// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2017, 2019, The Linux Foundation. All rights reserved.
* Copyright (c) 2022 Linaro Limited.
* Author: Caleb Connolly <[email protected]>
*
* This driver is for the Round Robin ADC found in the pmi8998 and pm660 PMICs.
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/spmi.h>
#include <linux/types.h>
#include <linux/units.h>
#include <linux/unaligned.h>
#include <linux/iio/iio.h>
#include <linux/iio/types.h>
#include <soc/qcom/qcom-spmi-pmic.h>
#define DRIVER_NAME "qcom-spmi-rradc"
#define RR_ADC_EN_CTL 0x46
#define RR_ADC_SKIN_TEMP_LSB 0x50
#define RR_ADC_SKIN_TEMP_MSB 0x51
#define RR_ADC_CTL 0x52
#define RR_ADC_CTL_CONTINUOUS_SEL BIT(3)
#define RR_ADC_LOG 0x53
#define RR_ADC_LOG_CLR_CTRL BIT(0)
#define RR_ADC_FAKE_BATT_LOW_LSB 0x58
#define RR_ADC_FAKE_BATT_LOW_MSB 0x59
#define RR_ADC_FAKE_BATT_HIGH_LSB 0x5A
#define RR_ADC_FAKE_BATT_HIGH_MSB 0x5B
#define RR_ADC_BATT_ID_CTRL 0x60
#define RR_ADC_BATT_ID_CTRL_CHANNEL_CONV BIT(0)
#define RR_ADC_BATT_ID_TRIGGER 0x61
#define RR_ADC_BATT_ID_STS 0x62
#define RR_ADC_BATT_ID_CFG 0x63
#define BATT_ID_SETTLE_MASK GENMASK(7, 5)
#define RR_ADC_BATT_ID_5_LSB 0x66
#define RR_ADC_BATT_ID_5_MSB 0x67
#define RR_ADC_BATT_ID_15_LSB 0x68
#define RR_ADC_BATT_ID_15_MSB 0x69
#define RR_ADC_BATT_ID_150_LSB 0x6A
#define RR_ADC_BATT_ID_150_MSB 0x6B
#define RR_ADC_BATT_THERM_CTRL 0x70
#define RR_ADC_BATT_THERM_TRIGGER 0x71
#define RR_ADC_BATT_THERM_STS 0x72
#define RR_ADC_BATT_THERM_CFG 0x73
#define RR_ADC_BATT_THERM_LSB 0x74
#define RR_ADC_BATT_THERM_MSB 0x75
#define RR_ADC_BATT_THERM_FREQ 0x76
#define RR_ADC_AUX_THERM_CTRL 0x80
#define RR_ADC_AUX_THERM_TRIGGER 0x81
#define RR_ADC_AUX_THERM_STS 0x82
#define RR_ADC_AUX_THERM_CFG 0x83
#define RR_ADC_AUX_THERM_LSB 0x84
#define RR_ADC_AUX_THERM_MSB 0x85
#define RR_ADC_SKIN_HOT 0x86
#define RR_ADC_SKIN_TOO_HOT 0x87
#define RR_ADC_AUX_THERM_C1 0x88
#define RR_ADC_AUX_THERM_C2 0x89
#define RR_ADC_AUX_THERM_C3 0x8A
#define RR_ADC_AUX_THERM_HALF_RANGE 0x8B
#define RR_ADC_USB_IN_V_CTRL 0x90
#define RR_ADC_USB_IN_V_TRIGGER 0x91
#define RR_ADC_USB_IN_V_STS 0x92
#define RR_ADC_USB_IN_V_LSB 0x94
#define RR_ADC_USB_IN_V_MSB 0x95
#define RR_ADC_USB_IN_I_CTRL 0x98
#define RR_ADC_USB_IN_I_TRIGGER 0x99
#define RR_ADC_USB_IN_I_STS 0x9A
#define RR_ADC_USB_IN_I_LSB 0x9C
#define RR_ADC_USB_IN_I_MSB 0x9D
#define RR_ADC_DC_IN_V_CTRL 0xA0
#define RR_ADC_DC_IN_V_TRIGGER 0xA1
#define RR_ADC_DC_IN_V_STS 0xA2
#define RR_ADC_DC_IN_V_LSB 0xA4
#define RR_ADC_DC_IN_V_MSB 0xA5
#define RR_ADC_DC_IN_I_CTRL 0xA8
#define RR_ADC_DC_IN_I_TRIGGER 0xA9
#define RR_ADC_DC_IN_I_STS 0xAA
#define RR_ADC_DC_IN_I_LSB 0xAC
#define RR_ADC_DC_IN_I_MSB 0xAD
#define RR_ADC_PMI_DIE_TEMP_CTRL 0xB0
#define RR_ADC_PMI_DIE_TEMP_TRIGGER 0xB1
#define RR_ADC_PMI_DIE_TEMP_STS 0xB2
#define RR_ADC_PMI_DIE_TEMP_CFG 0xB3
#define RR_ADC_PMI_DIE_TEMP_LSB 0xB4
#define RR_ADC_PMI_DIE_TEMP_MSB 0xB5
#define RR_ADC_CHARGER_TEMP_CTRL 0xB8
#define RR_ADC_CHARGER_TEMP_TRIGGER 0xB9
#define RR_ADC_CHARGER_TEMP_STS 0xBA
#define RR_ADC_CHARGER_TEMP_CFG 0xBB
#define RR_ADC_CHARGER_TEMP_LSB 0xBC
#define RR_ADC_CHARGER_TEMP_MSB 0xBD
