  uint frtype) /* for CONFIG_IEEE80211W, none 11w also can use */
{
		mic_header1[0] = (u8)((header_length - 2) / 256);
		mic_header1[1] = (u8)((header_length - 2) % 256);

		/* 802.11w management frame don't AND subtype bits 4, 5, 6 of frame control field */
		if (frtype == WIFI_MGT_TYPE)
			mic_header1[2] = mpdu[0];
		else
			mic_header1[2] = mpdu[0] & 0xcf;    /* Mute CF poll & CF ack bits */

		mic_header1[3] = mpdu[1] & 0xc7;    /* Mute retry, more data and pwr mgt bits */
		mic_header1[4] = mpdu[4];       /* A1 */
		mic_header1[5] = mpdu[5];
		mic_header1[6] = mpdu[6];
		mic_header1[7] = mpdu[7];
		mic_header1[8] = mpdu[8];
		mic_header1[9] = mpdu[9];
		mic_header1[10] = mpdu[10];     /* A2 */
		mic_header1[11] = mpdu[11];
		mic_header1[12] = mpdu[12];
		mic_header1[13] = mpdu[13];
		mic_header1[14] = mpdu[14];
		mic_header1[15] = mpdu[15];
}

/************************************************/
/* construct_mic_header2()                      */
/* Builds the last MIC header block from        */
/* header fields.                               */
/************************************************/
static void construct_mic_header2(u8 *mic_header2,
				  u8 *mpdu,
				  signed int a4_exists,
				  signed int qc_exists)
{
		signed int i;

		for (i = 0; i < 16; i++)
			mic_header2[i] = 0x00;

		mic_header2[0] = mpdu[16];    /* A3 */
		mic_header2[1] = mpdu[17];
		mic_header2[2] = mpdu[18];
		mic_header2[3] = mpdu[19];
		mic_header2[4] = mpdu[20];
		mic_header2[5] = mpdu[21];

		mic_header2[6] = 0x00;
		mic_header2[7] = 0x00; /* mpdu[23]; */

		if (!qc_exists && a4_exists) {
			for (i = 0; i < 6; i++)
				mic_header2[8+i] = mpdu[24+i];   /* A4 */
		}

		if (qc_exists && !a4_exists) {
			mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
			mic_header2[9] = mpdu[25] & 0x00;
		}

		if (qc_exists && a4_exists) {
			for (i = 0; i < 6; i++)
				mic_header2[8+i] = mpdu[24+i];   /* A4 */

			mic_header2[14] = mpdu[30] & 0x0f;
			mic_header2[15] = mpdu[31] & 0x00;
		}
}

/************************************************/
/* construct_mic_header2()                      */
/* Builds the last MIC header block from        */
/* header fields.                               */
/* Baron think the function is construct CCM    */
/* nonce                                        */
/************************************************/
static void construct_ctr_preload(u8 *ctr_preload,
				  signed int a4_exists,
				  signed int qc_exists,
				  u8 *mpdu,
				  u8 *pn_vector,
				  signed int c,
				  uint frtype) /* for CONFIG_IEEE80211W, none 11w also can use */
{
	signed int i = 0;

	for (i = 0; i < 16; i++)
		ctr_preload[i] = 0x00;
	i = 0;

	ctr_preload[0] = 0x01;                                  /* flag */
	if (qc_exists && a4_exists)
		ctr_preload[1] = mpdu[30] & 0x0f;   /* QoC_Control */
	if (qc_exists && !a4_exists)
		ctr_preload[1] = mpdu[24] & 0x0f;

	/* 802.11w management frame should set management bit(4) */
	if (frtype == WIFI_MGT_TYPE)
		ctr_preload[1] |= BIT(4);

	for (i = 2; i < 8; i++)
		ctr_preload[i] = mpdu[i + 8];                       /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */
#ifdef CONSISTENT_PN_ORDER
	for (i = 8; i < 14; i++)
		ctr_preload[i] =    pn_vector[i - 8];           /* ctr_preload[8:13] = PN[0:5] */
#else
	for (i = 8; i < 14; i++)
		ctr_preload[i] =    pn_vector[13 - i];          /* ctr_preload[8:13] = PN[5:0] */
#endif
	ctr_preload[14] =  (unsigned char) (c / 256); /* Ctr */
	ctr_preload[15] =  (unsigned char) (c % 256);
}

