// SPDX-License-Identifier: GPL-2.0-only
/*
* isst_tpmi.c: SST TPMI interface core
*
* Copyright (c) 2023, Intel Corporation.
* All Rights Reserved.
*
* This information will be useful to understand flows:
* In the current generation of platforms, TPMI is supported via OOB
* PCI device. This PCI device has one instance per CPU package.
* There is a unique TPMI ID for SST. Each TPMI ID also has multiple
* entries, representing per power domain information.
*
* There is one dev file for complete SST information and control same as the
* prior generation of hardware. User spaces don't need to know how the
* information is presented by the hardware. The TPMI core module implements
* the hardware mapping.
*/
#define dev_fmt(fmt) "tpmi_sst: " fmt
#include <linux/auxiliary_bus.h>
#include <linux/delay.h>
#include <linux/intel_tpmi.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <uapi/linux/isst_if.h>
#include "isst_tpmi_core.h"
#include "isst_if_common.h"
/* Supported SST hardware version by this driver */
#define ISST_MAJOR_VERSION 0
#define ISST_MINOR_VERSION 1
/*
* Used to indicate if value read from MMIO needs to get multiplied
* to get to a standard unit or not.
*/
#define SST_MUL_FACTOR_NONE 1
/* Define 100 as a scaling factor frequency ratio to frequency conversion */
#define SST_MUL_FACTOR_FREQ 100
/* All SST regs are 64 bit size */
#define SST_REG_SIZE 8
/**
* struct sst_header - SST main header
* @interface_version: Version number for this interface
* @cap_mask: Bitmask of the supported sub features. 1=the sub feature is enabled.
* 0=disabled.
* Bit[8]= SST_CP enable (1), disable (0)
* bit[9]= SST_PP enable (1), disable (0)
* other bits are reserved for future use
* @cp_offset: Qword (8 bytes) offset to the SST_CP register bank
* @pp_offset: Qword (8 bytes) offset to the SST_PP register bank
* @reserved: Reserved for future use
*
* This register allows SW to discover SST capability and the offsets to SST-CP
* and SST-PP register banks.
*/
struct sst_header {
u8 interface_version;
u8 cap_mask;
u8 cp_offset;
u8 pp_offset;
u32 reserved;
} __packed;
/**
* struct cp_header - SST-CP (core-power) header
* @feature_id: 0=SST-CP, 1=SST-PP, 2=SST-BF, 3=SST-TF
* @feature_rev: Interface Version number for this SST feature
* @ratio_unit: Frequency ratio unit. 00: 100MHz. All others are reserved
* @reserved: Reserved for future use
*
* This structure is used store SST-CP header. This is packed to the same
* format as defined in the specifications.
*/
struct cp_header {
u64 feature_id :4;
u64 feature_rev :8;
u64 ratio_unit :2;
u64 reserved :50;
} __packed;
/**
* struct pp_header - SST-PP (Perf profile) header
* @feature_id: 0=SST-CP, 1=SST-PP, 2=SST-BF, 3=SST-TF
* @feature_rev: Interface Version number for this SST feature
* @level_en_mask: SST-PP level enable/disable fuse mask
* @allowed_level_mask: Allowed level mask used for dynamic config level switching
* @reserved0: Reserved for future use
* @ratio_unit: Frequency ratio unit. 00: 100MHz. All others are reserved
* @block_size: Size of PP block in Qword unit (8 bytes)
* @dynamic_switch: If set (1), dynamic switching of SST PP is supported
* @memory_ratio_unit: Memory Controller frequency ratio unit. 00: 100MHz, others reserved
* @reserved1: Reserved for future use
*
* This structure is used store SST-PP header. This is packed to the same
* format as defined in the specifications.
*/
struct pp_header {
u64 feature_id :4;
u64 feature_rev :8;
u64 level_en_mask :8;
u64 allowed_level_mask :8;
u64 reserved0 :4;
u64 ratio_unit :2;
u64 block_size :8;
u64 dynamic_switch :1;
u64 memory_ratio_unit :2;
u64 reserved1 :19;
} __packed;
/**
* struct feature_offset - Offsets to SST-PP features
* @pp_offset: Qword offset within PP level for the SST_PP register bank
* @bf_offset: Qword offset within PP level for the SST_BF register bank
* @tf_offset: Qword offset within PP level for the SST_TF register bank
* @reserved: Reserved for future use
*
* This structure is used store offsets for SST features in the register bank.
* This is packed to the same format as defined in the specifications.
*/
struct feature_offset {
u64 pp_offset :8;
u64 bf_offset :8;
u64 tf_offset :8;
u64 reserved :40;
} __packed;
/**
* struct levels_offset - Offsets to each SST PP level
* @sst_pp_level0_offset: Qword offset to the register block of PP level 0
* @sst_pp_level1_offset: Qword offset to the register block of PP level 1
* @sst_pp_level2_offset: Qword offset to the register block of PP level 2
* @sst_pp_level3_offset: Qword offset to the register block of PP level 3
* @sst_pp_level4_offset: Qword offset to the register block of PP level 4
* @reserved: Reserved for future use
*
* This structure is used store offsets of SST PP levels in the register bank.
* This is packed to the same format as defined in the specifications.
*/
struct levels_offset {
u64 sst_pp_level0_offset :8;
u64 sst_pp_level1_offset :8;
u64 sst_pp_level2_offset :8;
u64 sst_pp_level3_offset :8;
u64 sst_pp_level4_offset :8;
u64 reserved :24;
} __packed;
/**
* struct pp_control_offset - Offsets for SST PP controls
* @perf_level: A SST-PP level that SW intends to switch to
* @perf_level_lock: SST-PP level select lock. 0 - unlocked. 1 - locked till next reset
* @resvd0: Reserved for future use
* @current_state: Bit mask to control the enable(1)/disable(0) state of each feature
* of the current PP level, bit 0 = BF, bit 1 = TF, bit 2-7 = reserved
* @reserved: Reserved for future use
*
* This structure is used store offsets of SST PP controls in the register bank.
* This is packed to the same format as defined in the specifications.
*/
struct pp_control_offset {
u64 perf_level :3;
u64 perf_level_lock :1;
u64 resvd0 :4;
u64 current_state :8;
u64 reserved :48;
} __packed;
/**
* struct pp_status_offset - Offsets for SST PP status fields
* @sst_pp_level: Returns the current SST-PP level
* @sst_pp_lock: Returns the lock bit setting of perf_level_lock in pp_control_offset
* @error_type: Returns last error of SST-PP level change request. 0: no error,
* 1: level change not allowed, others: reserved
* @feature_state: Bit mask to indicate the enable(1)/disable(0) state of each feature of the
* current PP level. bit 0 = BF, bit 1 = TF, bit 2-7 reserved
* @reserved0: Reserved for future use
* @feature_error_type: Returns last error of the specific feature. Three error_type bits per
* feature. i.e. ERROR_TYPE[2:0] for BF, ERROR_TYPE[5:3] for TF, etc.
* 0x0: no error, 0x1: The specific feature is not supported by the hardware.
* 0x2-0x6: Reserved. 0x7: feature state change is not allowed.
* @reserved1: Reserved for future use
*
* This structure is used store offsets of SST PP status in the register bank.
* This is packed to the same format as defined in the specifications.
*/
struct pp_status_offset {
u64 sst_pp_level :3;
u64 sst_pp_lock :1;
u64 error_type :4;
u64 feature_state :8;
u64 reserved0 :16;
u64 feature_error_type : 24;
u64 reserved1 :8;
} __packed;
/**
* struct perf_level - Used to store perf level and mmio offset
* @mmio_offset: mmio offset for a perf level
* @level: perf level for this offset
*
* This structure is used store final mmio offset of each perf level from the
* SST base mmio offset.
*/
struct perf_level {
int mmio_offset;
int level;
};
/**
* struct tpmi_per_power_domain_info - Store per power_domain SST info
* @package_id: Package id for this power_domain
* @power_domain_id: Power domain id, Each entry from the SST-TPMI instance is a power_domain.
