// SPDX-License-Identifier: GPL-2.0
/*
* Intel Uncore Frequency Setting
* Copyright (c) 2022, Intel Corporation.
* All rights reserved.
*
* Provide interface to set MSR 620 at a granularity of per die. On CPU online,
* one control CPU is identified per die to read/write limit. This control CPU
* is changed, if the CPU state is changed to offline. When the last CPU is
* offline in a die then remove the sysfs object for that die.
* The majority of actual code is related to sysfs create and read/write
* attributes.
*
* Author: Srinivas Pandruvada <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include "uncore-frequency-common.h"
/* Max instances for uncore data, one for each die */
static int uncore_max_entries __read_mostly;
/* Storage for uncore data for all instances */
static struct uncore_data *uncore_instances;
/* Stores the CPU mask of the target CPUs to use during uncore read/write */
static cpumask_t uncore_cpu_mask;
/* CPU online callback register instance */
static enum cpuhp_state uncore_hp_state __read_mostly;
#define MSR_UNCORE_RATIO_LIMIT 0x620
#define MSR_UNCORE_PERF_STATUS 0x621
#define UNCORE_FREQ_KHZ_MULTIPLIER 100000
#define UNCORE_MAX_RATIO_MASK GENMASK_ULL(6, 0)
#define UNCORE_MIN_RATIO_MASK GENMASK_ULL(14, 8)
#define UNCORE_CURRENT_RATIO_MASK GENMASK_ULL(6, 0)
static int uncore_read_control_freq(struct uncore_data *data, unsigned int *value,
enum uncore_index index)
{
u64 cap;
int ret;
if (data->control_cpu < 0)
return -ENXIO;
ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, &cap);
if (ret)
return ret;
if (index == UNCORE_INDEX_MAX_FREQ)
*value = FIELD_GET(UNCORE_MAX_RATIO_MASK, cap) * UNCORE_FREQ_KHZ_MULTIPLIER;
else
*value = FIELD_GET(UNCORE_MIN_RATIO_MASK, cap) * UNCORE_FREQ_KHZ_MULTIPLIER;
return 0;
}
static int uncore_write_control_freq(struct uncore_data *data, unsigned int input,
enum uncore_index index)
{
int ret;
u64 cap;
input /= UNCORE_FREQ_KHZ_MULTIPLIER;
if (!input || input > FIELD_MAX(UNCORE_MAX_RATIO_MASK))
return -EINVAL;
if (data->control_cpu < 0)
return -ENXIO;
ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, &cap);
if (ret)
return ret;
if (index == UNCORE_INDEX_MAX_FREQ) {
cap &= ~UNCORE_MAX_RATIO_MASK;
cap |= FIELD_PREP(UNCORE_MAX_RATIO_MASK, input);
} else {
cap &= ~UNCORE_MIN_RATIO_MASK;
cap |= FIELD_PREP(UNCORE_MIN_RATIO_MASK, input);
}
ret = wrmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, cap);
if (ret)
return ret;
data->stored_uncore_data = cap;
return 0;
}
static int uncore_read_freq(struct uncore_data *data, unsigned int *freq)
{
u64 ratio;
int ret;
if (data->control_cpu < 0)
return -ENXIO;
ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_PERF_STATUS, &ratio);
if (ret)
return ret;
*freq = FIELD_GET(UNCORE_CURRENT_RATIO_MASK, ratio) * UNCORE_FREQ_KHZ_MULTIPLIER;
return 0;
}
static int uncore_read(struct uncore_data *data, unsigned int *value, enum uncore_index index)
{
switch (index) {
case UNCORE_INDEX_MIN_FREQ:
case UNCORE_INDEX_MAX_FREQ:
return uncore_read_control_freq(data, value, index);
case UNCORE_INDEX_CURRENT_FREQ:
return uncore_read_freq(data, value);
default:
break;
}
return -EOPNOTSUPP;
}
/* Caller provides protection */
static struct uncore_data *uncore_get_instance(unsigned int cpu)
{
int id = topology_logical_die_id(cpu);
if (id >= 0 && id < uncore_max_entries)
return &uncore_instances[id];
return NULL;
}
static int uncore_event_cpu_online(unsigned int cpu)
{
struct uncore_data *data;
int target;
/* Check if there is an online cpu in the package for uncore MSR */
target = cpumask_any_and(&uncore_cpu_mask, topology_die_cpumask(cpu));
if (target < nr_cpu_ids)
return 0;
/* Use this CPU on this die as a control CPU */
cpumask_set_cpu(cpu, &uncore_cpu_mask);
data = uncore_get_instance(cpu);
if (!data)
return 0;
data->package_id = topology_physical_package_id(cpu);
