// SPDX-License-Identifier: GPL-2.0
/*
* AMD HSMP Platform Driver
* Copyright (c) 2022, AMD.
* All Rights Reserved.
*
* This file provides a device implementation for HSMP interface
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm/amd_hsmp.h>
#include <asm/amd_nb.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/semaphore.h>
#include <linux/acpi.h>
#define DRIVER_NAME "amd_hsmp"
#define DRIVER_VERSION "2.2"
#define ACPI_HSMP_DEVICE_HID "AMDI0097"
/* HSMP Status / Error codes */
#define HSMP_STATUS_NOT_READY 0x00
#define HSMP_STATUS_OK 0x01
#define HSMP_ERR_INVALID_MSG 0xFE
#define HSMP_ERR_INVALID_INPUT 0xFF
/* Timeout in millsec */
#define HSMP_MSG_TIMEOUT 100
#define HSMP_SHORT_SLEEP 1
#define HSMP_WR true
#define HSMP_RD false
/*
* To access specific HSMP mailbox register, s/w writes the SMN address of HSMP mailbox
* register into the SMN_INDEX register, and reads/writes the SMN_DATA reg.
* Below are required SMN address for HSMP Mailbox register offsets in SMU address space
*/
#define SMN_HSMP_BASE 0x3B00000
#define SMN_HSMP_MSG_ID 0x0010534
#define SMN_HSMP_MSG_ID_F1A_M0H 0x0010934
#define SMN_HSMP_MSG_RESP 0x0010980
#define SMN_HSMP_MSG_DATA 0x00109E0
#define HSMP_INDEX_REG 0xc4
#define HSMP_DATA_REG 0xc8
#define HSMP_CDEV_NAME "hsmp_cdev"
#define HSMP_DEVNODE_NAME "hsmp"
#define HSMP_METRICS_TABLE_NAME "metrics_bin"
#define HSMP_ATTR_GRP_NAME_SIZE 10
/* These are the strings specified in ACPI table */
#define MSG_IDOFF_STR "MsgIdOffset"
#define MSG_ARGOFF_STR "MsgArgOffset"
#define MSG_RESPOFF_STR "MsgRspOffset"
#define MAX_AMD_SOCKETS 8
struct hsmp_mbaddr_info {
u32 base_addr;
u32 msg_id_off;
u32 msg_resp_off;
u32 msg_arg_off;
u32 size;
};
struct hsmp_socket {
struct bin_attribute hsmp_attr;
struct hsmp_mbaddr_info mbinfo;
void __iomem *metric_tbl_addr;
void __iomem *virt_base_addr;
struct semaphore hsmp_sem;
char name[HSMP_ATTR_GRP_NAME_SIZE];
struct pci_dev *root;
struct device *dev;
u16 sock_ind;
};
struct hsmp_plat_device {
struct miscdevice hsmp_device;
struct hsmp_socket *sock;
u32 proto_ver;
u16 num_sockets;
bool is_acpi_device;
bool is_probed;
};
static struct hsmp_plat_device plat_dev;
static int amd_hsmp_pci_rdwr(struct hsmp_socket *sock, u32 offset,
u32 *value, bool write)
{
int ret;
if (!sock->root)
return -ENODEV;
ret = pci_write_config_dword(sock->root, HSMP_INDEX_REG,
sock->mbinfo.base_addr + offset);
if (ret)
return ret;
ret = (write ? pci_write_config_dword(sock->root, HSMP_DATA_REG, *value)
: pci_read_config_dword(sock->root, HSMP_DATA_REG, value));
return ret;
}
static void amd_hsmp_acpi_rdwr(struct hsmp_socket *sock, u32 offset,
u32 *value, bool write)
{
if (write)
iowrite32(*value, sock->virt_base_addr + offset);
else
*value = ioread32(sock->virt_base_addr + offset);
}
static int amd_hsmp_rdwr(struct hsmp_socket *sock, u32 offset,
u32 *value, bool write)
{
if (plat_dev.is_acpi_device)
amd_hsmp_acpi_rdwr(sock, offset, value, write);
else
return amd_hsmp_pci_rdwr(sock, offset, value, write);
return 0;
}
/*
* Send a message to the HSMP port via PCI-e config space registers
* or by writing to MMIO space.
