// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016, Fuzhou Rockchip Electronics Co., Ltd
* Author: Lin Huang <[email protected]>
*/
#include <linux/clk.h>
#include <linux/devfreq-event.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/seqlock.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/perf_event.h>
#include <soc/rockchip/rockchip_grf.h>
#include <soc/rockchip/rk3399_grf.h>
#include <soc/rockchip/rk3568_grf.h>
#include <soc/rockchip/rk3588_grf.h>
#define DMC_MAX_CHANNELS 4
#define HIWORD_UPDATE(val, mask) ((val) | (mask) << 16)
/* DDRMON_CTRL */
#define DDRMON_CTRL 0x04
#define DDRMON_CTRL_DDR4 BIT(5)
#define DDRMON_CTRL_LPDDR4 BIT(4)
#define DDRMON_CTRL_HARDWARE_EN BIT(3)
#define DDRMON_CTRL_LPDDR23 BIT(2)
#define DDRMON_CTRL_SOFTWARE_EN BIT(1)
#define DDRMON_CTRL_TIMER_CNT_EN BIT(0)
#define DDRMON_CTRL_DDR_TYPE_MASK (DDRMON_CTRL_DDR4 | \
DDRMON_CTRL_LPDDR4 | \
DDRMON_CTRL_LPDDR23)
#define DDRMON_CH0_WR_NUM 0x20
#define DDRMON_CH0_RD_NUM 0x24
#define DDRMON_CH0_COUNT_NUM 0x28
#define DDRMON_CH0_DFI_ACCESS_NUM 0x2c
#define DDRMON_CH1_COUNT_NUM 0x3c
#define DDRMON_CH1_DFI_ACCESS_NUM 0x40
#define PERF_EVENT_CYCLES 0x0
#define PERF_EVENT_READ_BYTES 0x1
#define PERF_EVENT_WRITE_BYTES 0x2
#define PERF_EVENT_READ_BYTES0 0x3
#define PERF_EVENT_WRITE_BYTES0 0x4
#define PERF_EVENT_READ_BYTES1 0x5
#define PERF_EVENT_WRITE_BYTES1 0x6
#define PERF_EVENT_READ_BYTES2 0x7
#define PERF_EVENT_WRITE_BYTES2 0x8
#define PERF_EVENT_READ_BYTES3 0x9
#define PERF_EVENT_WRITE_BYTES3 0xa
#define PERF_EVENT_BYTES 0xb
#define PERF_ACCESS_TYPE_MAX 0xc
/**
* struct dmc_count_channel - structure to hold counter values from the DDR controller
* @access: Number of read and write accesses
* @clock_cycles: DDR clock cycles
* @read_access: number of read accesses
* @write_access: number of write accesses
*/
struct dmc_count_channel {
u64 access;
u64 clock_cycles;
u64 read_access;
u64 write_access;
};
struct dmc_count {
struct dmc_count_channel c[DMC_MAX_CHANNELS];
};
/*
* The dfi controller can monitor DDR load. It has an upper and lower threshold
* for the operating points. Whenever the usage leaves these bounds an event is
* generated to indicate the DDR frequency should be changed.