data->die_id = topology_die_id(cpu);
data->domain_id = UNCORE_DOMAIN_ID_INVALID;
return uncore_freq_add_entry(data, cpu);
}
static int uncore_event_cpu_offline(unsigned int cpu)
{
struct uncore_data *data;
int target;
data = uncore_get_instance(cpu);
if (!data)
return 0;
/* Check if existing cpu is used for uncore MSRs */
if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
return 0;
/* Find a new cpu to set uncore MSR */
target = cpumask_any_but(topology_die_cpumask(cpu), cpu);
if (target < nr_cpu_ids) {
cpumask_set_cpu(target, &uncore_cpu_mask);
uncore_freq_add_entry(data, target);
} else {
uncore_freq_remove_die_entry(data);
}
return 0;
}
static int uncore_pm_notify(struct notifier_block *nb, unsigned long mode,
void *_unused)
{
int i;
switch (mode) {
case PM_POST_HIBERNATION:
case PM_POST_RESTORE:
case PM_POST_SUSPEND:
for (i = 0; i < uncore_max_entries; ++i) {
struct uncore_data *data = &uncore_instances[i];
if (!data || !data->valid || !data->stored_uncore_data)
return 0;
wrmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT,
data->stored_uncore_data);
}
break;
default:
break;
}
return 0;
}
static struct notifier_block uncore_pm_nb = {
.notifier_call = uncore_pm_notify,
};
static const struct x86_cpu_id intel_uncore_cpu_ids[] = {
X86_MATCH_VFM(INTEL_BROADWELL_G, NULL),
X86_MATCH_VFM(INTEL_BROADWELL_X, NULL),
X86_MATCH_VFM(INTEL_BROADWELL_D, NULL),
X86_MATCH_VFM(INTEL_SKYLAKE_X, NULL),
X86_MATCH_VFM(INTEL_ICELAKE_X, NULL),
X86_MATCH_VFM(INTEL_ICELAKE_D, NULL),
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, NULL),
X86_MATCH_VFM(INTEL_KABYLAKE, NULL),
X86_MATCH_VFM(INTEL_KABYLAKE_L, NULL),
X86_MATCH_VFM(INTEL_COMETLAKE, NULL),
X86_MATCH_VFM(INTEL_COMETLAKE_L, NULL),
X86_MATCH_VFM(INTEL_CANNONLAKE_L, NULL),
X86_MATCH_VFM(INTEL_ICELAKE, NULL),
X86_MATCH_VFM(INTEL_ICELAKE_L, NULL),
X86_MATCH_VFM(INTEL_ROCKETLAKE, NULL),
X86_MATCH_VFM(INTEL_TIGERLAKE, NULL),
X86_MATCH_VFM(INTEL_TIGERLAKE_L, NULL),
X86_MATCH_VFM(INTEL_ALDERLAKE, NULL),
X86_MATCH_VFM(INTEL_ALDERLAKE_L, NULL),
X86_MATCH_VFM(INTEL_RAPTORLAKE, NULL),
X86_MATCH_VFM(INTEL_RAPTORLAKE_P, NULL),
X86_MATCH_VFM(INTEL_RAPTORLAKE_S, NULL),
X86_MATCH_VFM(INTEL_METEORLAKE, NULL),
X86_MATCH_VFM(INTEL_METEORLAKE_L, NULL),
X86_MATCH_VFM(INTEL_ARROWLAKE, NULL),
X86_MATCH_VFM(INTEL_ARROWLAKE_H, NULL),
X86_MATCH_VFM(INTEL_LUNARLAKE_M, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_uncore_cpu_ids);
static int __init intel_uncore_init(void)
{
const struct x86_cpu_id *id;
int ret;
if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
return -ENODEV;
id = x86_match_cpu(intel_uncore_cpu_ids);
if (!id)
return -ENODEV;
uncore_max_entries = topology_max_packages() *
topology_max_dies_per_package();
uncore_instances = kcalloc(uncore_max_entries,
sizeof(*uncore_instances), GFP_KERNEL);
if (!uncore_instances)
return -ENOMEM;
ret = uncore_freq_common_init(uncore_read, uncore_write_control_freq);
if (ret)
goto err_free;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
"platform/x86/uncore-freq:online",
uncore_event_cpu_online,
uncore_event_cpu_offline);
if (ret < 0)
goto err_rem_kobj;
uncore_hp_state = ret;
ret = register_pm_notifier(&uncore_pm_nb);
if (ret)
goto err_rem_state;
return 0;
err_rem_state:
cpuhp_remove_state(uncore_hp_state);
err_rem_kobj:
uncore_freq_common_exit();
err_free:
kfree(uncore_instances);
return ret;
}
module_init(intel_uncore_init)
static void __exit intel_uncore_exit(void)
{
int i;
unregister_pm_notifier(&uncore_pm_nb);
cpuhp_remove_state(uncore_hp_state);
for (i = 0; i < uncore_max_entries; ++i)
uncore_freq_remove_die_entry(&uncore_instances[i]);
uncore_freq_common_exit();
kfree(uncore_instances);
}
module_exit(intel_uncore_exit)
MODULE_IMPORT_NS(INTEL_UNCORE_FREQUENCY);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Intel Uncore Frequency Limits Driver");