/************************************/
/* bitwise_xor()                    */
/* A 128 bit, bitwise exclusive or  */
/************************************/
static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
{
		signed int i;

		for (i = 0; i < 16; i++)
			out[i] = ina[i] ^ inb[i];
}

static signed int aes_cipher(u8 *key, uint	hdrlen,
			u8 *pframe, uint plen)
{
	uint	qc_exists, a4_exists, i, j, payload_remainder,
		num_blocks, payload_index;

	u8 pn_vector[6];
	u8 mic_iv[16];
	u8 mic_header1[16];
	u8 mic_header2[16];
	u8 ctr_preload[16];

	/* Intermediate Buffers */
	u8 chain_buffer[16];
	u8 aes_out[16];
	u8 padded_buffer[16];
	u8 mic[8];
	uint	frtype  = GetFrameType(pframe);
	uint	frsubtype  = GetFrameSubType(pframe);

	frsubtype = frsubtype>>4;

	memset((void *)mic_iv, 0, 16);
	memset((void *)mic_header1, 0, 16);
	memset((void *)mic_header2, 0, 16);
	memset((void *)ctr_preload, 0, 16);
	memset((void *)chain_buffer, 0, 16);
	memset((void *)aes_out, 0, 16);
	memset((void *)padded_buffer, 0, 16);

	if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
		a4_exists = 0;
	else
		a4_exists = 1;

	if (((frtype|frsubtype) == WIFI_DATA_CFACK) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFPOLL) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFACKPOLL)) {
		qc_exists = 1;
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
			hdrlen += 2;

	} else if ((frtype == WIFI_DATA) && /*  add for CONFIG_IEEE80211W, none 11w also can use */
		   ((frsubtype == 0x08) ||
		   (frsubtype == 0x09) ||
		   (frsubtype == 0x0a) ||
		   (frsubtype == 0x0b))) {
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
			hdrlen += 2;

		qc_exists = 1;
	} else {
		qc_exists = 0;
	}

	pn_vector[0] = pframe[hdrlen];
	pn_vector[1] = pframe[hdrlen+1];
	pn_vector[2] = pframe[hdrlen+4];
	pn_vector[3] = pframe[hdrlen+5];
	pn_vector[4] = pframe[hdrlen+6];
	pn_vector[5] = pframe[hdrlen+7];

	construct_mic_iv(mic_iv,
			 qc_exists,
			 a4_exists,
			 pframe,	 /* message, */
			 plen,
			 pn_vector,
			 frtype); /*  add for CONFIG_IEEE80211W, none 11w also can use */

	construct_mic_header1(mic_header1,
			      hdrlen,
			      pframe,	/* message */
			      frtype); /*  add for CONFIG_IEEE80211W, none 11w also can use */

	construct_mic_header2(mic_header2,
			      pframe,	/* message, */
			      a4_exists,
			      qc_exists);

	payload_remainder = plen % 16;
	num_blocks = plen / 16;

	/* Find start of payload */
	payload_index = (hdrlen + 8);

	/* Calculate MIC */
	aes128k128d(key, mic_iv, aes_out);
	bitwise_xor(aes_out, mic_header1, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);
	bitwise_xor(aes_out, mic_header2, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);

	for (i = 0; i < num_blocks; i++) {
		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);

		payload_index += 16;
		aes128k128d(key, chain_buffer, aes_out);
	}

	/* Add on the final payload block if it needs padding */
	if (payload_remainder > 0) {
		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++)
			padded_buffer[j] = pframe[payload_index++];

		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		aes128k128d(key, chain_buffer, aes_out);
	}

	for (j = 0 ; j < 8; j++)
		mic[j] = aes_out[j];