*/
struct rockchip_dfi {
struct devfreq_event_dev *edev;
struct devfreq_event_desc desc;
struct dmc_count last_event_count;
struct dmc_count last_perf_count;
struct dmc_count total_count;
seqlock_t count_seqlock; /* protects last_perf_count and total_count */
struct device *dev;
void __iomem *regs;
struct regmap *regmap_pmu;
struct clk *clk;
int usecount;
struct mutex mutex;
u32 ddr_type;
unsigned int channel_mask;
unsigned int max_channels;
enum cpuhp_state cpuhp_state;
struct hlist_node node;
struct pmu pmu;
struct hrtimer timer;
unsigned int cpu;
int active_events;
int burst_len;
int buswidth[DMC_MAX_CHANNELS];
int ddrmon_stride;
bool ddrmon_ctrl_single;
};
static int rockchip_dfi_enable(struct rockchip_dfi *dfi)
{
void __iomem *dfi_regs = dfi->regs;
int i, ret = 0;
mutex_lock(&dfi->mutex);
dfi->usecount++;
if (dfi->usecount > 1)
goto out;
ret = clk_prepare_enable(dfi->clk);
if (ret) {
dev_err(&dfi->edev->dev, "failed to enable dfi clk: %d\n", ret);
goto out;
}
for (i = 0; i < dfi->max_channels; i++) {
u32 ctrl = 0;
if (!(dfi->channel_mask & BIT(i)))
continue;
/* clear DDRMON_CTRL setting */
writel_relaxed(HIWORD_UPDATE(0, DDRMON_CTRL_TIMER_CNT_EN |
DDRMON_CTRL_SOFTWARE_EN | DDRMON_CTRL_HARDWARE_EN),
dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL);
/* set ddr type to dfi */
switch (dfi->ddr_type) {
case ROCKCHIP_DDRTYPE_LPDDR2:
case ROCKCHIP_DDRTYPE_LPDDR3:
ctrl = DDRMON_CTRL_LPDDR23;
break;
case ROCKCHIP_DDRTYPE_LPDDR4:
case ROCKCHIP_DDRTYPE_LPDDR4X:
ctrl = DDRMON_CTRL_LPDDR4;
break;
default:
break;
}
writel_relaxed(HIWORD_UPDATE(ctrl, DDRMON_CTRL_DDR_TYPE_MASK),
dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL);
/* enable count, use software mode */
writel_relaxed(HIWORD_UPDATE(DDRMON_CTRL_SOFTWARE_EN, DDRMON_CTRL_SOFTWARE_EN),
dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL);
if (dfi->ddrmon_ctrl_single)
break;
}
out:
mutex_unlock(&dfi->mutex);
return ret;
}
static void rockchip_dfi_disable(struct rockchip_dfi *dfi)
{
void __iomem *dfi_regs = dfi->regs;
int i;
mutex_lock(&dfi->mutex);
dfi->usecount--;
WARN_ON_ONCE(dfi->usecount < 0);
if (dfi->usecount > 0)
goto out;
for (i = 0; i < dfi->max_channels; i++) {
if (!(dfi->channel_mask & BIT(i)))
continue;
writel_relaxed(HIWORD_UPDATE(0, DDRMON_CTRL_SOFTWARE_EN),
dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL);
if (dfi->ddrmon_ctrl_single)
break;
}
clk_disable_unprepare(dfi->clk);
out:
mutex_unlock(&dfi->mutex);
}
static void rockchip_dfi_read_counters(struct rockchip_dfi *dfi, struct dmc_count *res)
{
u32 i;
void __iomem *dfi_regs = dfi->regs;
for (i = 0; i < dfi->max_channels; i++) {
if (!(dfi->channel_mask & BIT(i)))
continue;
res->c[i].read_access = readl_relaxed(dfi_regs +
DDRMON_CH0_RD_NUM + i * dfi->ddrmon_stride);
res->c[i].write_access = readl_relaxed(dfi_regs +
DDRMON_CH0_WR_NUM + i * dfi->ddrmon_stride);
res->c[i].access = readl_relaxed(dfi_regs +
DDRMON_CH0_DFI_ACCESS_NUM + i * dfi->ddrmon_stride);
res->c[i].clock_cycles = readl_relaxed(dfi_regs +
DDRMON_CH0_COUNT_NUM + i * dfi->ddrmon_stride);
}
}
static int rockchip_dfi_event_disable(struct devfreq_event_dev *edev)
{
struct rockchip_dfi *dfi = devfreq_event_get_drvdata(edev);