#define RR_ADC_CHARGER_HOT 0xBE
#define RR_ADC_CHARGER_TOO_HOT 0xBF
#define RR_ADC_GPIO_CTRL 0xC0
#define RR_ADC_GPIO_TRIGGER 0xC1
#define RR_ADC_GPIO_STS 0xC2
#define RR_ADC_GPIO_LSB 0xC4
#define RR_ADC_GPIO_MSB 0xC5
#define RR_ADC_ATEST_CTRL 0xC8
#define RR_ADC_ATEST_TRIGGER 0xC9
#define RR_ADC_ATEST_STS 0xCA
#define RR_ADC_ATEST_LSB 0xCC
#define RR_ADC_ATEST_MSB 0xCD
#define RR_ADC_SEC_ACCESS 0xD0
#define RR_ADC_PERPH_RESET_CTL2 0xD9
#define RR_ADC_PERPH_RESET_CTL3 0xDA
#define RR_ADC_PERPH_RESET_CTL4 0xDB
#define RR_ADC_INT_TEST1 0xE0
#define RR_ADC_INT_TEST_VAL 0xE1
#define RR_ADC_TM_TRIGGER_CTRLS 0xE2
#define RR_ADC_TM_ADC_CTRLS 0xE3
#define RR_ADC_TM_CNL_CTRL 0xE4
#define RR_ADC_TM_BATT_ID_CTRL 0xE5
#define RR_ADC_TM_THERM_CTRL 0xE6
#define RR_ADC_TM_CONV_STS 0xE7
#define RR_ADC_TM_ADC_READ_LSB 0xE8
#define RR_ADC_TM_ADC_READ_MSB 0xE9
#define RR_ADC_TM_ATEST_MUX_1 0xEA
#define RR_ADC_TM_ATEST_MUX_2 0xEB
#define RR_ADC_TM_REFERENCES 0xED
#define RR_ADC_TM_MISC_CTL 0xEE
#define RR_ADC_TM_RR_CTRL 0xEF
#define RR_ADC_TRIGGER_EVERY_CYCLE BIT(7)
#define RR_ADC_TRIGGER_CTL BIT(0)
#define RR_ADC_BATT_ID_RANGE 820
#define RR_ADC_BITS 10
#define RR_ADC_CHAN_MSB (1 << RR_ADC_BITS)
#define RR_ADC_FS_VOLTAGE_MV 2500
/* BATT_THERM 0.25K/LSB */
#define RR_ADC_BATT_THERM_LSB_K 4
#define RR_ADC_TEMP_FS_VOLTAGE_NUM 5000000
#define RR_ADC_TEMP_FS_VOLTAGE_DEN 3
#define RR_ADC_DIE_TEMP_OFFSET 601400
#define RR_ADC_DIE_TEMP_SLOPE 2
#define RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC 25000
#define RR_ADC_CHG_TEMP_GF_OFFSET_UV 1303168
#define RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C 3784
#define RR_ADC_CHG_TEMP_SMIC_OFFSET_UV 1338433
#define RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C 3655
#define RR_ADC_CHG_TEMP_660_GF_OFFSET_UV 1309001
#define RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C 3403
#define RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV 1295898
#define RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C 3596
#define RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV 1314779
#define RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C 3496
#define RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC 25000
#define RR_ADC_CHG_THRESHOLD_SCALE 4
#define RR_ADC_VOLT_INPUT_FACTOR 8
#define RR_ADC_CURR_INPUT_FACTOR 2000
#define RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL 1886
#define RR_ADC_CURR_USBIN_660_FACTOR_MIL 9
#define RR_ADC_CURR_USBIN_660_UV_VAL 579500
#define RR_ADC_GPIO_FS_RANGE 5000
#define RR_ADC_COHERENT_CHECK_RETRY 5
#define RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN 16
#define RR_ADC_STS_CHANNEL_READING_MASK GENMASK(1, 0)
#define RR_ADC_STS_CHANNEL_STS BIT(1)
#define RR_ADC_TP_REV_VERSION1 21
#define RR_ADC_TP_REV_VERSION2 29
#define RR_ADC_TP_REV_VERSION3 32
#define RRADC_BATT_ID_DELAY_MAX 8
enum rradc_channel_id {
RR_ADC_BATT_ID = 0,
RR_ADC_BATT_THERM,
RR_ADC_SKIN_TEMP,
RR_ADC_USBIN_I,
RR_ADC_USBIN_V,
RR_ADC_DCIN_I,
RR_ADC_DCIN_V,
RR_ADC_DIE_TEMP,
RR_ADC_CHG_TEMP,
RR_ADC_GPIO,
RR_ADC_CHAN_MAX
};
struct rradc_chip;
/**
* struct rradc_channel - rradc channel data