*
* The caller is expected to zero out any unused arguments.
* If a response is expected, the number of response words should be greater than 0.
*
* Returns 0 for success and populates the requested number of arguments.
* Returns a negative error code for failure.
*/
static int __hsmp_send_message(struct hsmp_socket *sock, struct hsmp_message *msg)
{
struct hsmp_mbaddr_info *mbinfo;
unsigned long timeout, short_sleep;
u32 mbox_status;
u32 index;
int ret;
mbinfo = &sock->mbinfo;
/* Clear the status register */
mbox_status = HSMP_STATUS_NOT_READY;
ret = amd_hsmp_rdwr(sock, mbinfo->msg_resp_off, &mbox_status, HSMP_WR);
if (ret) {
pr_err("Error %d clearing mailbox status register\n", ret);
return ret;
}
index = 0;
/* Write any message arguments */
while (index < msg->num_args) {
ret = amd_hsmp_rdwr(sock, mbinfo->msg_arg_off + (index << 2),
&msg->args[index], HSMP_WR);
if (ret) {
pr_err("Error %d writing message argument %d\n", ret, index);
return ret;
}
index++;
}
/* Write the message ID which starts the operation */
ret = amd_hsmp_rdwr(sock, mbinfo->msg_id_off, &msg->msg_id, HSMP_WR);
if (ret) {
pr_err("Error %d writing message ID %u\n", ret, msg->msg_id);
return ret;
}
/*
* Depending on when the trigger write completes relative to the SMU
* firmware 1 ms cycle, the operation may take from tens of us to 1 ms
* to complete. Some operations may take more. Therefore we will try
* a few short duration sleeps and switch to long sleeps if we don't
* succeed quickly.
*/
short_sleep = jiffies + msecs_to_jiffies(HSMP_SHORT_SLEEP);
timeout = jiffies + msecs_to_jiffies(HSMP_MSG_TIMEOUT);
while (time_before(jiffies, timeout)) {
ret = amd_hsmp_rdwr(sock, mbinfo->msg_resp_off, &mbox_status, HSMP_RD);
if (ret) {
pr_err("Error %d reading mailbox status\n", ret);
return ret;
}
if (mbox_status != HSMP_STATUS_NOT_READY)
break;
if (time_before(jiffies, short_sleep))
usleep_range(50, 100);
else
usleep_range(1000, 2000);
}
if (unlikely(mbox_status == HSMP_STATUS_NOT_READY)) {
return -ETIMEDOUT;
} else if (unlikely(mbox_status == HSMP_ERR_INVALID_MSG)) {
return -ENOMSG;
} else if (unlikely(mbox_status == HSMP_ERR_INVALID_INPUT)) {
return -EINVAL;
} else if (unlikely(mbox_status != HSMP_STATUS_OK)) {
pr_err("Message ID %u unknown failure (status = 0x%X)\n",
msg->msg_id, mbox_status);
return -EIO;
}
/*
* SMU has responded OK. Read response data.
* SMU reads the input arguments from eight 32 bit registers starting
* from SMN_HSMP_MSG_DATA and writes the response data to the same
* SMN_HSMP_MSG_DATA address.
* We copy the response data if any, back to the args[].