rockchip_dfi_disable(dfi);
return 0;
}
static int rockchip_dfi_event_enable(struct devfreq_event_dev *edev)
{
struct rockchip_dfi *dfi = devfreq_event_get_drvdata(edev);
return rockchip_dfi_enable(dfi);
}
static int rockchip_dfi_set_event(struct devfreq_event_dev *edev)
{
return 0;
}
static int rockchip_dfi_get_event(struct devfreq_event_dev *edev,
struct devfreq_event_data *edata)
{
struct rockchip_dfi *dfi = devfreq_event_get_drvdata(edev);
struct dmc_count count;
struct dmc_count *last = &dfi->last_event_count;
u32 access = 0, clock_cycles = 0;
int i;
rockchip_dfi_read_counters(dfi, &count);
/* We can only report one channel, so find the busiest one */
for (i = 0; i < dfi->max_channels; i++) {
u32 a, c;
if (!(dfi->channel_mask & BIT(i)))
continue;
a = count.c[i].access - last->c[i].access;
c = count.c[i].clock_cycles - last->c[i].clock_cycles;
if (a > access) {
access = a;
clock_cycles = c;
}
}
edata->load_count = access * 4;
edata->total_count = clock_cycles;
dfi->last_event_count = count;
return 0;
}
static const struct devfreq_event_ops rockchip_dfi_ops = {
.disable = rockchip_dfi_event_disable,
.enable = rockchip_dfi_event_enable,
.get_event = rockchip_dfi_get_event,
.set_event = rockchip_dfi_set_event,
};
#ifdef CONFIG_PERF_EVENTS
static void rockchip_ddr_perf_counters_add(struct rockchip_dfi *dfi,
const struct dmc_count *now,
struct dmc_count *res)
{
const struct dmc_count *last = &dfi->last_perf_count;
int i;
for (i = 0; i < dfi->max_channels; i++) {
res->c[i].read_access = dfi->total_count.c[i].read_access +
(u32)(now->c[i].read_access - last->c[i].read_access);
res->c[i].write_access = dfi->total_count.c[i].write_access +
(u32)(now->c[i].write_access - last->c[i].write_access);
res->c[i].access = dfi->total_count.c[i].access +
(u32)(now->c[i].access - last->c[i].access);
res->c[i].clock_cycles = dfi->total_count.c[i].clock_cycles +
(u32)(now->c[i].clock_cycles - last->c[i].clock_cycles);
}
}
static ssize_t ddr_perf_cpumask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct rockchip_dfi *dfi = container_of(pmu, struct rockchip_dfi, pmu);
return cpumap_print_to_pagebuf(true, buf, cpumask_of(dfi->cpu));
}
static struct device_attribute ddr_perf_cpumask_attr =
__ATTR(cpumask, 0444, ddr_perf_cpumask_show, NULL);
static struct attribute *ddr_perf_cpumask_attrs[] = {
&ddr_perf_cpumask_attr.attr,
NULL,
};
static const struct attribute_group ddr_perf_cpumask_attr_group = {
.attrs = ddr_perf_cpumask_attrs,
};
PMU_EVENT_ATTR_STRING(cycles, ddr_pmu_cycles, "event="__stringify(PERF_EVENT_CYCLES))
#define DFI_PMU_EVENT_ATTR(_name, _var, _str) \
PMU_EVENT_ATTR_STRING(_name, _var, _str); \
PMU_EVENT_ATTR_STRING(_name.unit, _var##_unit, "MB"); \
PMU_EVENT_ATTR_STRING(_name.scale, _var##_scale, "9.536743164e-07")
DFI_PMU_EVENT_ATTR(read-bytes0, ddr_pmu_read_bytes0, "event="__stringify(PERF_EVENT_READ_BYTES0));
DFI_PMU_EVENT_ATTR(write-bytes0, ddr_pmu_write_bytes0, "event="__stringify(PERF_EVENT_WRITE_BYTES0));
DFI_PMU_EVENT_ATTR(read-bytes1, ddr_pmu_read_bytes1, "event="__stringify(PERF_EVENT_READ_BYTES1));
DFI_PMU_EVENT_ATTR(write-bytes1, ddr_pmu_write_bytes1, "event="__stringify(PERF_EVENT_WRITE_BYTES1));