* @max_level: Max possible PP level possible for this power_domain
* @ratio_unit: Ratio unit for converting to MHz
* @avx_levels: Number of AVX levels
* @pp_block_size: Block size from PP header
* @sst_header: Store SST header for this power_domain
* @cp_header: Store SST-CP header for this power_domain
* @pp_header: Store SST-PP header for this power_domain
* @perf_levels: Pointer to each perf level to map level to mmio offset
* @feature_offsets: Store feature offsets for each PP-level
* @control_offset: Store the control offset for each PP-level
* @status_offset: Store the status offset for each PP-level
* @sst_base: Mapped SST base IO memory
* @auxdev: Auxiliary device instance enumerated this instance
* @saved_sst_cp_control: Save SST-CP control configuration to store restore for suspend/resume
* @saved_clos_configs: Save SST-CP CLOS configuration to store restore for suspend/resume
* @saved_clos_assocs: Save SST-CP CLOS association to store restore for suspend/resume
* @saved_pp_control: Save SST-PP control information to store restore for suspend/resume
* @write_blocked: Write operation is blocked, so can't change SST state
*
* This structure is used store complete SST information for a power_domain. This information
* is used to read/write request for any SST IOCTL. Each physical CPU package can have multiple
* power_domains. Each power domain describes its own SST information and has its own controls.
*/
struct tpmi_per_power_domain_info {
int package_id;
int power_domain_id;
int max_level;
int ratio_unit;
int avx_levels;
int pp_block_size;
struct sst_header sst_header;
struct cp_header cp_header;
struct pp_header pp_header;
struct perf_level *perf_levels;
struct feature_offset feature_offsets;
struct pp_control_offset control_offset;
struct pp_status_offset status_offset;
void __iomem *sst_base;
struct auxiliary_device *auxdev;
u64 saved_sst_cp_control;
u64 saved_clos_configs[4];
u64 saved_clos_assocs[4];
u64 saved_pp_control;
bool write_blocked;
};
/* Supported maximum partitions */
#define SST_MAX_PARTITIONS 2
/**
* struct tpmi_sst_struct - Store sst info for a package
* @package_id: Package id for this aux device instance
* @number_of_power_domains: Number of power_domains pointed by power_domain_info pointer
* @power_domain_info: Pointer to power domains information
* @cdie_mask: Mask of compute dies present in a partition from hardware.
* This mask is not present in the version 1 information header.
* @io_dies: Number of IO dies in a partition. This will be 0 for TPMI
* version 1 information header.
* @partition_mask: Mask of all partitions.
* @partition_mask_current: Current partition mask as some may have been unbound.
*
* This structure is used store full SST information for a package.
* Each package has one or multiple OOB PCI devices. Each package can contain multiple
* power domains.
*/
struct tpmi_sst_struct {
int package_id;
struct tpmi_per_power_domain_info *power_domain_info[SST_MAX_PARTITIONS];
u16 cdie_mask[SST_MAX_PARTITIONS];
u8 number_of_power_domains[SST_MAX_PARTITIONS];
u8 io_dies[SST_MAX_PARTITIONS];
u8 partition_mask;
u8 partition_mask_current;
};
/**
* struct tpmi_sst_common_struct - Store all SST instances
* @max_index: Maximum instances currently present
* @sst_inst: Pointer to per package instance
*
* Stores every SST Package instance.
*/
struct tpmi_sst_common_struct {
int max_index;
struct tpmi_sst_struct **sst_inst;
};
/*
* Each IOCTL request is processed under this lock. Also used to protect
* registration functions and common data structures.
*/
static DEFINE_MUTEX(isst_tpmi_dev_lock);
/* Usage count to track, number of TPMI SST instances registered to this core. */
static int isst_core_usage_count;
/* Stores complete SST information for every package and power_domain */
static struct tpmi_sst_common_struct isst_common;
#define SST_MAX_AVX_LEVELS 3
#define SST_PP_OFFSET_0 8
#define SST_PP_OFFSET_1 16
#define SST_PP_OFFSET_SIZE 8
static int sst_add_perf_profiles(struct auxiliary_device *auxdev,
struct tpmi_per_power_domain_info *pd_info,
int levels)
{
struct device *dev = &auxdev->dev;
u64 perf_level_offsets;
int i;
pd_info->perf_levels = devm_kcalloc(dev, levels, sizeof(struct perf_level), GFP_KERNEL);
if (!pd_info->perf_levels)
return 0;
pd_info->ratio_unit = pd_info->pp_header.ratio_unit;
pd_info->avx_levels = SST_MAX_AVX_LEVELS;
pd_info->pp_block_size = pd_info->pp_header.block_size;
/* Read PP Offset 0: Get feature offset with PP level */
*((u64 *)&pd_info->feature_offsets) = readq(pd_info->sst_base +
pd_info->sst_header.pp_offset +
SST_PP_OFFSET_0);
perf_level_offsets = readq(pd_info->sst_base + pd_info->sst_header.pp_offset +
SST_PP_OFFSET_1);
for (i = 0; i < levels; ++i) {
u64 offset;
offset = perf_level_offsets & (0xffULL << (i * SST_PP_OFFSET_SIZE));
offset >>= (i * 8);
offset &= 0xff;
offset *= 8; /* Convert to byte from QWORD offset */
pd_info->perf_levels[i].mmio_offset = pd_info->sst_header.pp_offset + offset;
}
return 0;
}
static int sst_main(struct auxiliary_device *auxdev, struct tpmi_per_power_domain_info *pd_info)
{
struct device *dev = &auxdev->dev;
int i, mask, levels;
*((u64 *)&pd_info->sst_header) = readq(pd_info->sst_base);
pd_info->sst_header.cp_offset *= 8;
pd_info->sst_header.pp_offset *= 8;
if (pd_info->sst_header.interface_version == TPMI_VERSION_INVALID)
return -ENODEV;
if (TPMI_MAJOR_VERSION(pd_info->sst_header.interface_version) != ISST_MAJOR_VERSION) {
dev_err(dev, "SST: Unsupported major version:%lx\n",
TPMI_MAJOR_VERSION(pd_info->sst_header.interface_version));
return -ENODEV;
}
if (TPMI_MINOR_VERSION(pd_info->sst_header.interface_version) != ISST_MINOR_VERSION)
dev_info(dev, "SST: Ignore: Unsupported minor version:%lx\n",
TPMI_MINOR_VERSION(pd_info->sst_header.interface_version));
/* Read SST CP Header */
*((u64 *)&pd_info->cp_header) = readq(pd_info->sst_base + pd_info->sst_header.cp_offset);
/* Read PP header */
*((u64 *)&pd_info->pp_header) = readq(pd_info->sst_base + pd_info->sst_header.pp_offset);
mask = 0x01;
levels = 0;
for (i = 0; i < 8; ++i) {
if (pd_info->pp_header.level_en_mask & mask)
levels = i;
mask <<= 1;
}
pd_info->max_level = levels;
sst_add_perf_profiles(auxdev, pd_info, levels + 1);
return 0;
}
static u8 isst_instance_count(struct tpmi_sst_struct *sst_inst)
{
u8 i, max_part, count = 0;
/* Partition mask starts from bit 0 and contains 1s only */
max_part = hweight8(sst_inst->partition_mask);
for (i = 0; i < max_part; i++)
count += sst_inst->number_of_power_domains[i];
return count;
}
/**
* map_cdies() - Map user domain ID to compute domain ID
* @sst_inst: TPMI Instance
* @id: User domain ID
* @partition: Resolved partition
*
* Helper function to map_partition_power_domain_id() to resolve compute
* domain ID and partition. Use hardware provided cdie_mask for a partition
* as is to resolve a compute domain ID.
*
* Return: %-EINVAL on error, otherwise mapped domain ID >= 0.
*/
static int map_cdies(struct tpmi_sst_struct *sst_inst, u8 id, u8 *partition)
{
u8 i, max_part;
max_part = hweight8(sst_inst->partition_mask);
for (i = 0; i < max_part; i++) {
if (!(sst_inst->cdie_mask[i] & BIT(id)))
continue;
*partition = i;
return id - ffs(sst_inst->cdie_mask[i]) + 1;
}
return -EINVAL;
}
/**
* map_partition_power_domain_id() - Map user domain ID to partition domain ID
* @sst_inst: TPMI Instance
* @id: User domain ID
* @partition: Resolved partition
*
* In a partitioned system a CPU package has two separate MMIO ranges (Under
* two PCI devices). But the CPU package compute die/power domain IDs are
* unique in a package. User space can get compute die/power domain ID from
* CPUID and MSR 0x54 for a CPU. So, those IDs need to be preserved even if
* they are present in two different partitions with its own order.