	/* Insert MIC into payload */
	for (j = 0; j < 8; j++)
		pframe[payload_index+j] = mic[j];

	payload_index = hdrlen + 8;
	for (i = 0; i < num_blocks; i++) {
		construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, /* message, */
				      pn_vector, i+1, frtype);
		/*  add for CONFIG_IEEE80211W, none 11w also can use */
		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
		for (j = 0; j < 16; j++)
			pframe[payload_index++] = chain_buffer[j];
	}

	if (payload_remainder > 0) {
		/* If there is a short final block, then pad it,*/
		/* encrypt it and copy the unpadded part back   */
		construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, /* message, */
				      pn_vector, num_blocks+1, frtype);
		/*  add for CONFIG_IEEE80211W, none 11w also can use */

		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++)
			padded_buffer[j] = pframe[payload_index+j];

		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		for (j = 0; j < payload_remainder; j++)
			pframe[payload_index++] = chain_buffer[j];
	}

	/* Encrypt the MIC */
	construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, /* message, */
			      pn_vector, 0, frtype);
	/*  add for CONFIG_IEEE80211W, none 11w also can use */

	for (j = 0; j < 16; j++)
		padded_buffer[j] = 0x00;
	for (j = 0; j < 8; j++)
		padded_buffer[j] = pframe[j+hdrlen+8+plen];

	aes128k128d(key, ctr_preload, aes_out);
	bitwise_xor(aes_out, padded_buffer, chain_buffer);
	for (j = 0; j < 8; j++)
		pframe[payload_index++] = chain_buffer[j];

	return _SUCCESS;
}

u32 rtw_aes_encrypt(struct adapter *padapter, u8 *pxmitframe)
{	/*  exclude ICV */

	/*static*/
	/* unsigned char message[MAX_MSG_SIZE]; */

	/* Intermediate Buffers */
	signed int curfragnum, length;
	u8 *pframe, *prwskey;	/*  *payload,*iv */
	u8 hw_hdr_offset = 0;
	struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
	struct security_priv *psecuritypriv = &padapter->securitypriv;
	struct xmit_priv *pxmitpriv = &padapter->xmitpriv;

	u32 res = _SUCCESS;

	if (!((struct xmit_frame *)pxmitframe)->buf_addr)
		return _FAIL;

	hw_hdr_offset = TXDESC_OFFSET;
	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;

	/* 4 start to encrypt each fragment */
	if (pattrib->encrypt == _AES_) {
		if (is_multicast_ether_addr(pattrib->ra))
			prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey;
		else
			prwskey = pattrib->dot118021x_UncstKey.skey;

		for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
			if ((curfragnum+1) == pattrib->nr_frags) {	/* 4 the last fragment */
				length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;

				aes_cipher(prwskey, pattrib->hdrlen, pframe, length);
			} else {
				length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;

				aes_cipher(prwskey, pattrib->hdrlen, pframe, length);
				pframe += pxmitpriv->frag_len;
				pframe = (u8 *)round_up((SIZE_PTR)(pframe), 4);
			}
		}
	}
	return res;
}

static signed int aes_decipher(u8 *key, uint	hdrlen,
			 u8 *pframe, uint plen)
{
	static u8 message[MAX_MSG_SIZE];
	uint qc_exists, a4_exists, i, j, payload_remainder,
			num_blocks, payload_index;
	signed int res = _SUCCESS;
	u8 pn_vector[6];
	u8 mic_iv[16];
	u8 mic_header1[16];
	u8 mic_header2[16];
	u8 ctr_preload[16];

		/* Intermediate Buffers */
	u8 chain_buffer[16];
	u8 aes_out[16];
	u8 padded_buffer[16];
	u8 mic[8];

	uint frtype  = GetFrameType(pframe);
	uint frsubtype  = GetFrameSubType(pframe);

	frsubtype = frsubtype>>4;

	memset((void *)mic_iv, 0, 16);
	memset((void *)mic_header1, 0, 16);
	memset((void *)mic_header2, 0, 16);
	memset((void *)ctr_preload, 0, 16);
	memset((void *)chain_buffer, 0, 16);
	memset((void *)aes_out, 0, 16);
	memset((void *)padded_buffer, 0, 16);