DFI_PMU_EVENT_ATTR(read-bytes2, ddr_pmu_read_bytes2, "event="__stringify(PERF_EVENT_READ_BYTES2));
DFI_PMU_EVENT_ATTR(write-bytes2, ddr_pmu_write_bytes2, "event="__stringify(PERF_EVENT_WRITE_BYTES2));
DFI_PMU_EVENT_ATTR(read-bytes3, ddr_pmu_read_bytes3, "event="__stringify(PERF_EVENT_READ_BYTES3));
DFI_PMU_EVENT_ATTR(write-bytes3, ddr_pmu_write_bytes3, "event="__stringify(PERF_EVENT_WRITE_BYTES3));
DFI_PMU_EVENT_ATTR(read-bytes, ddr_pmu_read_bytes, "event="__stringify(PERF_EVENT_READ_BYTES));
DFI_PMU_EVENT_ATTR(write-bytes, ddr_pmu_write_bytes, "event="__stringify(PERF_EVENT_WRITE_BYTES));
DFI_PMU_EVENT_ATTR(bytes, ddr_pmu_bytes, "event="__stringify(PERF_EVENT_BYTES));
#define DFI_ATTR_MB(_name) \
&_name.attr.attr, \
&_name##_unit.attr.attr, \
&_name##_scale.attr.attr
static struct attribute *ddr_perf_events_attrs[] = {
&ddr_pmu_cycles.attr.attr,
DFI_ATTR_MB(ddr_pmu_read_bytes),
DFI_ATTR_MB(ddr_pmu_write_bytes),
DFI_ATTR_MB(ddr_pmu_read_bytes0),
DFI_ATTR_MB(ddr_pmu_write_bytes0),
DFI_ATTR_MB(ddr_pmu_read_bytes1),
DFI_ATTR_MB(ddr_pmu_write_bytes1),
DFI_ATTR_MB(ddr_pmu_read_bytes2),
DFI_ATTR_MB(ddr_pmu_write_bytes2),
DFI_ATTR_MB(ddr_pmu_read_bytes3),
DFI_ATTR_MB(ddr_pmu_write_bytes3),
DFI_ATTR_MB(ddr_pmu_bytes),
NULL,
};
static const struct attribute_group ddr_perf_events_attr_group = {
.name = "events",
.attrs = ddr_perf_events_attrs,
};
PMU_FORMAT_ATTR(event, "config:0-7");
static struct attribute *ddr_perf_format_attrs[] = {
&format_attr_event.attr,
NULL,
};
static const struct attribute_group ddr_perf_format_attr_group = {
.name = "format",
.attrs = ddr_perf_format_attrs,
};
static const struct attribute_group *attr_groups[] = {
&ddr_perf_events_attr_group,
&ddr_perf_cpumask_attr_group,
&ddr_perf_format_attr_group,
NULL,
};
static int rockchip_ddr_perf_event_init(struct perf_event *event)
{
struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu);
if (event->attr.type != event->pmu->type)
return -ENOENT;
if (event->attach_state & PERF_ATTACH_TASK)
return -EINVAL;
if (event->cpu < 0) {
dev_warn(dfi->dev, "Can't provide per-task data!\n");
return -EINVAL;
}
return 0;
}
static u64 rockchip_ddr_perf_event_get_count(struct perf_event *event)
{
struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu);
int blen = dfi->burst_len;
struct dmc_count total, now;
unsigned int seq;
u64 count = 0;
int i;
rockchip_dfi_read_counters(dfi, &now);
do {
seq = read_seqbegin(&dfi->count_seqlock);
rockchip_ddr_perf_counters_add(dfi, &now, &total);
} while (read_seqretry(&dfi->count_seqlock, seq));
switch (event->attr.config) {
case PERF_EVENT_CYCLES:
count = total.c[0].clock_cycles;
break;
case PERF_EVENT_READ_BYTES:
for (i = 0; i < dfi->max_channels; i++)
count += total.c[i].read_access * blen * dfi->buswidth[i];
break;
case PERF_EVENT_WRITE_BYTES:
for (i = 0; i < dfi->max_channels; i++)
count += total.c[i].write_access * blen * dfi->buswidth[i];
break;
case PERF_EVENT_READ_BYTES0:
count = total.c[0].read_access * blen * dfi->buswidth[0];
break;
case PERF_EVENT_WRITE_BYTES0:
count = total.c[0].write_access * blen * dfi->buswidth[0];
break;
case PERF_EVENT_READ_BYTES1:
count = total.c[1].read_access * blen * dfi->buswidth[1];