*/
index = 0;
while (index < msg->response_sz) {
ret = amd_hsmp_rdwr(sock, mbinfo->msg_arg_off + (index << 2),
&msg->args[index], HSMP_RD);
if (ret) {
pr_err("Error %d reading response %u for message ID:%u\n",
ret, index, msg->msg_id);
break;
}
index++;
}
return ret;
}
static int validate_message(struct hsmp_message *msg)
{
/* msg_id against valid range of message IDs */
if (msg->msg_id < HSMP_TEST || msg->msg_id >= HSMP_MSG_ID_MAX)
return -ENOMSG;
/* msg_id is a reserved message ID */
if (hsmp_msg_desc_table[msg->msg_id].type == HSMP_RSVD)
return -ENOMSG;
/* num_args and response_sz against the HSMP spec */
if (msg->num_args != hsmp_msg_desc_table[msg->msg_id].num_args ||
msg->response_sz != hsmp_msg_desc_table[msg->msg_id].response_sz)
return -EINVAL;
return 0;
}
int hsmp_send_message(struct hsmp_message *msg)
{
struct hsmp_socket *sock;
int ret;
if (!msg)
return -EINVAL;
ret = validate_message(msg);
if (ret)
return ret;
if (!plat_dev.sock || msg->sock_ind >= plat_dev.num_sockets)
return -ENODEV;
sock = &plat_dev.sock[msg->sock_ind];
/*
* The time taken by smu operation to complete is between
* 10us to 1ms. Sometime it may take more time.
* In SMP system timeout of 100 millisecs should
* be enough for the previous thread to finish the operation
*/
ret = down_timeout(&sock->hsmp_sem, msecs_to_jiffies(HSMP_MSG_TIMEOUT));
if (ret < 0)
return ret;
ret = __hsmp_send_message(sock, msg);
up(&sock->hsmp_sem);
return ret;
}
EXPORT_SYMBOL_GPL(hsmp_send_message);
static int hsmp_test(u16 sock_ind, u32 value)
{
struct hsmp_message msg = { 0 };
int ret;
/*
* Test the hsmp port by performing TEST command. The test message
* takes one argument and returns the value of that argument + 1.
*/
msg.msg_id = HSMP_TEST;
msg.num_args = 1;
msg.response_sz = 1;
msg.args[0] = value;
msg.sock_ind = sock_ind;
ret = hsmp_send_message(&msg);
if (ret)
return ret;
/* Check the response value */
if (msg.args[0] != (value + 1)) {
dev_err(plat_dev.sock[sock_ind].dev,
"Socket %d test message failed, Expected 0x%08X, received 0x%08X\n",
sock_ind, (value + 1), msg.args[0]);
return -EBADE;
}
return ret;
}
static long hsmp_ioctl(struct file *fp, unsigned int cmd, unsigned long arg)
{
int __user *arguser = (int __user *)arg;
struct hsmp_message msg = { 0 };
int ret;
if (copy_struct_from_user(&msg, sizeof(msg), arguser, sizeof(struct hsmp_message)))
return -EFAULT;
/*
* Check msg_id is within the range of supported msg ids
* i.e within the array bounds of hsmp_msg_desc_table
*/
if (msg.msg_id < HSMP_TEST || msg.msg_id >= HSMP_MSG_ID_MAX)
return -ENOMSG;
switch (fp->f_mode & (FMODE_WRITE | FMODE_READ)) {
case FMODE_WRITE:
/*
* Device is opened in O_WRONLY mode
* Execute only set/configure commands
*/
if (hsmp_msg_desc_table[msg.msg_id].type != HSMP_SET)
return -EINVAL;
break;
case FMODE_READ:
/*
* Device is opened in O_RDONLY mode
* Execute only get/monitor commands
*/
if (hsmp_msg_desc_table[msg.msg_id].type != HSMP_GET)
return -EINVAL;
break;
case FMODE_READ | FMODE_WRITE:
/*
* Device is opened in O_RDWR mode
* Execute both get/monitor and set/configure commands
*/
break;
default:
return -EINVAL;
}
ret = hsmp_send_message(&msg);
if (ret)
return ret;
if (hsmp_msg_desc_table[msg.msg_id].response_sz > 0) {
/* Copy results back to user for get/monitor commands */
if (copy_to_user(arguser, &msg, sizeof(struct hsmp_message)))
return -EFAULT;
}
return 0;
}
static const struct file_operations hsmp_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = hsmp_ioctl,
.compat_ioctl = hsmp_ioctl,
};
/* This is the UUID used for HSMP */
static const guid_t acpi_hsmp_uuid = GUID_INIT(0xb74d619d, 0x5707, 0x48bd,
0xa6, 0x9f, 0x4e, 0xa2,
0x87, 0x1f, 0xc2, 0xf6);
static inline bool is_acpi_hsmp_uuid(union acpi_object *obj)
{
if (obj->type == ACPI_TYPE_BUFFER && obj->buffer.length == UUID_SIZE)
return guid_equal((guid_t *)obj->buffer.pointer, &acpi_hsmp_uuid);
return false;
}
static inline int hsmp_get_uid(struct device *dev, u16 *sock_ind)
{
char *uid;
/*
* UID (ID00, ID01..IDXX) is used for differentiating sockets,
* read it and strip the "ID" part of it and convert the remaining
* bytes to integer.