	/* start to decrypt the payload */

	num_blocks = (plen-8) / 16; /* plen including LLC, payload_length and mic) */

	payload_remainder = (plen-8) % 16;

	pn_vector[0]  = pframe[hdrlen];
	pn_vector[1]  = pframe[hdrlen + 1];
	pn_vector[2]  = pframe[hdrlen + 4];
	pn_vector[3]  = pframe[hdrlen + 5];
	pn_vector[4]  = pframe[hdrlen + 6];
	pn_vector[5]  = pframe[hdrlen + 7];

	if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
		a4_exists = 0;
	else
		a4_exists = 1;

	if (((frtype|frsubtype) == WIFI_DATA_CFACK) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFPOLL) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFACKPOLL)) {
		qc_exists = 1;
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
			hdrlen += 2;

	} else if ((frtype == WIFI_DATA) && /* only for data packet . add for CONFIG_IEEE80211W, none 11w also can use */
		   ((frsubtype == 0x08) ||
		   (frsubtype == 0x09) ||
		   (frsubtype == 0x0a) ||
		   (frsubtype == 0x0b))) {
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
			hdrlen += 2;

		qc_exists = 1;
	} else {
		qc_exists = 0;
	}

	/*  now, decrypt pframe with hdrlen offset and plen long */

	payload_index = hdrlen + 8; /*  8 is for extiv */

	for (i = 0; i < num_blocks; i++) {
		construct_ctr_preload(ctr_preload, a4_exists,
				      qc_exists, pframe,
				      pn_vector, i + 1,
				      frtype); /*  add for CONFIG_IEEE80211W, none 11w also can use */

		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);

		for (j = 0; j < 16; j++)
			pframe[payload_index++] = chain_buffer[j];
	}

	if (payload_remainder > 0) {
		/* If there is a short final block, then pad it,*/
		/* encrypt it and copy the unpadded part back   */
		construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, pn_vector,
				      num_blocks+1, frtype);
		/*  add for CONFIG_IEEE80211W, none 11w also can use */

		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++)
			padded_buffer[j] = pframe[payload_index+j];

		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		for (j = 0; j < payload_remainder; j++)
			pframe[payload_index++] = chain_buffer[j];
	}

	/* start to calculate the mic */
	if ((hdrlen + plen+8) <= MAX_MSG_SIZE)
		memcpy((void *)message, pframe, (hdrlen + plen+8)); /* 8 is for ext iv len */

	pn_vector[0] = pframe[hdrlen];
	pn_vector[1] = pframe[hdrlen+1];
	pn_vector[2] = pframe[hdrlen+4];
	pn_vector[3] = pframe[hdrlen+5];
	pn_vector[4] = pframe[hdrlen+6];
	pn_vector[5] = pframe[hdrlen+7];

	construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen-8, pn_vector, frtype);
	/*  add for CONFIG_IEEE80211W, none 11w also can use */

	construct_mic_header1(mic_header1, hdrlen, message, frtype);
	/*  add for CONFIG_IEEE80211W, none 11w also can use */
	construct_mic_header2(mic_header2, message, a4_exists, qc_exists);

	payload_remainder = (plen-8) % 16;
	num_blocks = (plen-8) / 16;

	/* Find start of payload */
	payload_index = (hdrlen + 8);

	/* Calculate MIC */
	aes128k128d(key, mic_iv, aes_out);
	bitwise_xor(aes_out, mic_header1, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);
	bitwise_xor(aes_out, mic_header2, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);

	for (i = 0; i < num_blocks; i++) {
		bitwise_xor(aes_out, &message[payload_index], chain_buffer);

		payload_index += 16;
		aes128k128d(key, chain_buffer, aes_out);
	}

	/* Add on the final payload block if it needs padding */
	if (payload_remainder > 0) {
		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++)
			padded_buffer[j] = message[payload_index++];