break;
case PERF_EVENT_WRITE_BYTES1:
count = total.c[1].write_access * blen * dfi->buswidth[1];
break;
case PERF_EVENT_READ_BYTES2:
count = total.c[2].read_access * blen * dfi->buswidth[2];
break;
case PERF_EVENT_WRITE_BYTES2:
count = total.c[2].write_access * blen * dfi->buswidth[2];
break;
case PERF_EVENT_READ_BYTES3:
count = total.c[3].read_access * blen * dfi->buswidth[3];
break;
case PERF_EVENT_WRITE_BYTES3:
count = total.c[3].write_access * blen * dfi->buswidth[3];
break;
case PERF_EVENT_BYTES:
for (i = 0; i < dfi->max_channels; i++)
count += total.c[i].access * blen * dfi->buswidth[i];
break;
}
return count;
}
static void rockchip_ddr_perf_event_update(struct perf_event *event)
{
u64 now;
s64 prev;
if (event->attr.config >= PERF_ACCESS_TYPE_MAX)
return;
now = rockchip_ddr_perf_event_get_count(event);
prev = local64_xchg(&event->hw.prev_count, now);
local64_add(now - prev, &event->count);
}
static void rockchip_ddr_perf_event_start(struct perf_event *event, int flags)
{
u64 now = rockchip_ddr_perf_event_get_count(event);
local64_set(&event->hw.prev_count, now);
}
static int rockchip_ddr_perf_event_add(struct perf_event *event, int flags)
{
struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu);
dfi->active_events++;
if (dfi->active_events == 1) {
dfi->total_count = (struct dmc_count){};
rockchip_dfi_read_counters(dfi, &dfi->last_perf_count);
hrtimer_start(&dfi->timer, ns_to_ktime(NSEC_PER_SEC), HRTIMER_MODE_REL);
}
if (flags & PERF_EF_START)
rockchip_ddr_perf_event_start(event, flags);
return 0;
}
static void rockchip_ddr_perf_event_stop(struct perf_event *event, int flags)
{
rockchip_ddr_perf_event_update(event);
}
static void rockchip_ddr_perf_event_del(struct perf_event *event, int flags)
{
struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu);
rockchip_ddr_perf_event_stop(event, PERF_EF_UPDATE);
dfi->active_events--;
if (dfi->active_events == 0)
hrtimer_cancel(&dfi->timer);
}
static enum hrtimer_restart rockchip_dfi_timer(struct hrtimer *timer)
{
struct rockchip_dfi *dfi = container_of(timer, struct rockchip_dfi, timer);
struct dmc_count now, total;
rockchip_dfi_read_counters(dfi, &now);
write_seqlock(&dfi->count_seqlock);
rockchip_ddr_perf_counters_add(dfi, &now, &total);
dfi->total_count = total;
dfi->last_perf_count = now;
write_sequnlock(&dfi->count_seqlock);
hrtimer_forward_now(&dfi->timer, ns_to_ktime(NSEC_PER_SEC));
return HRTIMER_RESTART;
};
static int ddr_perf_offline_cpu(unsigned int cpu, struct hlist_node *node)
{
struct rockchip_dfi *dfi = hlist_entry_safe(node, struct rockchip_dfi, node);
int target;
if (cpu != dfi->cpu)
return 0;
target = cpumask_any_but(cpu_online_mask, cpu);
if (target >= nr_cpu_ids)
return 0;
perf_pmu_migrate_context(&dfi->pmu, cpu, target);
dfi->cpu = target;
return 0;
}
static void rockchip_ddr_cpuhp_remove_state(void *data)
{
struct rockchip_dfi *dfi = data;
cpuhp_remove_multi_state(dfi->cpuhp_state);
rockchip_dfi_disable(dfi);
}
static void rockchip_ddr_cpuhp_remove_instance(void *data)
{
struct rockchip_dfi *dfi = data;
cpuhp_state_remove_instance_nocalls(dfi->cpuhp_state, &dfi->node);
}
static void rockchip_ddr_perf_remove(void *data)
{