*/
uid = acpi_device_uid(ACPI_COMPANION(dev));
return kstrtou16(uid + 2, 10, sock_ind);
}
static acpi_status hsmp_resource(struct acpi_resource *res, void *data)
{
struct hsmp_socket *sock = data;
struct resource r;
switch (res->type) {
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
if (!acpi_dev_resource_memory(res, &r))
return AE_ERROR;
if (!r.start || r.end < r.start || !(r.flags & IORESOURCE_MEM_WRITEABLE))
return AE_ERROR;
sock->mbinfo.base_addr = r.start;
sock->mbinfo.size = resource_size(&r);
break;
case ACPI_RESOURCE_TYPE_END_TAG:
break;
default:
return AE_ERROR;
}
return AE_OK;
}
static int hsmp_read_acpi_dsd(struct hsmp_socket *sock)
{
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *guid, *mailbox_package;
union acpi_object *dsd;
acpi_status status;
int ret = 0;
int j;
status = acpi_evaluate_object_typed(ACPI_HANDLE(sock->dev), "_DSD", NULL,
&buf, ACPI_TYPE_PACKAGE);
if (ACPI_FAILURE(status)) {
dev_err(sock->dev, "Failed to read mailbox reg offsets from DSD table, err: %s\n",
acpi_format_exception(status));
return -ENODEV;
}
dsd = buf.pointer;
/* HSMP _DSD property should contain 2 objects.
* 1. guid which is an acpi object of type ACPI_TYPE_BUFFER
* 2. mailbox which is an acpi object of type ACPI_TYPE_PACKAGE
* This mailbox object contains 3 more acpi objects of type
* ACPI_TYPE_PACKAGE for holding msgid, msgresp, msgarg offsets
* these packages inturn contain 2 acpi objects of type
* ACPI_TYPE_STRING and ACPI_TYPE_INTEGER
*/
if (!dsd || dsd->type != ACPI_TYPE_PACKAGE || dsd->package.count != 2) {
ret = -EINVAL;
goto free_buf;
}
guid = &dsd->package.elements[0];
mailbox_package = &dsd->package.elements[1];
if (!is_acpi_hsmp_uuid(guid) || mailbox_package->type != ACPI_TYPE_PACKAGE) {
dev_err(sock->dev, "Invalid hsmp _DSD table data\n");
ret = -EINVAL;
goto free_buf;
}
for (j = 0; j < mailbox_package->package.count; j++) {
union acpi_object *msgobj, *msgstr, *msgint;
msgobj = &mailbox_package->package.elements[j];
msgstr = &msgobj->package.elements[0];
msgint = &msgobj->package.elements[1];
/* package should have 1 string and 1 integer object */
if (msgobj->type != ACPI_TYPE_PACKAGE ||
msgstr->type != ACPI_TYPE_STRING ||
msgint->type != ACPI_TYPE_INTEGER) {
ret = -EINVAL;
goto free_buf;
}
if (!strncmp(msgstr->string.pointer, MSG_IDOFF_STR,
msgstr->string.length)) {
sock->mbinfo.msg_id_off = msgint->integer.value;
} else if (!strncmp(msgstr->string.pointer, MSG_RESPOFF_STR,
msgstr->string.length)) {
sock->mbinfo.msg_resp_off = msgint->integer.value;