* @label: channel label
* @lsb: Channel least significant byte
* @status: Channel status address
* @size: number of bytes to read
* @trigger_addr: Trigger address, trigger is only used on some channels
* @trigger_mask: Trigger mask
* @scale_fn: Post process callback for channels which can't be exposed
* as offset + scale.
*/
struct rradc_channel {
const char *label;
u8 lsb;
u8 status;
int size;
int trigger_addr;
int trigger_mask;
int (*scale_fn)(struct rradc_chip *chip, u16 adc_code, int *result);
};
struct rradc_chip {
struct device *dev;
const struct qcom_spmi_pmic *pmic;
/*
* Lock held while doing channel conversion
* involving multiple register read/writes
*/
struct mutex conversion_lock;
struct regmap *regmap;
u32 base;
int batt_id_delay;
u16 batt_id_data;
};
static const int batt_id_delays[] = { 0, 1, 4, 12, 20, 40, 60, 80 };
static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX];
static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX];
static int rradc_read(struct rradc_chip *chip, u16 addr, __le16 *buf, int len)
{
int ret, retry_cnt = 0;
__le16 data_check[RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN / 2];
if (len > RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN) {
dev_err(chip->dev,
"Can't read more than %d bytes, but asked to read %d bytes.\n",
RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN, len);
return -EINVAL;
}
while (retry_cnt < RR_ADC_COHERENT_CHECK_RETRY) {
ret = regmap_bulk_read(chip->regmap, chip->base + addr, buf,
len);
if (ret < 0) {
dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
ret);
return ret;
}
ret = regmap_bulk_read(chip->regmap, chip->base + addr,
data_check, len);
if (ret < 0) {
dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
ret);
return ret;
}
if (memcmp(buf, data_check, len) != 0) {
retry_cnt++;
dev_dbg(chip->dev,
"coherent read error, retry_cnt:%d\n",
retry_cnt);
continue;
}
break;
}
if (retry_cnt == RR_ADC_COHERENT_CHECK_RETRY)
dev_err(chip->dev, "Retry exceeded for coherency check\n");
return ret;
}
static int rradc_get_fab_coeff(struct rradc_chip *chip, int64_t *offset,
int64_t *slope)
{
if (chip->pmic->subtype == PM660_SUBTYPE) {
switch (chip->pmic->fab_id) {
case PM660_FAB_ID_GF:
*offset = RR_ADC_CHG_TEMP_660_GF_OFFSET_UV;
*slope = RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C;
return 0;
case PM660_FAB_ID_TSMC:
*offset = RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV;
*slope = RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C;
return 0;
default:
*offset = RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV;
*slope = RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C;
}
} else if (chip->pmic->subtype == PMI8998_SUBTYPE) {
switch (chip->pmic->fab_id) {
case PMI8998_FAB_ID_GF:
*offset = RR_ADC_CHG_TEMP_GF_OFFSET_UV;
*slope = RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C;
return 0;
case PMI8998_FAB_ID_SMIC:
*offset = RR_ADC_CHG_TEMP_SMIC_OFFSET_UV;
*slope = RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C;
return 0;
default:
return -EINVAL;
}
}
return -EINVAL;
}
/*
* These functions explicitly cast int64_t to int.