		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		aes128k128d(key, chain_buffer, aes_out);
	}

	for (j = 0; j < 8; j++)
		mic[j] = aes_out[j];

	/* Insert MIC into payload */
	for (j = 0; j < 8; j++)
		message[payload_index+j] = mic[j];

	payload_index = hdrlen + 8;
	for (i = 0; i < num_blocks; i++) {
		construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, i+1,
				      frtype);
		/*  add for CONFIG_IEEE80211W, none 11w also can use */
		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, &message[payload_index], chain_buffer);
		for (j = 0; j < 16; j++)
			message[payload_index++] = chain_buffer[j];
	}

	if (payload_remainder > 0) {
		/* If there is a short final block, then pad it,*/
		/* encrypt it and copy the unpadded part back   */
		construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector,
				      num_blocks+1, frtype);
		/*  add for CONFIG_IEEE80211W, none 11w also can use */

		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++)
			padded_buffer[j] = message[payload_index+j];

		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		for (j = 0; j < payload_remainder; j++)
			message[payload_index++] = chain_buffer[j];
	}

	/* Encrypt the MIC */
	construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, 0, frtype);
	/*  add for CONFIG_IEEE80211W, none 11w also can use */

	for (j = 0; j < 16; j++)
		padded_buffer[j] = 0x00;
	for (j = 0; j < 8; j++)
		padded_buffer[j] = message[j+hdrlen+8+plen-8];

	aes128k128d(key, ctr_preload, aes_out);
	bitwise_xor(aes_out, padded_buffer, chain_buffer);
	for (j = 0; j < 8; j++)
		message[payload_index++] = chain_buffer[j];

	/* compare the mic */
	for (i = 0; i < 8; i++) {
		if (pframe[hdrlen + 8 + plen - 8 + i] != message[hdrlen + 8 + plen - 8 + i])
			res = _FAIL;
	}
	return res;
}

u32 rtw_aes_decrypt(struct adapter *padapter, u8 *precvframe)
{	/*  exclude ICV */

	/*static*/
	/* unsigned char message[MAX_MSG_SIZE]; */

	/* Intermediate Buffers */

	signed int length;
	u8 *pframe, *prwskey;	/*  *payload,*iv */
	struct sta_info *stainfo;
	struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
	struct security_priv *psecuritypriv = &padapter->securitypriv;
	u32 res = _SUCCESS;

	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
	/* 4 start to encrypt each fragment */
	if (prxattrib->encrypt == _AES_) {
		stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]);
		if (stainfo) {
			if (is_multicast_ether_addr(prxattrib->ra)) {
				static unsigned long start;
				static u32 no_gkey_bc_cnt;
				static u32 no_gkey_mc_cnt;

				if (!psecuritypriv->binstallGrpkey) {
					res = _FAIL;

					if (start == 0)
						start = jiffies;

					if (is_broadcast_mac_addr(prxattrib->ra))
						no_gkey_bc_cnt++;
					else
						no_gkey_mc_cnt++;

					if (jiffies_to_msecs(jiffies - start) > 1000) {
						if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
							netdev_dbg(padapter->pnetdev,
								   FUNC_ADPT_FMT " no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
								   FUNC_ADPT_ARG(padapter),
								   no_gkey_bc_cnt,
								   no_gkey_mc_cnt);
						}
						start = jiffies;
						no_gkey_bc_cnt = 0;
						no_gkey_mc_cnt = 0;
					}

					goto exit;
				}

				if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
					netdev_dbg(padapter->pnetdev,
						   FUNC_ADPT_FMT " gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
						   FUNC_ADPT_ARG(padapter),
						   no_gkey_bc_cnt,
						   no_gkey_mc_cnt);
				}
				start = 0;
				no_gkey_bc_cnt = 0;
				no_gkey_mc_cnt = 0;

				prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey;
				if (psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) {
					res = _FAIL;
					goto exit;
				}
			} else {
				prwskey = &stainfo->dot118021x_UncstKey.skey[0];
			}

			length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;

			res = aes_decipher(prwskey, prxattrib->hdrlen, pframe, length);