} else if (!strncmp(msgstr->string.pointer, MSG_ARGOFF_STR,
msgstr->string.length)) {
sock->mbinfo.msg_arg_off = msgint->integer.value;
} else {
ret = -ENOENT;
goto free_buf;
}
}
if (!sock->mbinfo.msg_id_off || !sock->mbinfo.msg_resp_off ||
!sock->mbinfo.msg_arg_off)
ret = -EINVAL;
free_buf:
ACPI_FREE(buf.pointer);
return ret;
}
static int hsmp_read_acpi_crs(struct hsmp_socket *sock)
{
acpi_status status;
status = acpi_walk_resources(ACPI_HANDLE(sock->dev), METHOD_NAME__CRS,
hsmp_resource, sock);
if (ACPI_FAILURE(status)) {
dev_err(sock->dev, "Failed to look up MP1 base address from CRS method, err: %s\n",
acpi_format_exception(status));
return -EINVAL;
}
if (!sock->mbinfo.base_addr || !sock->mbinfo.size)
return -EINVAL;
/* The mapped region should be un cached */
sock->virt_base_addr = devm_ioremap_uc(sock->dev, sock->mbinfo.base_addr,
sock->mbinfo.size);
if (!sock->virt_base_addr) {
dev_err(sock->dev, "Failed to ioremap MP1 base address\n");
return -ENOMEM;
}
return 0;
}
/* Parse the ACPI table to read the data */
static int hsmp_parse_acpi_table(struct device *dev, u16 sock_ind)
{
struct hsmp_socket *sock = &plat_dev.sock[sock_ind];
int ret;
sock->sock_ind = sock_ind;
sock->dev = dev;
plat_dev.is_acpi_device = true;
sema_init(&sock->hsmp_sem, 1);
/* Read MP1 base address from CRS method */
ret = hsmp_read_acpi_crs(sock);
if (ret)
return ret;
/* Read mailbox offsets from DSD table */
return hsmp_read_acpi_dsd(sock);
}
static ssize_t hsmp_metric_tbl_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct hsmp_socket *sock = bin_attr->private;
struct hsmp_message msg = { 0 };
int ret;
if (!sock)
return -EINVAL;
/* Do not support lseek(), reads entire metric table */
if (count < bin_attr->size) {
dev_err(sock->dev, "Wrong buffer size\n");
return -EINVAL;
}
msg.msg_id = HSMP_GET_METRIC_TABLE;
msg.sock_ind = sock->sock_ind;
ret = hsmp_send_message(&msg);
if (ret)
return ret;
memcpy_fromio(buf, sock->metric_tbl_addr, bin_attr->size);
return bin_attr->size;
}
static int hsmp_get_tbl_dram_base(u16 sock_ind)
{
struct hsmp_socket *sock = &plat_dev.sock[sock_ind];
struct hsmp_message msg = { 0 };
phys_addr_t dram_addr;
int ret;
msg.sock_ind = sock_ind;
msg.response_sz = hsmp_msg_desc_table[HSMP_GET_METRIC_TABLE_DRAM_ADDR].response_sz;
msg.msg_id = HSMP_GET_METRIC_TABLE_DRAM_ADDR;
ret = hsmp_send_message(&msg);
if (ret)
return ret;
/*
* calculate the metric table DRAM address from lower and upper 32 bits
* sent from SMU and ioremap it to virtual address.