struct rockchip_dfi *dfi = data;
perf_pmu_unregister(&dfi->pmu);
}
static int rockchip_ddr_perf_init(struct rockchip_dfi *dfi)
{
struct pmu *pmu = &dfi->pmu;
int ret;
seqlock_init(&dfi->count_seqlock);
pmu->module = THIS_MODULE;
pmu->capabilities = PERF_PMU_CAP_NO_EXCLUDE;
pmu->task_ctx_nr = perf_invalid_context;
pmu->attr_groups = attr_groups;
pmu->event_init = rockchip_ddr_perf_event_init;
pmu->add = rockchip_ddr_perf_event_add;
pmu->del = rockchip_ddr_perf_event_del;
pmu->start = rockchip_ddr_perf_event_start;
pmu->stop = rockchip_ddr_perf_event_stop;
pmu->read = rockchip_ddr_perf_event_update;
dfi->cpu = raw_smp_processor_id();
ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
"rockchip_ddr_perf_pmu",
NULL,
ddr_perf_offline_cpu);
if (ret < 0) {
dev_err(dfi->dev, "cpuhp_setup_state_multi failed: %d\n", ret);
return ret;
}
dfi->cpuhp_state = ret;
rockchip_dfi_enable(dfi);
ret = devm_add_action_or_reset(dfi->dev, rockchip_ddr_cpuhp_remove_state, dfi);
if (ret)
return ret;
ret = cpuhp_state_add_instance_nocalls(dfi->cpuhp_state, &dfi->node);
if (ret) {
dev_err(dfi->dev, "Error %d registering hotplug\n", ret);
return ret;
}
ret = devm_add_action_or_reset(dfi->dev, rockchip_ddr_cpuhp_remove_instance, dfi);
if (ret)
return ret;
hrtimer_init(&dfi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
dfi->timer.function = rockchip_dfi_timer;
switch (dfi->ddr_type) {
case ROCKCHIP_DDRTYPE_LPDDR2:
case ROCKCHIP_DDRTYPE_LPDDR3:
dfi->burst_len = 8;
break;
case ROCKCHIP_DDRTYPE_LPDDR4:
case ROCKCHIP_DDRTYPE_LPDDR4X:
dfi->burst_len = 16;
break;
}
ret = perf_pmu_register(pmu, "rockchip_ddr", -1);
if (ret)
return ret;
return devm_add_action_or_reset(dfi->dev, rockchip_ddr_perf_remove, dfi);
}
#else
static int rockchip_ddr_perf_init(struct rockchip_dfi *dfi)
{
return 0;
}
#endif
static int rk3399_dfi_init(struct rockchip_dfi *dfi)
{
struct regmap *regmap_pmu = dfi->regmap_pmu;
u32 val;
dfi->clk = devm_clk_get(dfi->dev, "pclk_ddr_mon");
if (IS_ERR(dfi->clk))
return dev_err_probe(dfi->dev, PTR_ERR(dfi->clk),
"Cannot get the clk pclk_ddr_mon\n");
/* get ddr type */
regmap_read(regmap_pmu, RK3399_PMUGRF_OS_REG2, &val);
dfi->ddr_type = FIELD_GET(RK3399_PMUGRF_OS_REG2_DDRTYPE, val);
dfi->channel_mask = GENMASK(1, 0);
dfi->max_channels = 2;
dfi->buswidth[0] = FIELD_GET(RK3399_PMUGRF_OS_REG2_BW_CH0, val) == 0 ? 4 : 2;
dfi->buswidth[1] = FIELD_GET(RK3399_PMUGRF_OS_REG2_BW_CH1, val) == 0 ? 4 : 2;
dfi->ddrmon_stride = 0x14;
dfi->ddrmon_ctrl_single = true;
return 0;
};
static int rk3568_dfi_init(struct rockchip_dfi *dfi)
{
struct regmap *regmap_pmu = dfi->regmap_pmu;
u32 reg2, reg3;
regmap_read(regmap_pmu, RK3568_PMUGRF_OS_REG2, ®2);
regmap_read(regmap_pmu, RK3568_PMUGRF_OS_REG3, ®3);
/* lower 3 bits of the DDR type */
dfi->ddr_type = FIELD_GET(RK3568_PMUGRF_OS_REG2_DRAMTYPE_INFO, reg2);
/*
* For version three and higher the upper two bits of the DDR type are
* in RK3568_PMUGRF_OS_REG3
*/
if (FIELD_GET(RK3568_PMUGRF_OS_REG3_SYSREG_VERSION, reg3) >= 0x3)
dfi->ddr_type |= FIELD_GET(RK3568_PMUGRF_OS_REG3_DRAMTYPE_INFO_V3, reg3) << 3;
dfi->channel_mask = BIT(0);
dfi->max_channels = 1;
dfi->buswidth[0] = FIELD_GET(RK3568_PMUGRF_OS_REG2_BW_CH0, reg2) == 0 ? 4 : 2;