*
* For example for command ISST_IF_COUNT_TPMI_INSTANCES, the valid_mask
* is 111111b for a 4 compute and 2 IO dies system. This is presented as
* provided by the hardware in a non-partitioned system with the following
* order:
* I1-I0-C3-C2-C1-C0
* Here: "C": for compute and "I" for IO die.
* Compute dies are always present first in TPMI instances, as they have
* to map to the real power domain/die ID of a system. In a non-partitioned
* system there is no way to identify compute and IO die boundaries from
* this driver without reading each CPU's mapping.
*
* The same order needs to be preserved, even if those compute dies are
* distributed among multiple partitions. For example:
* Partition 1 can contain: I1-C1-C0
* Partition 2 can contain: I2-C3-C2
*
* This will require a conversion of user space IDs to the actual index into
* array of stored power domains for each partition. For the above example
* this function will return partition and index as follows:
*
* ============= ========= ===== ========
* User space ID Partition Index Die type
* ============= ========= ===== ========
* 0 0 0 Compute
* 1 0 1 Compute
* 2 1 0 Compute
* 3 1 1 Compute
* 4 0 2 IO
* 5 1 2 IO
* ============= ========= ===== ========
*
* Return: %-EINVAL on error, otherwise mapped domain ID >= 0.
*/
static int map_partition_power_domain_id(struct tpmi_sst_struct *sst_inst, u8 id, u8 *partition)
{
u8 i, io_start_id, max_part;
*partition = 0;
/* If any PCI device for partition is unbound, treat this as failure */
if (sst_inst->partition_mask != sst_inst->partition_mask_current)
return -EINVAL;
max_part = hweight8(sst_inst->partition_mask);
/* IO Index begin here */
io_start_id = fls(sst_inst->cdie_mask[max_part - 1]);
if (id < io_start_id)
return map_cdies(sst_inst, id, partition);
for (i = 0; i < max_part; i++) {
u8 io_id;
io_id = id - io_start_id;
if (io_id < sst_inst->io_dies[i]) {
u8 cdie_range;
cdie_range = fls(sst_inst->cdie_mask[i]) - ffs(sst_inst->cdie_mask[i]) + 1;
*partition = i;
return cdie_range + io_id;
}
io_start_id += sst_inst->io_dies[i];
}
return -EINVAL;
}
/*
* Map a package and power_domain id to SST information structure unique for a power_domain.
* The caller should call under isst_tpmi_dev_lock.
*/
static struct tpmi_per_power_domain_info *get_instance(int pkg_id, int power_domain_id)
{
struct tpmi_per_power_domain_info *power_domain_info;
struct tpmi_sst_struct *sst_inst;
u8 part;
if (!in_range(pkg_id, 0, topology_max_packages()) || pkg_id > isst_common.max_index)
return NULL;
sst_inst = isst_common.sst_inst[pkg_id];
if (!sst_inst)
return NULL;
power_domain_id = map_partition_power_domain_id(sst_inst, power_domain_id, &part);
if (power_domain_id < 0)
return NULL;
power_domain_info = &sst_inst->power_domain_info[part][power_domain_id];
if (power_domain_info && !power_domain_info->sst_base)
return NULL;
return power_domain_info;
}
static bool disable_dynamic_sst_features(void)
{
u64 value;
rdmsrl(MSR_PM_ENABLE, value);
return !(value & 0x1);
}
#define _read_cp_info(name_str, name, offset, start, width, mult_factor)\
{\
u64 val, mask;\
\
val = readq(power_domain_info->sst_base + power_domain_info->sst_header.cp_offset +\
(offset));\
mask = GENMASK_ULL((start + width - 1), start);\
val &= mask; \
val >>= start;\
name = (val * mult_factor);\
}
#define _write_cp_info(name_str, name, offset, start, width, div_factor)\
{\
u64 val, mask;\
\
val = readq(power_domain_info->sst_base +\
power_domain_info->sst_header.cp_offset + (offset));\
mask = GENMASK_ULL((start + width - 1), start);\
val &= ~mask;\
val |= (name / div_factor) << start;\
writeq(val, power_domain_info->sst_base + power_domain_info->sst_header.cp_offset +\
(offset));\
}
#define SST_CP_CONTROL_OFFSET 8
#define SST_CP_STATUS_OFFSET 16
#define SST_CP_ENABLE_START 0
#define SST_CP_ENABLE_WIDTH 1
#define SST_CP_PRIORITY_TYPE_START 1
#define SST_CP_PRIORITY_TYPE_WIDTH 1
static long isst_if_core_power_state(void __user *argp)
{
struct tpmi_per_power_domain_info *power_domain_info;
struct isst_core_power core_power;
if (copy_from_user(&core_power, argp, sizeof(core_power)))
return -EFAULT;
if (core_power.get_set && disable_dynamic_sst_features())
return -EFAULT;
power_domain_info = get_instance(core_power.socket_id, core_power.power_domain_id);
if (!power_domain_info)
return -EINVAL;
if (core_power.get_set) {
_write_cp_info("cp_enable", core_power.enable, SST_CP_CONTROL_OFFSET,
SST_CP_ENABLE_START, SST_CP_ENABLE_WIDTH, SST_MUL_FACTOR_NONE)
_write_cp_info("cp_prio_type", core_power.priority_type, SST_CP_CONTROL_OFFSET,
SST_CP_PRIORITY_TYPE_START, SST_CP_PRIORITY_TYPE_WIDTH,
SST_MUL_FACTOR_NONE)
} else {
/* get */
_read_cp_info("cp_enable", core_power.enable, SST_CP_STATUS_OFFSET,
SST_CP_ENABLE_START, SST_CP_ENABLE_WIDTH, SST_MUL_FACTOR_NONE)
_read_cp_info("cp_prio_type", core_power.priority_type, SST_CP_STATUS_OFFSET,
SST_CP_PRIORITY_TYPE_START, SST_CP_PRIORITY_TYPE_WIDTH,
SST_MUL_FACTOR_NONE)
core_power.supported = !!(power_domain_info->sst_header.cap_mask & BIT(0));
if (copy_to_user(argp, &core_power, sizeof(core_power)))
return -EFAULT;
}
return 0;
}
#define SST_CLOS_CONFIG_0_OFFSET 24
#define SST_CLOS_CONFIG_PRIO_START 4
#define SST_CLOS_CONFIG_PRIO_WIDTH 4
#define SST_CLOS_CONFIG_MIN_START 8
#define SST_CLOS_CONFIG_MIN_WIDTH 8
#define SST_CLOS_CONFIG_MAX_START 16
#define SST_CLOS_CONFIG_MAX_WIDTH 8
static long isst_if_clos_param(void __user *argp)
{
struct tpmi_per_power_domain_info *power_domain_info;
struct isst_clos_param clos_param;
if (copy_from_user(&clos_param, argp, sizeof(clos_param)))
return -EFAULT;
power_domain_info = get_instance(clos_param.socket_id, clos_param.power_domain_id);
if (!power_domain_info)
return -EINVAL;
if (clos_param.get_set) {
if (power_domain_info->write_blocked)
return -EPERM;
_write_cp_info("clos.min_freq", clos_param.min_freq_mhz,
(SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE),
SST_CLOS_CONFIG_MIN_START, SST_CLOS_CONFIG_MIN_WIDTH,
SST_MUL_FACTOR_FREQ);
_write_cp_info("clos.max_freq", clos_param.max_freq_mhz,
(SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE),
SST_CLOS_CONFIG_MAX_START, SST_CLOS_CONFIG_MAX_WIDTH,
SST_MUL_FACTOR_FREQ);
_write_cp_info("clos.prio", clos_param.prop_prio,
(SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE),
SST_CLOS_CONFIG_PRIO_START, SST_CLOS_CONFIG_PRIO_WIDTH,
SST_MUL_FACTOR_NONE);
} else {
/* get */
_read_cp_info("clos.min_freq", clos_param.min_freq_mhz,
(SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE),
SST_CLOS_CONFIG_MIN_START, SST_CLOS_CONFIG_MIN_WIDTH,
SST_MUL_FACTOR_FREQ)
_read_cp_info("clos.max_freq", clos_param.max_freq_mhz,
(SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE),
SST_CLOS_CONFIG_MAX_START, SST_CLOS_CONFIG_MAX_WIDTH,
SST_MUL_FACTOR_FREQ)
_read_cp_info("clos.prio", clos_param.prop_prio,
(SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE),
SST_CLOS_CONFIG_PRIO_START, SST_CLOS_CONFIG_PRIO_WIDTH,
SST_MUL_FACTOR_NONE)
if (copy_to_user(argp, &clos_param, sizeof(clos_param)))
return -EFAULT;
}
return 0;
}
#define SST_CLOS_ASSOC_0_OFFSET 56
#define SST_CLOS_ASSOC_CPUS_PER_REG 16
#define SST_CLOS_ASSOC_BITS_PER_CPU 4
static long isst_if_clos_assoc(void __user *argp)
{
struct isst_if_clos_assoc_cmds assoc_cmds;
unsigned char __user *ptr;
int i;
/* Each multi command has u16 command count as the first field */
if (copy_from_user(&assoc_cmds, argp, sizeof(assoc_cmds)))
return -EFAULT;
if (!assoc_cmds.cmd_count || assoc_cmds.cmd_count > ISST_IF_CMD_LIMIT)
return -EINVAL;
ptr = argp + offsetof(struct isst_if_clos_assoc_cmds, assoc_info);
for (i = 0; i < assoc_cmds.cmd_count; ++i) {
struct tpmi_per_power_domain_info *power_domain_info;
struct isst_if_clos_assoc clos_assoc;
int punit_id, punit_cpu_no, pkg_id;
struct tpmi_sst_struct *sst_inst;
int offset, shift, cpu;
u64 val, mask, clos;
u8 part;
if (copy_from_user(&clos_assoc, ptr, sizeof(clos_assoc)))
return -EFAULT;
if (clos_assoc.socket_id > topology_max_packages())
return -EINVAL;
cpu = clos_assoc.logical_cpu;
clos = clos_assoc.clos;
if (assoc_cmds.punit_cpu_map)
punit_cpu_no = cpu;
else
return -EOPNOTSUPP;
if (punit_cpu_no < 0)
return -EINVAL;
punit_id = clos_assoc.power_domain_id;
pkg_id = clos_assoc.socket_id;
sst_inst = isst_common.sst_inst[pkg_id];
punit_id = map_partition_power_domain_id(sst_inst, punit_id, &part);
if (punit_id < 0)
return -EINVAL;
power_domain_info = &sst_inst->power_domain_info[part][punit_id];
if (assoc_cmds.get_set && power_domain_info->write_blocked)
return -EPERM;
offset = SST_CLOS_ASSOC_0_OFFSET +
(punit_cpu_no / SST_CLOS_ASSOC_CPUS_PER_REG) * SST_REG_SIZE;
shift = punit_cpu_no % SST_CLOS_ASSOC_CPUS_PER_REG;
shift *= SST_CLOS_ASSOC_BITS_PER_CPU;
val = readq(power_domain_info->sst_base +
power_domain_info->sst_header.cp_offset + offset);
if (assoc_cmds.get_set) {
mask = GENMASK_ULL((shift + SST_CLOS_ASSOC_BITS_PER_CPU - 1), shift);
val &= ~mask;
val |= (clos << shift);
writeq(val, power_domain_info->sst_base +
power_domain_info->sst_header.cp_offset + offset);
} else {
val >>= shift;
clos_assoc.clos = val & GENMASK(SST_CLOS_ASSOC_BITS_PER_CPU - 1, 0);
if (copy_to_user(ptr, &clos_assoc, sizeof(clos_assoc)))
return -EFAULT;
}
ptr += sizeof(clos_assoc);
}
return 0;
}
#define _read_pp_info(name_str, name, offset, start, width, mult_factor)\
{\
u64 val, _mask;\
\
val = readq(power_domain_info->sst_base + power_domain_info->sst_header.pp_offset +\
(offset));\
_mask = GENMASK_ULL((start + width - 1), start);\
val &= _mask;\
val >>= start;\
name = (val * mult_factor);\
}
#define _write_pp_info(name_str, name, offset, start, width, div_factor)\
{\
u64 val, _mask;\
\
val = readq(power_domain_info->sst_base + power_domain_info->sst_header.pp_offset +\
(offset));\
_mask = GENMASK((start + width - 1), start);\
val &= ~_mask;\
val |= (name / div_factor) << start;\
writeq(val, power_domain_info->sst_base + power_domain_info->sst_header.pp_offset +\
(offset));\
}
#define _read_bf_level_info(name_str, name, level, offset, start, width, mult_factor)\
{\
u64 val, _mask;\
\
val = readq(power_domain_info->sst_base +\
power_domain_info->perf_levels[level].mmio_offset +\
(power_domain_info->feature_offsets.bf_offset * 8) + (offset));\
_mask = GENMASK_ULL((start + width - 1), start);\
val &= _mask; \
val >>= start;\
name = (val * mult_factor);\
}
#define _read_tf_level_info(name_str, name, level, offset, start, width, mult_factor)\
{\
u64 val, _mask;\
\
val = readq(power_domain_info->sst_base +\
power_domain_info->perf_levels[level].mmio_offset +\
(power_domain_info->feature_offsets.tf_offset * 8) + (offset));\
_mask = GENMASK_ULL((start + width - 1), start);\
val &= _mask; \
val >>= start;\
name = (val * mult_factor);\
}
#define SST_PP_STATUS_OFFSET 32
#define SST_PP_LEVEL_START 0
#define SST_PP_LEVEL_WIDTH 3
#define SST_PP_LOCK_START 3
#define SST_PP_LOCK_WIDTH 1
#define SST_PP_FEATURE_STATE_START 8
#define SST_PP_FEATURE_STATE_WIDTH 8
#define SST_BF_FEATURE_SUPPORTED_START 12
#define SST_BF_FEATURE_SUPPORTED_WIDTH 1
#define SST_TF_FEATURE_SUPPORTED_START 12
#define SST_TF_FEATURE_SUPPORTED_WIDTH 1
static int isst_if_get_perf_level(void __user *argp)
{
struct isst_perf_level_info perf_level;
struct tpmi_per_power_domain_info *power_domain_info;
unsigned long level_mask;
u8 level, support;
if (copy_from_user(&perf_level, argp, sizeof(perf_level)))
return -EFAULT;
power_domain_info = get_instance(perf_level.socket_id, perf_level.power_domain_id);
if (!power_domain_info)
return -EINVAL;
perf_level.max_level = power_domain_info->max_level;
perf_level.level_mask = power_domain_info->pp_header.level_en_mask;
perf_level.feature_rev = power_domain_info->pp_header.feature_rev;
_read_pp_info("current_level", perf_level.current_level, SST_PP_STATUS_OFFSET,
SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE)
_read_pp_info("locked", perf_level.locked, SST_PP_STATUS_OFFSET,
SST_PP_LOCK_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE)
_read_pp_info("feature_state", perf_level.feature_state, SST_PP_STATUS_OFFSET,
SST_PP_FEATURE_STATE_START, SST_PP_FEATURE_STATE_WIDTH, SST_MUL_FACTOR_NONE)
perf_level.enabled = !!(power_domain_info->sst_header.cap_mask & BIT(1));
level_mask = perf_level.level_mask;
perf_level.sst_bf_support = 0;
for_each_set_bit(level, &level_mask, BITS_PER_BYTE) {
/*
* Read BF support for a level. Read output is updated
* to "support" variable by the below macro.
*/
_read_bf_level_info("bf_support", support, level, 0, SST_BF_FEATURE_SUPPORTED_START,
SST_BF_FEATURE_SUPPORTED_WIDTH, SST_MUL_FACTOR_NONE);
/* If supported set the bit for the level */
if (support)
perf_level.sst_bf_support |= BIT(level);
}
perf_level.sst_tf_support = 0;
for_each_set_bit(level, &level_mask, BITS_PER_BYTE) {
/*
* Read TF support for a level. Read output is updated
* to "support" variable by the below macro.