*/
dram_addr = msg.args[0] | ((u64)(msg.args[1]) << 32);
if (!dram_addr) {
dev_err(sock->dev, "Invalid DRAM address for metric table\n");
return -ENOMEM;
}
sock->metric_tbl_addr = devm_ioremap(sock->dev, dram_addr,
sizeof(struct hsmp_metric_table));
if (!sock->metric_tbl_addr) {
dev_err(sock->dev, "Failed to ioremap metric table addr\n");
return -ENOMEM;
}
return 0;
}
static umode_t hsmp_is_sock_attr_visible(struct kobject *kobj,
struct bin_attribute *battr, int id)
{
if (plat_dev.proto_ver == HSMP_PROTO_VER6)
return battr->attr.mode;
else
return 0;
}
static int hsmp_init_metric_tbl_bin_attr(struct bin_attribute **hattrs, u16 sock_ind)
{
struct bin_attribute *hattr = &plat_dev.sock[sock_ind].hsmp_attr;
sysfs_bin_attr_init(hattr);
hattr->attr.name = HSMP_METRICS_TABLE_NAME;
hattr->attr.mode = 0444;
hattr->read = hsmp_metric_tbl_read;
hattr->size = sizeof(struct hsmp_metric_table);
hattr->private = &plat_dev.sock[sock_ind];
hattrs[0] = hattr;
if (plat_dev.proto_ver == HSMP_PROTO_VER6)
return hsmp_get_tbl_dram_base(sock_ind);
else
return 0;
}
/* One bin sysfs for metrics table */
#define NUM_HSMP_ATTRS 1
static int hsmp_create_attr_list(struct attribute_group *attr_grp,
struct device *dev, u16 sock_ind)
{
struct bin_attribute **hsmp_bin_attrs;
/* Null terminated list of attributes */
hsmp_bin_attrs = devm_kcalloc(dev, NUM_HSMP_ATTRS + 1,
sizeof(*hsmp_bin_attrs),
GFP_KERNEL);
if (!hsmp_bin_attrs)
return -ENOMEM;
attr_grp->bin_attrs = hsmp_bin_attrs;
return hsmp_init_metric_tbl_bin_attr(hsmp_bin_attrs, sock_ind);
}
static int hsmp_create_non_acpi_sysfs_if(struct device *dev)
{
const struct attribute_group **hsmp_attr_grps;
struct attribute_group *attr_grp;
u16 i;
hsmp_attr_grps = devm_kcalloc(dev, plat_dev.num_sockets + 1,
sizeof(*hsmp_attr_grps),
GFP_KERNEL);
if (!hsmp_attr_grps)
return -ENOMEM;
/* Create a sysfs directory for each socket */
for (i = 0; i < plat_dev.num_sockets; i++) {
attr_grp = devm_kzalloc(dev, sizeof(struct attribute_group),
GFP_KERNEL);
if (!attr_grp)
return -ENOMEM;
snprintf(plat_dev.sock[i].name, HSMP_ATTR_GRP_NAME_SIZE, "socket%u", (u8)i);
attr_grp->name = plat_dev.sock[i].name;
attr_grp->is_bin_visible = hsmp_is_sock_attr_visible;
hsmp_attr_grps[i] = attr_grp;
hsmp_create_attr_list(attr_grp, dev, i);
}
return device_add_groups(dev, hsmp_attr_grps);
}
static int hsmp_create_acpi_sysfs_if(struct device *dev)
{
struct attribute_group *attr_grp;
u16 sock_ind;
int ret;
attr_grp = devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
if (!attr_grp)
return -ENOMEM;
attr_grp->is_bin_visible = hsmp_is_sock_attr_visible;
ret = hsmp_get_uid(dev, &sock_ind);
if (ret)
return ret;
ret = hsmp_create_attr_list(attr_grp, dev, sock_ind);
if (ret)
return ret;
return devm_device_add_group(dev, attr_grp);
}
static int hsmp_cache_proto_ver(u16 sock_ind)
{
struct hsmp_message msg = { 0 };
int ret;
msg.msg_id = HSMP_GET_PROTO_VER;
msg.sock_ind = sock_ind;
msg.response_sz = hsmp_msg_desc_table[HSMP_GET_PROTO_VER].response_sz;
ret = hsmp_send_message(&msg);
if (!ret)
plat_dev.proto_ver = msg.args[0];
return ret;
}
static inline bool is_f1a_m0h(void)
{
if (boot_cpu_data.x86 == 0x1A && boot_cpu_data.x86_model <= 0x0F)
return true;
return false;
}
static int init_platform_device(struct device *dev)
{
struct hsmp_socket *sock;
int ret, i;
for (i = 0; i < plat_dev.num_sockets; i++) {
if (!node_to_amd_nb(i))
return -ENODEV;
sock = &plat_dev.sock[i];
sock->root = node_to_amd_nb(i)->root;
sock->sock_ind = i;
sock->dev = dev;
sock->mbinfo.base_addr = SMN_HSMP_BASE;
/*
* This is a transitional change from non-ACPI to ACPI, only
* family 0x1A, model 0x00 platform is supported for both ACPI and non-ACPI.