		} else {
			res = _FAIL;
		}
	}
exit:
	return res;
}

u32 rtw_BIP_verify(struct adapter *padapter, u8 *precvframe)
{
	struct rx_pkt_attrib *pattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
	u8 *pframe;
	u8 *BIP_AAD, *p;
	u32 res = _FAIL;
	uint len, ori_len;
	struct ieee80211_hdr *pwlanhdr;
	u8 mic[16];
	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
	__le16 le_tmp;
	__le64 le_tmp64;

	ori_len = pattrib->pkt_len-WLAN_HDR_A3_LEN+BIP_AAD_SIZE;
	BIP_AAD = rtw_zmalloc(ori_len);

	if (!BIP_AAD)
		return _FAIL;

	/* PKT start */
	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
	/* mapping to wlan header */
	pwlanhdr = (struct ieee80211_hdr *)pframe;
	/* save the frame body + MME */
	memcpy(BIP_AAD+BIP_AAD_SIZE, pframe+WLAN_HDR_A3_LEN, pattrib->pkt_len-WLAN_HDR_A3_LEN);
	/* find MME IE pointer */
	p = rtw_get_ie(BIP_AAD+BIP_AAD_SIZE, WLAN_EID_MMIE, &len, pattrib->pkt_len-WLAN_HDR_A3_LEN);
	/* Baron */
	if (p) {
		u16 keyid = 0;
		u64 temp_ipn = 0;
		/* save packet number */
		memcpy(&le_tmp64, p+4, 6);
		temp_ipn = le64_to_cpu(le_tmp64);
		/* BIP packet number should bigger than previous BIP packet */
		if (temp_ipn <= pmlmeext->mgnt_80211w_IPN_rx)
			goto BIP_exit;

		/* copy key index */
		memcpy(&le_tmp, p+2, 2);
		keyid = le16_to_cpu(le_tmp);
		if (keyid != padapter->securitypriv.dot11wBIPKeyid)
			goto BIP_exit;

		/* clear the MIC field of MME to zero */
		memset(p+2+len-8, 0, 8);

		/* conscruct AAD, copy frame control field */
		memcpy(BIP_AAD, &pwlanhdr->frame_control, 2);
		ClearRetry(BIP_AAD);
		ClearPwrMgt(BIP_AAD);
		ClearMData(BIP_AAD);
		/* conscruct AAD, copy address 1 to address 3 */
		memcpy(BIP_AAD+2, pwlanhdr->addr1, 18);

		if (omac1_aes_128(padapter->securitypriv.dot11wBIPKey[padapter->securitypriv.dot11wBIPKeyid].skey
			, BIP_AAD, ori_len, mic))
			goto BIP_exit;

		/* MIC field should be last 8 bytes of packet (packet without FCS) */
		if (!memcmp(mic, pframe+pattrib->pkt_len-8, 8)) {
			pmlmeext->mgnt_80211w_IPN_rx = temp_ipn;
			res = _SUCCESS;
		} else {
		}

	} else {
		res = RTW_RX_HANDLED;
	}
BIP_exit:

	kfree(BIP_AAD);
	return res;
}

static void gf_mulx(u8 *pad)
{
	int i, carry;

	carry = pad[0] & 0x80;
	for (i = 0; i < AES_BLOCK_SIZE - 1; i++)
		pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7);

	pad[AES_BLOCK_SIZE - 1] <<= 1;
	if (carry)
		pad[AES_BLOCK_SIZE - 1] ^= 0x87;
}

/**
 * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128
 * @key: 128-bit key for the hash operation
 * @num_elem: Number of elements in the data vector
 * @addr: Pointers to the data areas
 * @len: Lengths of the data blocks
 * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
 * Returns: 0 on success, -1 on failure
 *
 * This is a mode for using block cipher (AES in this case) for authentication.
 * OMAC1 was standardized with the name CMAC by NIST in a Special Publication
 * (SP) 800-38B.
 */
static int omac1_aes_128_vector(u8 *key, size_t num_elem,
				u8 *addr[], size_t *len, u8 *mac)
{
	struct crypto_aes_ctx ctx;
	u8 cbc[AES_BLOCK_SIZE], pad[AES_BLOCK_SIZE];
	u8 *pos, *end;
	size_t i, e, left, total_len;
	int ret;