*/
_read_tf_level_info("tf_support", support, level, 0, SST_TF_FEATURE_SUPPORTED_START,
SST_TF_FEATURE_SUPPORTED_WIDTH, SST_MUL_FACTOR_NONE);
/* If supported set the bit for the level */
if (support)
perf_level.sst_tf_support |= BIT(level);
}
if (copy_to_user(argp, &perf_level, sizeof(perf_level)))
return -EFAULT;
return 0;
}
#define SST_PP_CONTROL_OFFSET 24
#define SST_PP_LEVEL_CHANGE_TIME_MS 5
#define SST_PP_LEVEL_CHANGE_RETRY_COUNT 3
static int isst_if_set_perf_level(void __user *argp)
{
struct isst_perf_level_control perf_level;
struct tpmi_per_power_domain_info *power_domain_info;
int level, retry = 0;
if (disable_dynamic_sst_features())
return -EFAULT;
if (copy_from_user(&perf_level, argp, sizeof(perf_level)))
return -EFAULT;
power_domain_info = get_instance(perf_level.socket_id, perf_level.power_domain_id);
if (!power_domain_info)
return -EINVAL;
if (power_domain_info->write_blocked)
return -EPERM;
if (!(power_domain_info->pp_header.allowed_level_mask & BIT(perf_level.level)))
return -EINVAL;
_read_pp_info("current_level", level, SST_PP_STATUS_OFFSET,
SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE)
/* If the requested new level is same as the current level, reject */
if (perf_level.level == level)
return -EINVAL;
_write_pp_info("perf_level", perf_level.level, SST_PP_CONTROL_OFFSET,
SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE)
/* It is possible that firmware is busy (although unlikely), so retry */
do {
/* Give time to FW to process */
msleep(SST_PP_LEVEL_CHANGE_TIME_MS);
_read_pp_info("current_level", level, SST_PP_STATUS_OFFSET,
SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE)
/* Check if the new level is active */
if (perf_level.level == level)
break;
} while (retry++ < SST_PP_LEVEL_CHANGE_RETRY_COUNT);
/* If the level change didn't happen, return fault */
if (perf_level.level != level)
return -EFAULT;
/* Reset the feature state on level change */
_write_pp_info("perf_feature", 0, SST_PP_CONTROL_OFFSET,
SST_PP_FEATURE_STATE_START, SST_PP_FEATURE_STATE_WIDTH,
SST_MUL_FACTOR_NONE)
/* Give time to FW to process */
msleep(SST_PP_LEVEL_CHANGE_TIME_MS);
return 0;
}
static int isst_if_set_perf_feature(void __user *argp)
{
struct isst_perf_feature_control perf_feature;
struct tpmi_per_power_domain_info *power_domain_info;
if (disable_dynamic_sst_features())
return -EFAULT;
if (copy_from_user(&perf_feature, argp, sizeof(perf_feature)))
return -EFAULT;
power_domain_info = get_instance(perf_feature.socket_id, perf_feature.power_domain_id);
if (!power_domain_info)
return -EINVAL;
if (power_domain_info->write_blocked)
return -EPERM;
_write_pp_info("perf_feature", perf_feature.feature, SST_PP_CONTROL_OFFSET,
SST_PP_FEATURE_STATE_START, SST_PP_FEATURE_STATE_WIDTH,
SST_MUL_FACTOR_NONE)
return 0;
}
#define _read_pp_level_info(name_str, name, level, offset, start, width, mult_factor)\
{\
u64 val, _mask;\
\
val = readq(power_domain_info->sst_base +\
power_domain_info->perf_levels[level].mmio_offset +\
(power_domain_info->feature_offsets.pp_offset * 8) + (offset));\
_mask = GENMASK_ULL((start + width - 1), start);\
val &= _mask; \
val >>= start;\
name = (val * mult_factor);\
}
#define SST_PP_INFO_0_OFFSET 0
#define SST_PP_INFO_1_OFFSET 8
#define SST_PP_INFO_2_OFFSET 16
#define SST_PP_INFO_3_OFFSET 24
/* SST_PP_INFO_4_OFFSET to SST_PP_INFO_9_OFFSET are trl levels */
#define SST_PP_INFO_4_OFFSET 32
#define SST_PP_INFO_10_OFFSET 80
#define SST_PP_INFO_11_OFFSET 88
#define SST_PP_P1_SSE_START 0
#define SST_PP_P1_SSE_WIDTH 8
#define SST_PP_P1_AVX2_START 8
#define SST_PP_P1_AVX2_WIDTH 8
#define SST_PP_P1_AVX512_START 16
#define SST_PP_P1_AVX512_WIDTH 8
#define SST_PP_P1_AMX_START 24
#define SST_PP_P1_AMX_WIDTH 8
#define SST_PP_TDP_START 32
#define SST_PP_TDP_WIDTH 15
#define SST_PP_T_PROCHOT_START 47
#define SST_PP_T_PROCHOT_WIDTH 8
#define SST_PP_MAX_MEMORY_FREQ_START 55
#define SST_PP_MAX_MEMORY_FREQ_WIDTH 7
#define SST_PP_COOLING_TYPE_START 62
#define SST_PP_COOLING_TYPE_WIDTH 2
#define SST_PP_TRL_0_RATIO_0_START 0
#define SST_PP_TRL_0_RATIO_0_WIDTH 8
#define SST_PP_TRL_CORES_BUCKET_0_START 0
#define SST_PP_TRL_CORES_BUCKET_0_WIDTH 8
#define SST_PP_CORE_RATIO_P0_START 0
#define SST_PP_CORE_RATIO_P0_WIDTH 8
#define SST_PP_CORE_RATIO_P1_START 8
#define SST_PP_CORE_RATIO_P1_WIDTH 8
#define SST_PP_CORE_RATIO_PN_START 16
#define SST_PP_CORE_RATIO_PN_WIDTH 8
#define SST_PP_CORE_RATIO_PM_START 24
#define SST_PP_CORE_RATIO_PM_WIDTH 8
#define SST_PP_CORE_RATIO_P0_FABRIC_START 32
#define SST_PP_CORE_RATIO_P0_FABRIC_WIDTH 8
#define SST_PP_CORE_RATIO_P1_FABRIC_START 40
#define SST_PP_CORE_RATIO_P1_FABRIC_WIDTH 8
#define SST_PP_CORE_RATIO_PM_FABRIC_START 48
#define SST_PP_CORE_RATIO_PM_FABRIC_WIDTH 8
static int isst_if_get_perf_level_info(void __user *argp)
{
struct isst_perf_level_data_info perf_level;
struct tpmi_per_power_domain_info *power_domain_info;
int i, j;
if (copy_from_user(&perf_level, argp, sizeof(perf_level)))
return -EFAULT;
power_domain_info = get_instance(perf_level.socket_id, perf_level.power_domain_id);
if (!power_domain_info)
return -EINVAL;
if (perf_level.level > power_domain_info->max_level)
return -EINVAL;
if (!(power_domain_info->pp_header.level_en_mask & BIT(perf_level.level)))
return -EINVAL;
_read_pp_level_info("tdp_ratio", perf_level.tdp_ratio, perf_level.level,
SST_PP_INFO_0_OFFSET, SST_PP_P1_SSE_START, SST_PP_P1_SSE_WIDTH,
SST_MUL_FACTOR_NONE)
_read_pp_level_info("base_freq_mhz", perf_level.base_freq_mhz, perf_level.level,
SST_PP_INFO_0_OFFSET, SST_PP_P1_SSE_START, SST_PP_P1_SSE_WIDTH,
SST_MUL_FACTOR_FREQ)
_read_pp_level_info("base_freq_avx2_mhz", perf_level.base_freq_avx2_mhz, perf_level.level,
SST_PP_INFO_0_OFFSET, SST_PP_P1_AVX2_START, SST_PP_P1_AVX2_WIDTH,
SST_MUL_FACTOR_FREQ)
_read_pp_level_info("base_freq_avx512_mhz", perf_level.base_freq_avx512_mhz,