*/
if (is_f1a_m0h())
sock->mbinfo.msg_id_off = SMN_HSMP_MSG_ID_F1A_M0H;
else
sock->mbinfo.msg_id_off = SMN_HSMP_MSG_ID;
sock->mbinfo.msg_resp_off = SMN_HSMP_MSG_RESP;
sock->mbinfo.msg_arg_off = SMN_HSMP_MSG_DATA;
sema_init(&sock->hsmp_sem, 1);
/* Test the hsmp interface on each socket */
ret = hsmp_test(i, 0xDEADBEEF);
if (ret) {
dev_err(dev, "HSMP test message failed on Fam:%x model:%x\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
dev_err(dev, "Is HSMP disabled in BIOS ?\n");
return ret;
}
}
return 0;
}
static const struct acpi_device_id amd_hsmp_acpi_ids[] = {
{ACPI_HSMP_DEVICE_HID, 0},
{}
};
MODULE_DEVICE_TABLE(acpi, amd_hsmp_acpi_ids);
static int hsmp_pltdrv_probe(struct platform_device *pdev)
{
struct acpi_device *adev;
u16 sock_ind = 0;
int ret;
/*
* On ACPI supported BIOS, there is an ACPI HSMP device added for
* each socket, so the per socket probing, but the memory allocated for
* sockets should be contiguous to access it as an array,
* Hence allocate memory for all the sockets at once instead of allocating
* on each probe.
*/
if (!plat_dev.is_probed) {
plat_dev.sock = devm_kcalloc(&pdev->dev, plat_dev.num_sockets,
sizeof(*plat_dev.sock),
GFP_KERNEL);
if (!plat_dev.sock)
return -ENOMEM;
}
adev = ACPI_COMPANION(&pdev->dev);
if (adev && !acpi_match_device_ids(adev, amd_hsmp_acpi_ids)) {
ret = hsmp_get_uid(&pdev->dev, &sock_ind);
if (ret)
return ret;
if (sock_ind >= plat_dev.num_sockets)
return -EINVAL;
ret = hsmp_parse_acpi_table(&pdev->dev, sock_ind);
if (ret) {
dev_err(&pdev->dev, "Failed to parse ACPI table\n");
return ret;
}
/* Test the hsmp interface */
ret = hsmp_test(sock_ind, 0xDEADBEEF);
if (ret) {
dev_err(&pdev->dev, "HSMP test message failed on Fam:%x model:%x\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
dev_err(&pdev->dev, "Is HSMP disabled in BIOS ?\n");
return ret;
}
} else {
ret = init_platform_device(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "Failed to init HSMP mailbox\n");
return ret;
}
}
ret = hsmp_cache_proto_ver(sock_ind);
if (ret) {
dev_err(&pdev->dev, "Failed to read HSMP protocol version\n");
return ret;
}
if (plat_dev.is_acpi_device)
ret = hsmp_create_acpi_sysfs_if(&pdev->dev);
else
ret = hsmp_create_non_acpi_sysfs_if(&pdev->dev);
if (ret)
dev_err(&pdev->dev, "Failed to create HSMP sysfs interface\n");
if (!plat_dev.is_probed) {
plat_dev.hsmp_device.name = HSMP_CDEV_NAME;
plat_dev.hsmp_device.minor = MISC_DYNAMIC_MINOR;
plat_dev.hsmp_device.fops = &hsmp_fops;
plat_dev.hsmp_device.parent = &pdev->dev;
plat_dev.hsmp_device.nodename = HSMP_DEVNODE_NAME;
plat_dev.hsmp_device.mode = 0644;
ret = misc_register(&plat_dev.hsmp_device);
if (ret)
return ret;
plat_dev.is_probed = true;
}
return 0;
}
static void hsmp_pltdrv_remove(struct platform_device *pdev)
{
/*
* We register only one misc_device even on multi socket system.