	ret = aes_expandkey(&ctx, key, 16);
	if (ret)
		return -1;
	memset(cbc, 0, AES_BLOCK_SIZE);

	total_len = 0;
	for (e = 0; e < num_elem; e++)
		total_len += len[e];
	left = total_len;

	e = 0;
	pos = addr[0];
	end = pos + len[0];

	while (left >= AES_BLOCK_SIZE) {
		for (i = 0; i < AES_BLOCK_SIZE; i++) {
			cbc[i] ^= *pos++;
			if (pos >= end) {
				e++;
				pos = addr[e];
				end = pos + len[e];
			}
		}
		if (left > AES_BLOCK_SIZE)
			aes_encrypt(&ctx, cbc, cbc);
		left -= AES_BLOCK_SIZE;
	}

	memset(pad, 0, AES_BLOCK_SIZE);
	aes_encrypt(&ctx, pad, pad);
	gf_mulx(pad);

	if (left || total_len == 0) {
		for (i = 0; i < left; i++) {
			cbc[i] ^= *pos++;
			if (pos >= end) {
				e++;
				pos = addr[e];
				end = pos + len[e];
			}
		}
		cbc[left] ^= 0x80;
		gf_mulx(pad);
	}

	for (i = 0; i < AES_BLOCK_SIZE; i++)
		pad[i] ^= cbc[i];
	aes_encrypt(&ctx, pad, mac);
	memzero_explicit(&ctx, sizeof(ctx));
	return 0;
}

/**
 * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC)
 * @key: 128-bit key for the hash operation
 * @data: Data buffer for which a MAC is determined
 * @data_len: Length of data buffer in bytes
 * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
 * Returns: 0 on success, -1 on failure
 *
 * This is a mode for using block cipher (AES in this case) for authentication.
 * OMAC1 was standardized with the name CMAC by NIST in a Special Publication
 * (SP) 800-38B.
 * modify for CONFIG_IEEE80211W */
int omac1_aes_128(u8 *key, u8 *data, size_t data_len, u8 *mac)
{
	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
}

/* Restore HW wep key setting according to key_mask */
void rtw_sec_restore_wep_key(struct adapter *adapter)
{
	struct security_priv *securitypriv = &(adapter->securitypriv);
	signed int keyid;

	if ((_WEP40_ == securitypriv->dot11PrivacyAlgrthm) || (_WEP104_ == securitypriv->dot11PrivacyAlgrthm)) {
		for (keyid = 0; keyid < 4; keyid++) {
			if (securitypriv->key_mask & BIT(keyid)) {
				if (keyid == securitypriv->dot11PrivacyKeyIndex)
					rtw_set_key(adapter, securitypriv, keyid, 1, false);
				else
					rtw_set_key(adapter, securitypriv, keyid, 0, false);
			}
		}
	}
}

u8 rtw_handle_tkip_countermeasure(struct adapter *adapter, const char *caller)
{
	struct security_priv *securitypriv = &(adapter->securitypriv);
	u8 status = _SUCCESS;

	if (securitypriv->btkip_countermeasure) {
		unsigned long passing_ms = jiffies_to_msecs(jiffies - securitypriv->btkip_countermeasure_time);

		if (passing_ms > 60*1000) {
			netdev_dbg(adapter->pnetdev,
				   "%s(%s) countermeasure time:%lus > 60s\n",
				   caller, ADPT_ARG(adapter),
				   passing_ms / 1000);
			securitypriv->btkip_countermeasure = false;
			securitypriv->btkip_countermeasure_time = 0;
		} else {
			netdev_dbg(adapter->pnetdev,
				   "%s(%s) countermeasure time:%lus < 60s\n",
				   caller, ADPT_ARG(adapter),
				   passing_ms / 1000);
			status = _FAIL;
		}
	}

	return status;
}