perf_level.level, SST_PP_INFO_0_OFFSET, SST_PP_P1_AVX512_START,
SST_PP_P1_AVX512_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("base_freq_amx_mhz", perf_level.base_freq_amx_mhz, perf_level.level,
SST_PP_INFO_0_OFFSET, SST_PP_P1_AMX_START, SST_PP_P1_AMX_WIDTH,
SST_MUL_FACTOR_FREQ)
_read_pp_level_info("thermal_design_power_w", perf_level.thermal_design_power_w,
perf_level.level, SST_PP_INFO_1_OFFSET, SST_PP_TDP_START,
SST_PP_TDP_WIDTH, SST_MUL_FACTOR_NONE)
perf_level.thermal_design_power_w /= 8; /* units are in 1/8th watt */
_read_pp_level_info("tjunction_max_c", perf_level.tjunction_max_c, perf_level.level,
SST_PP_INFO_1_OFFSET, SST_PP_T_PROCHOT_START, SST_PP_T_PROCHOT_WIDTH,
SST_MUL_FACTOR_NONE)
_read_pp_level_info("max_memory_freq_mhz", perf_level.max_memory_freq_mhz,
perf_level.level, SST_PP_INFO_1_OFFSET, SST_PP_MAX_MEMORY_FREQ_START,
SST_PP_MAX_MEMORY_FREQ_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("cooling_type", perf_level.cooling_type, perf_level.level,
SST_PP_INFO_1_OFFSET, SST_PP_COOLING_TYPE_START,
SST_PP_COOLING_TYPE_WIDTH, SST_MUL_FACTOR_NONE)
for (i = 0; i < TRL_MAX_LEVELS; ++i) {
for (j = 0; j < TRL_MAX_BUCKETS; ++j)
_read_pp_level_info("trl*_bucket*_freq_mhz",
perf_level.trl_freq_mhz[i][j], perf_level.level,
SST_PP_INFO_4_OFFSET + (i * SST_PP_TRL_0_RATIO_0_WIDTH),
j * SST_PP_TRL_0_RATIO_0_WIDTH,
SST_PP_TRL_0_RATIO_0_WIDTH,
SST_MUL_FACTOR_FREQ);
}
for (i = 0; i < TRL_MAX_BUCKETS; ++i)
_read_pp_level_info("bucket*_core_count", perf_level.bucket_core_counts[i],
perf_level.level, SST_PP_INFO_10_OFFSET,
SST_PP_TRL_CORES_BUCKET_0_WIDTH * i,
SST_PP_TRL_CORES_BUCKET_0_WIDTH, SST_MUL_FACTOR_NONE)
perf_level.max_buckets = TRL_MAX_BUCKETS;
perf_level.max_trl_levels = TRL_MAX_LEVELS;
_read_pp_level_info("p0_freq_mhz", perf_level.p0_freq_mhz, perf_level.level,
SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_P0_START,
SST_PP_CORE_RATIO_P0_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("p1_freq_mhz", perf_level.p1_freq_mhz, perf_level.level,
SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_P1_START,
SST_PP_CORE_RATIO_P1_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("pn_freq_mhz", perf_level.pn_freq_mhz, perf_level.level,
SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_PN_START,
SST_PP_CORE_RATIO_PN_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("pm_freq_mhz", perf_level.pm_freq_mhz, perf_level.level,
SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_PM_START,
SST_PP_CORE_RATIO_PM_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("p0_fabric_freq_mhz", perf_level.p0_fabric_freq_mhz,
perf_level.level, SST_PP_INFO_11_OFFSET,
SST_PP_CORE_RATIO_P0_FABRIC_START,
SST_PP_CORE_RATIO_P0_FABRIC_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("p1_fabric_freq_mhz", perf_level.p1_fabric_freq_mhz,
perf_level.level, SST_PP_INFO_11_OFFSET,
SST_PP_CORE_RATIO_P1_FABRIC_START,
SST_PP_CORE_RATIO_P1_FABRIC_WIDTH, SST_MUL_FACTOR_FREQ)
_read_pp_level_info("pm_fabric_freq_mhz", perf_level.pm_fabric_freq_mhz,
perf_level.level, SST_PP_INFO_11_OFFSET,
SST_PP_CORE_RATIO_PM_FABRIC_START,
SST_PP_CORE_RATIO_PM_FABRIC_WIDTH, SST_MUL_FACTOR_FREQ)
if (copy_to_user(argp, &perf_level, sizeof(perf_level)))
return -EFAULT;
return 0;
}
#define SST_PP_FUSED_CORE_COUNT_START 0
#define SST_PP_FUSED_CORE_COUNT_WIDTH 8
#define SST_PP_RSLVD_CORE_COUNT_START 8
#define SST_PP_RSLVD_CORE_COUNT_WIDTH 8
#define SST_PP_RSLVD_CORE_MASK_START 0
#define SST_PP_RSLVD_CORE_MASK_WIDTH 64
static int isst_if_get_perf_level_mask(void __user *argp)
{
static struct isst_perf_level_cpu_mask cpumask;
struct tpmi_per_power_domain_info *power_domain_info;
u64 mask;
if (copy_from_user(&cpumask, argp, sizeof(cpumask)))
return -EFAULT;
power_domain_info = get_instance(cpumask.socket_id, cpumask.power_domain_id);
if (!power_domain_info)
return -EINVAL;
_read_pp_level_info("mask", mask, cpumask.level, SST_PP_INFO_2_OFFSET,
SST_PP_RSLVD_CORE_MASK_START, SST_PP_RSLVD_CORE_MASK_WIDTH,
SST_MUL_FACTOR_NONE)
cpumask.mask = mask;
if (!cpumask.punit_cpu_map)
return -EOPNOTSUPP;
if (copy_to_user(argp, &cpumask, sizeof(cpumask)))
return -EFAULT;
return 0;
}
#define SST_BF_INFO_0_OFFSET 0
#define SST_BF_INFO_1_OFFSET 8
#define SST_BF_P1_HIGH_START 13
#define SST_BF_P1_HIGH_WIDTH 8
#define SST_BF_P1_LOW_START 21
#define SST_BF_P1_LOW_WIDTH 8
#define SST_BF_T_PROHOT_START 38
#define SST_BF_T_PROHOT_WIDTH 8
#define SST_BF_TDP_START 46
#define SST_BF_TDP_WIDTH 15
static int isst_if_get_base_freq_info(void __user *argp)
{
static struct isst_base_freq_info base_freq;
struct tpmi_per_power_domain_info *power_domain_info;
if (copy_from_user(&base_freq, argp, sizeof(base_freq)))
return -EFAULT;
power_domain_info = get_instance(base_freq.socket_id, base_freq.power_domain_id);
if (!power_domain_info)
return -EINVAL;
if (base_freq.level > power_domain_info->max_level)
return -EINVAL;
_read_bf_level_info("p1_high", base_freq.high_base_freq_mhz, base_freq.level,
SST_BF_INFO_0_OFFSET, SST_BF_P1_HIGH_START, SST_BF_P1_HIGH_WIDTH,
SST_MUL_FACTOR_FREQ)
_read_bf_level_info("p1_low", base_freq.low_base_freq_mhz, base_freq.level,
SST_BF_INFO_0_OFFSET, SST_BF_P1_LOW_START, SST_BF_P1_LOW_WIDTH,
SST_MUL_FACTOR_FREQ)
_read_bf_level_info("BF-TJ", base_freq.tjunction_max_c, base_freq.level,
SST_BF_INFO_0_OFFSET, SST_BF_T_PROHOT_START, SST_BF_T_PROHOT_WIDTH,
SST_MUL_FACTOR_NONE)
_read_bf_level_info("BF-tdp", base_freq.thermal_design_power_w, base_freq.level,
SST_BF_INFO_0_OFFSET, SST_BF_TDP_START, SST_BF_TDP_WIDTH,
SST_MUL_FACTOR_NONE)
base_freq.thermal_design_power_w /= 8; /*unit = 1/8th watt*/
if (copy_to_user(argp, &base_freq, sizeof(base_freq)))
return -EFAULT;
return 0;
}
#define P1_HI_CORE_MASK_START 0
#define P1_HI_CORE_MASK_WIDTH 64
static int isst_if_get_base_freq_mask(void __user *argp)
{
static struct isst_perf_level_cpu_mask cpumask;