* So, deregister should happen only once.
*/
if (plat_dev.is_probed) {
misc_deregister(&plat_dev.hsmp_device);
plat_dev.is_probed = false;
}
}
static struct platform_driver amd_hsmp_driver = {
.probe = hsmp_pltdrv_probe,
.remove_new = hsmp_pltdrv_remove,
.driver = {
.name = DRIVER_NAME,
.acpi_match_table = amd_hsmp_acpi_ids,
},
};
static struct platform_device *amd_hsmp_platdev;
static int hsmp_plat_dev_register(void)
{
int ret;
amd_hsmp_platdev = platform_device_alloc(DRIVER_NAME, PLATFORM_DEVID_NONE);
if (!amd_hsmp_platdev)
return -ENOMEM;
ret = platform_device_add(amd_hsmp_platdev);
if (ret)
platform_device_put(amd_hsmp_platdev);
return ret;
}
/*
* This check is only needed for backward compatibility of previous platforms.
* All new platforms are expected to support ACPI based probing.
*/
static bool legacy_hsmp_support(void)
{
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
return false;
switch (boot_cpu_data.x86) {
case 0x19:
switch (boot_cpu_data.x86_model) {
case 0x00 ... 0x1F:
case 0x30 ... 0x3F:
case 0x90 ... 0x9F:
case 0xA0 ... 0xAF:
return true;
default:
return false;
}
case 0x1A:
switch (boot_cpu_data.x86_model) {
case 0x00 ... 0x1F:
return true;
default:
return false;
}
default:
return false;
}
return false;
}
static int __init hsmp_plt_init(void)
{
int ret = -ENODEV;
/*
* amd_nb_num() returns number of SMN/DF interfaces present in the system
* if we have N SMN/DF interfaces that ideally means N sockets
*/
plat_dev.num_sockets = amd_nb_num();
if (plat_dev.num_sockets == 0 || plat_dev.num_sockets > MAX_AMD_SOCKETS)
return ret;
ret = platform_driver_register(&amd_hsmp_driver);
if (ret)
return ret;
if (!plat_dev.is_acpi_device) {
if (legacy_hsmp_support()) {
/* Not ACPI device, but supports HSMP, register a plat_dev */
ret = hsmp_plat_dev_register();
} else {
/* Not ACPI, Does not support HSMP */
pr_info("HSMP is not supported on Family:%x model:%x\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
ret = -ENODEV;
}
if (ret)
platform_driver_unregister(&amd_hsmp_driver);
}
return ret;
}
static void __exit hsmp_plt_exit(void)
{
platform_device_unregister(amd_hsmp_platdev);
platform_driver_unregister(&amd_hsmp_driver);
}
device_initcall(hsmp_plt_init);
module_exit(hsmp_plt_exit);
MODULE_DESCRIPTION("AMD HSMP Platform Interface Driver");
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");