dfi->ddrmon_stride = 0x0; /* not relevant, we only have a single channel on this SoC */
dfi->ddrmon_ctrl_single = true;
return 0;
};
static int rk3588_dfi_init(struct rockchip_dfi *dfi)
{
struct regmap *regmap_pmu = dfi->regmap_pmu;
u32 reg2, reg3, reg4;
regmap_read(regmap_pmu, RK3588_PMUGRF_OS_REG2, ®2);
regmap_read(regmap_pmu, RK3588_PMUGRF_OS_REG3, ®3);
regmap_read(regmap_pmu, RK3588_PMUGRF_OS_REG4, ®4);
/* lower 3 bits of the DDR type */
dfi->ddr_type = FIELD_GET(RK3588_PMUGRF_OS_REG2_DRAMTYPE_INFO, reg2);
/*
* For version three and higher the upper two bits of the DDR type are
* in RK3588_PMUGRF_OS_REG3
*/
if (FIELD_GET(RK3588_PMUGRF_OS_REG3_SYSREG_VERSION, reg3) >= 0x3)
dfi->ddr_type |= FIELD_GET(RK3588_PMUGRF_OS_REG3_DRAMTYPE_INFO_V3, reg3) << 3;
dfi->buswidth[0] = FIELD_GET(RK3588_PMUGRF_OS_REG2_BW_CH0, reg2) == 0 ? 4 : 2;
dfi->buswidth[1] = FIELD_GET(RK3588_PMUGRF_OS_REG2_BW_CH1, reg2) == 0 ? 4 : 2;
dfi->buswidth[2] = FIELD_GET(RK3568_PMUGRF_OS_REG2_BW_CH0, reg4) == 0 ? 4 : 2;
dfi->buswidth[3] = FIELD_GET(RK3588_PMUGRF_OS_REG2_BW_CH1, reg4) == 0 ? 4 : 2;
dfi->channel_mask = FIELD_GET(RK3588_PMUGRF_OS_REG2_CH_INFO, reg2) |
FIELD_GET(RK3588_PMUGRF_OS_REG2_CH_INFO, reg4) << 2;
dfi->max_channels = 4;
dfi->ddrmon_stride = 0x4000;
return 0;
};
static const struct of_device_id rockchip_dfi_id_match[] = {
{ .compatible = "rockchip,rk3399-dfi", .data = rk3399_dfi_init },
{ .compatible = "rockchip,rk3568-dfi", .data = rk3568_dfi_init },
{ .compatible = "rockchip,rk3588-dfi", .data = rk3588_dfi_init },
{ },
};
MODULE_DEVICE_TABLE(of, rockchip_dfi_id_match);
static int rockchip_dfi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rockchip_dfi *dfi;
struct devfreq_event_desc *desc;
struct device_node *np = pdev->dev.of_node, *node;
int (*soc_init)(struct rockchip_dfi *dfi);
int ret;
soc_init = of_device_get_match_data(&pdev->dev);
if (!soc_init)
return -EINVAL;
dfi = devm_kzalloc(dev, sizeof(*dfi), GFP_KERNEL);
if (!dfi)
return -ENOMEM;
dfi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dfi->regs))
return PTR_ERR(dfi->regs);
node = of_parse_phandle(np, "rockchip,pmu", 0);
if (!node)
return dev_err_probe(&pdev->dev, -ENODEV, "Can't find pmu_grf registers\n");
dfi->regmap_pmu = syscon_node_to_regmap(node);
of_node_put(node);
if (IS_ERR(dfi->regmap_pmu))
return PTR_ERR(dfi->regmap_pmu);
dfi->dev = dev;
mutex_init(&dfi->mutex);
desc = &dfi->desc;
desc->ops = &rockchip_dfi_ops;
desc->driver_data = dfi;
desc->name = np->name;
ret = soc_init(dfi);
if (ret)
return ret;
dfi->edev = devm_devfreq_event_add_edev(&pdev->dev, desc);
if (IS_ERR(dfi->edev)) {
dev_err(&pdev->dev,
"failed to add devfreq-event device\n");
return PTR_ERR(dfi->edev);
}
ret = rockchip_ddr_perf_init(dfi);
if (ret)
return ret;
platform_set_drvdata(pdev, dfi);
return 0;
}
static struct platform_driver rockchip_dfi_driver = {
.probe = rockchip_dfi_probe,
.driver = {
.name = "rockchip-dfi",
.of_match_table = rockchip_dfi_id_match,
.suppress_bind_attrs = true,
},
};
module_platform_driver(rockchip_dfi_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Lin Huang <[email protected]>");
MODULE_DESCRIPTION("Rockchip DFI driver");