struct tpmi_per_power_domain_info *power_domain_info;
u64 mask;
if (copy_from_user(&cpumask, argp, sizeof(cpumask)))
return -EFAULT;
power_domain_info = get_instance(cpumask.socket_id, cpumask.power_domain_id);
if (!power_domain_info)
return -EINVAL;
_read_bf_level_info("BF-cpumask", mask, cpumask.level, SST_BF_INFO_1_OFFSET,
P1_HI_CORE_MASK_START, P1_HI_CORE_MASK_WIDTH,
SST_MUL_FACTOR_NONE)
cpumask.mask = mask;
if (!cpumask.punit_cpu_map)
return -EOPNOTSUPP;
if (copy_to_user(argp, &cpumask, sizeof(cpumask)))
return -EFAULT;
return 0;
}
static int isst_if_get_tpmi_instance_count(void __user *argp)
{
struct isst_tpmi_instance_count tpmi_inst;
struct tpmi_sst_struct *sst_inst;
int i;
if (copy_from_user(&tpmi_inst, argp, sizeof(tpmi_inst)))
return -EFAULT;
if (tpmi_inst.socket_id >= topology_max_packages())
return -EINVAL;
sst_inst = isst_common.sst_inst[tpmi_inst.socket_id];
tpmi_inst.count = isst_instance_count(sst_inst);
tpmi_inst.valid_mask = 0;
for (i = 0; i < tpmi_inst.count; i++) {
struct tpmi_per_power_domain_info *pd_info;
u8 part;
int pd;
pd = map_partition_power_domain_id(sst_inst, i, &part);
if (pd < 0)
continue;
pd_info = &sst_inst->power_domain_info[part][pd];
if (pd_info->sst_base)
tpmi_inst.valid_mask |= BIT(i);
}
if (!tpmi_inst.valid_mask)
tpmi_inst.count = 0;
if (copy_to_user(argp, &tpmi_inst, sizeof(tpmi_inst)))
return -EFAULT;
return 0;
}
#define SST_TF_INFO_0_OFFSET 0
#define SST_TF_INFO_1_OFFSET 8
#define SST_TF_INFO_2_OFFSET 16
#define SST_TF_MAX_LP_CLIP_RATIOS TRL_MAX_LEVELS
#define SST_TF_LP_CLIP_RATIO_0_START 16
#define SST_TF_LP_CLIP_RATIO_0_WIDTH 8
#define SST_TF_RATIO_0_START 0
#define SST_TF_RATIO_0_WIDTH 8
#define SST_TF_NUM_CORE_0_START 0
#define SST_TF_NUM_CORE_0_WIDTH 8
static int isst_if_get_turbo_freq_info(void __user *argp)
{
static struct isst_turbo_freq_info turbo_freq;
struct tpmi_per_power_domain_info *power_domain_info;
int i, j;
if (copy_from_user(&turbo_freq, argp, sizeof(turbo_freq)))
return -EFAULT;
power_domain_info = get_instance(turbo_freq.socket_id, turbo_freq.power_domain_id);
if (!power_domain_info)
return -EINVAL;
if (turbo_freq.level > power_domain_info->max_level)
return -EINVAL;
turbo_freq.max_buckets = TRL_MAX_BUCKETS;
turbo_freq.max_trl_levels = TRL_MAX_LEVELS;
turbo_freq.max_clip_freqs = SST_TF_MAX_LP_CLIP_RATIOS;
for (i = 0; i < turbo_freq.max_clip_freqs; ++i)
_read_tf_level_info("lp_clip*", turbo_freq.lp_clip_freq_mhz[i],
turbo_freq.level, SST_TF_INFO_0_OFFSET,
SST_TF_LP_CLIP_RATIO_0_START +
(i * SST_TF_LP_CLIP_RATIO_0_WIDTH),
SST_TF_LP_CLIP_RATIO_0_WIDTH, SST_MUL_FACTOR_FREQ)
for (i = 0; i < TRL_MAX_LEVELS; ++i) {
for (j = 0; j < TRL_MAX_BUCKETS; ++j)
_read_tf_level_info("cydn*_bucket_*_trl",
turbo_freq.trl_freq_mhz[i][j], turbo_freq.level,
SST_TF_INFO_2_OFFSET + (i * SST_TF_RATIO_0_WIDTH),
j * SST_TF_RATIO_0_WIDTH, SST_TF_RATIO_0_WIDTH,
SST_MUL_FACTOR_FREQ)
}
for (i = 0; i < TRL_MAX_BUCKETS; ++i)
_read_tf_level_info("bucket_*_core_count", turbo_freq.bucket_core_counts[i],
turbo_freq.level, SST_TF_INFO_1_OFFSET,
SST_TF_NUM_CORE_0_WIDTH * i, SST_TF_NUM_CORE_0_WIDTH,
SST_MUL_FACTOR_NONE)
if (copy_to_user(argp, &turbo_freq, sizeof(turbo_freq)))
return -EFAULT;
return 0;
}
static long isst_if_def_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
void __user *argp = (void __user *)arg;
long ret = -ENOTTY;
mutex_lock(&isst_tpmi_dev_lock);
switch (cmd) {
case ISST_IF_COUNT_TPMI_INSTANCES:
ret = isst_if_get_tpmi_instance_count(argp);
break;
case ISST_IF_CORE_POWER_STATE:
ret = isst_if_core_power_state(argp);
break;
case ISST_IF_CLOS_PARAM:
ret = isst_if_clos_param(argp);
break;
case ISST_IF_CLOS_ASSOC:
ret = isst_if_clos_assoc(argp);
break;
case ISST_IF_PERF_LEVELS:
ret = isst_if_get_perf_level(argp);
break;
case ISST_IF_PERF_SET_LEVEL:
ret = isst_if_set_perf_level(argp);
break;
case ISST_IF_PERF_SET_FEATURE:
ret = isst_if_set_perf_feature(argp);
break;
case ISST_IF_GET_PERF_LEVEL_INFO:
ret = isst_if_get_perf_level_info(argp);
break;
case ISST_IF_GET_PERF_LEVEL_CPU_MASK:
ret = isst_if_get_perf_level_mask(argp);
break;
case ISST_IF_GET_BASE_FREQ_INFO:
ret = isst_if_get_base_freq_info(argp);
break;
case ISST_IF_GET_BASE_FREQ_CPU_MASK:
ret = isst_if_get_base_freq_mask(argp);
break;
case ISST_IF_GET_TURBO_FREQ_INFO:
ret = isst_if_get_turbo_freq_info(argp);
break;
default:
break;
}
mutex_unlock(&isst_tpmi_dev_lock);
return ret;
}
#define TPMI_SST_AUTO_SUSPEND_DELAY_MS 2000
int tpmi_sst_dev_add(struct auxiliary_device *auxdev)
{
struct tpmi_per_power_domain_info *pd_info;
bool read_blocked = 0, write_blocked = 0;
struct intel_tpmi_plat_info *plat_info;
struct device *dev = &auxdev->dev;
struct tpmi_sst_struct *tpmi_sst;
u8 i, num_resources, io_die_cnt;
int ret, pkg = 0, inst = 0;
bool first_enum = false;
u16 cdie_mask;
u8 partition;
ret = tpmi_get_feature_status(auxdev, TPMI_ID_SST, &read_blocked, &write_blocked);
if (ret)
dev_info(dev, "Can't read feature status: ignoring read/write blocked status\n");
if (read_blocked) {
dev_info(dev, "Firmware has blocked reads, exiting\n");
return -ENODEV;
}
plat_info = tpmi_get_platform_data(auxdev);
if (!plat_info) {
dev_err(dev, "No platform info\n");
return -EINVAL;
}
pkg = plat_info->package_id;
if (pkg >= topology_max_packages()) {
dev_err(dev, "Invalid package id :%x\n", pkg);
return -EINVAL;
}
partition = plat_info->partition;
if (partition >= SST_MAX_PARTITIONS) {
dev_err(&auxdev->dev, "Invalid partition :%x\n", partition);
return -EINVAL;
}
num_resources = tpmi_get_resource_count(auxdev);
if (!num_resources)
return -EINVAL;
mutex_lock(&isst_tpmi_dev_lock);
if (isst_common.sst_inst[pkg]) {
tpmi_sst = isst_common.sst_inst[pkg];
} else {
/*
* tpmi_sst instance is for a package. So needs to be
* allocated only once for both partitions. We can't use
* devm_* allocation here as each partition is a
* different device, which can be unbound.
*/
tpmi_sst = kzalloc(sizeof(*tpmi_sst), GFP_KERNEL);
if (!tpmi_sst) {
ret = -ENOMEM;
goto unlock_exit;
}
first_enum = true;
}
ret = 0;
pd_info = devm_kcalloc(dev, num_resources, sizeof(*pd_info), GFP_KERNEL);
if (!pd_info) {
ret = -ENOMEM;
goto unlock_free;
}
/* Get the IO die count, if cdie_mask is present */
if (plat_info->cdie_mask) {
u8 cdie_range;
cdie_mask = plat_info->cdie_mask;
cdie_range = fls(cdie_mask) - ffs(cdie_mask) + 1;
io_die_cnt = num_resources - cdie_range;
} else {
/*
* This is a synthetic mask, careful when assuming that
* they are compute dies only.
*/
cdie_mask = (1 << num_resources) - 1;
io_die_cnt = 0;
}
for (i = 0; i < num_resources; ++i) {
struct resource *res;
res = tpmi_get_resource_at_index(auxdev, i);
if (!res) {
pd_info[i].sst_base = NULL;
continue;
}
pd_info[i].package_id = pkg;
pd_info[i].power_domain_id = i;
pd_info[i].auxdev = auxdev;
pd_info[i].write_blocked = write_blocked;
pd_info[i].sst_base = devm_ioremap_resource(dev, res);
if (IS_ERR(pd_info[i].sst_base)) {
ret = PTR_ERR(pd_info[i].sst_base);
goto unlock_free;
}
if (sst_main(auxdev, &pd_info[i])) {
/*
* This entry is not valid, hardware can partially
* populate dies. In this case MMIO will have 0xFFs.
* Also possible some pre-production hardware has
* invalid data. But don't fail and continue to use
* other dies with valid data.
*/
devm_iounmap(dev, pd_info[i].sst_base);
pd_info[i].sst_base = NULL;
continue;
}
++inst;
}
if (!inst) {
ret = -ENODEV;
goto unlock_free;
}
tpmi_sst->package_id = pkg;
tpmi_sst->power_domain_info[partition] = pd_info;
tpmi_sst->number_of_power_domains[partition] = num_resources;
tpmi_sst->cdie_mask[partition] = cdie_mask;
tpmi_sst->io_dies[partition] = io_die_cnt;
tpmi_sst->partition_mask |= BIT(partition);
tpmi_sst->partition_mask_current |= BIT(partition);
auxiliary_set_drvdata(auxdev, tpmi_sst);
if (isst_common.max_index < pkg)
isst_common.max_index = pkg;
isst_common.sst_inst[pkg] = tpmi_sst;
unlock_free:
if (ret && first_enum)
kfree(tpmi_sst);
unlock_exit:
mutex_unlock(&isst_tpmi_dev_lock);
return ret;
}
EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_add, INTEL_TPMI_SST);
void tpmi_sst_dev_remove(struct auxiliary_device *auxdev)
{
struct tpmi_sst_struct *tpmi_sst = auxiliary_get_drvdata(auxdev);
struct intel_tpmi_plat_info *plat_info;
plat_info = tpmi_get_platform_data(auxdev);
if (!plat_info)
return;
mutex_lock(&isst_tpmi_dev_lock);
tpmi_sst->power_domain_info[plat_info->partition] = NULL;
tpmi_sst->partition_mask_current &= ~BIT(plat_info->partition);
/* Free the package instance when the all partitions are removed */
if (!tpmi_sst->partition_mask_current) {
isst_common.sst_inst[tpmi_sst->package_id] = NULL;
kfree(tpmi_sst);
}
mutex_unlock(&isst_tpmi_dev_lock);
}
EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_remove, INTEL_TPMI_SST);
void tpmi_sst_dev_suspend(struct auxiliary_device *auxdev)
{
struct tpmi_sst_struct *tpmi_sst = auxiliary_get_drvdata(auxdev);
struct tpmi_per_power_domain_info *power_domain_info;
struct intel_tpmi_plat_info *plat_info;
void __iomem *cp_base;
plat_info = tpmi_get_platform_data(auxdev);
if (!plat_info)
return;
power_domain_info = tpmi_sst->power_domain_info[plat_info->partition];
cp_base = power_domain_info->sst_base + power_domain_info->sst_header.cp_offset;
power_domain_info->saved_sst_cp_control = readq(cp_base + SST_CP_CONTROL_OFFSET);
memcpy_fromio(power_domain_info->saved_clos_configs, cp_base + SST_CLOS_CONFIG_0_OFFSET,
sizeof(power_domain_info->saved_clos_configs));
memcpy_fromio(power_domain_info->saved_clos_assocs, cp_base + SST_CLOS_ASSOC_0_OFFSET,
sizeof(power_domain_info->saved_clos_assocs));
power_domain_info->saved_pp_control = readq(power_domain_info->sst_base +
power_domain_info->sst_header.pp_offset +
SST_PP_CONTROL_OFFSET);
}
EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_suspend, INTEL_TPMI_SST);
void tpmi_sst_dev_resume(struct auxiliary_device *auxdev)
{
struct tpmi_sst_struct *tpmi_sst = auxiliary_get_drvdata(auxdev);
struct tpmi_per_power_domain_info *power_domain_info;
struct intel_tpmi_plat_info *plat_info;
void __iomem *cp_base;
plat_info = tpmi_get_platform_data(auxdev);
if (!plat_info)
return;
power_domain_info = tpmi_sst->power_domain_info[plat_info->partition];
cp_base = power_domain_info->sst_base + power_domain_info->sst_header.cp_offset;
writeq(power_domain_info->saved_sst_cp_control, cp_base + SST_CP_CONTROL_OFFSET);
memcpy_toio(cp_base + SST_CLOS_CONFIG_0_OFFSET, power_domain_info->saved_clos_configs,
sizeof(power_domain_info->saved_clos_configs));
memcpy_toio(cp_base + SST_CLOS_ASSOC_0_OFFSET, power_domain_info->saved_clos_assocs,
sizeof(power_domain_info->saved_clos_assocs));
writeq(power_domain_info->saved_pp_control, power_domain_info->sst_base +
power_domain_info->sst_header.pp_offset + SST_PP_CONTROL_OFFSET);
}
EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_resume, INTEL_TPMI_SST);
#define ISST_TPMI_API_VERSION 0x03
int tpmi_sst_init(void)
{
struct isst_if_cmd_cb cb;
int ret = 0;
mutex_lock(&isst_tpmi_dev_lock);
if (isst_core_usage_count) {
++isst_core_usage_count;
goto init_done;
}
isst_common.sst_inst = kcalloc(topology_max_packages(),
sizeof(*isst_common.sst_inst),
GFP_KERNEL);
if (!isst_common.sst_inst) {
ret = -ENOMEM;
goto init_done;
}
memset(&cb, 0, sizeof(cb));
cb.cmd_size = sizeof(struct isst_if_io_reg);
cb.offset = offsetof(struct isst_if_io_regs, io_reg);
cb.cmd_callback = NULL;
cb.api_version = ISST_TPMI_API_VERSION;
cb.def_ioctl = isst_if_def_ioctl;
cb.owner = THIS_MODULE;
ret = isst_if_cdev_register(ISST_IF_DEV_TPMI, &cb);
if (ret)
kfree(isst_common.sst_inst);
else
++isst_core_usage_count;
init_done:
mutex_unlock(&isst_tpmi_dev_lock);
return ret;
}
EXPORT_SYMBOL_NS_GPL(tpmi_sst_init, INTEL_TPMI_SST);
void tpmi_sst_exit(void)
{
mutex_lock(&isst_tpmi_dev_lock);
if (isst_core_usage_count)
--isst_core_usage_count;
if (!isst_core_usage_count) {
isst_if_cdev_unregister(ISST_IF_DEV_TPMI);
kfree(isst_common.sst_inst);
}
mutex_unlock(&isst_tpmi_dev_lock);
}
EXPORT_SYMBOL_NS_GPL(tpmi_sst_exit, INTEL_TPMI_SST);
MODULE_IMPORT_NS(INTEL_TPMI);
MODULE_IMPORT_NS(INTEL_TPMI_POWER_DOMAIN);
MODULE_DESCRIPTION("ISST TPMI interface module");
MODULE_LICENSE("GPL");