* They will never overflow, as the values are small enough.
*/
static int rradc_post_process_batt_id(struct rradc_chip *chip, u16 adc_code,
int *result_ohms)
{
uint32_t current_value;
int64_t r_id;
current_value = chip->batt_id_data;
r_id = ((int64_t)adc_code * RR_ADC_FS_VOLTAGE_MV);
r_id = div64_s64(r_id, (RR_ADC_CHAN_MSB * current_value));
*result_ohms = (int)(r_id * MILLI);
return 0;
}
static int rradc_enable_continuous_mode(struct rradc_chip *chip)
{
int ret;
/* Clear channel log */
ret = regmap_set_bits(chip->regmap, chip->base + RR_ADC_LOG,
RR_ADC_LOG_CLR_CTRL);
if (ret < 0) {
dev_err(chip->dev, "log ctrl update to clear failed:%d\n", ret);
return ret;
}
ret = regmap_clear_bits(chip->regmap, chip->base + RR_ADC_LOG,
RR_ADC_LOG_CLR_CTRL);
if (ret < 0) {
dev_err(chip->dev, "log ctrl update to not clear failed:%d\n",
ret);
return ret;
}
/* Switch to continuous mode */
ret = regmap_set_bits(chip->regmap, chip->base + RR_ADC_CTL,
RR_ADC_CTL_CONTINUOUS_SEL);
if (ret < 0)
dev_err(chip->dev, "Update to continuous mode failed:%d\n",
ret);
return ret;
}
static int rradc_disable_continuous_mode(struct rradc_chip *chip)
{
int ret;
/* Switch to non continuous mode */
ret = regmap_clear_bits(chip->regmap, chip->base + RR_ADC_CTL,
RR_ADC_CTL_CONTINUOUS_SEL);
if (ret < 0)
dev_err(chip->dev, "Update to non-continuous mode failed:%d\n",
ret);
return ret;
}
static bool rradc_is_ready(struct rradc_chip *chip,
enum rradc_channel_id chan_address)
{
const struct rradc_channel *chan = &rradc_chans[chan_address];
int ret;
unsigned int status, mask;
/* BATT_ID STS bit does not get set initially */
switch (chan_address) {
case RR_ADC_BATT_ID:
mask = RR_ADC_STS_CHANNEL_STS;
break;
default:
mask = RR_ADC_STS_CHANNEL_READING_MASK;
break;
}
ret = regmap_read(chip->regmap, chip->base + chan->status, &status);
if (ret < 0 || !(status & mask))
return false;
return true;
}
static int rradc_read_status_in_cont_mode(struct rradc_chip *chip,
enum rradc_channel_id chan_address)
{
const struct rradc_channel *chan = &rradc_chans[chan_address];
const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
int ret, i;
if (chan->trigger_mask == 0) {
dev_err(chip->dev, "Channel doesn't have a trigger mask\n");
return -EINVAL;
}
ret = regmap_set_bits(chip->regmap, chip->base + chan->trigger_addr,
chan->trigger_mask);
if (ret < 0) {
dev_err(chip->dev,
"Failed to apply trigger for channel '%s' ret=%d\n",
iio_chan->extend_name, ret);
return ret;
}
ret = rradc_enable_continuous_mode(chip);
if (ret < 0) {
dev_err(chip->dev, "Failed to switch to continuous mode\n");
goto disable_trigger;
}
/*
* The wait/sleep values were found through trial and error,
* this is mostly for the battery ID channel which takes some
* time to settle.
*/
for (i = 0; i < 5; i++) {
if (rradc_is_ready(chip, chan_address))
break;
usleep_range(50000, 50000 + 500);
}
if (i == 5) {
dev_err(chip->dev, "Channel '%s' is not ready\n",
iio_chan->extend_name);
ret = -ETIMEDOUT;
}
rradc_disable_continuous_mode(chip);
disable_trigger:
regmap_clear_bits(chip->regmap, chip->base + chan->trigger_addr,
chan->trigger_mask);
return ret;
}
static int rradc_prepare_batt_id_conversion(struct rradc_chip *chip,
enum rradc_channel_id chan_address,
u16 *data)
{
int ret;
ret = regmap_set_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_CTRL,
RR_ADC_BATT_ID_CTRL_CHANNEL_CONV);
if (ret < 0) {
dev_err(chip->dev, "Enabling BATT ID channel failed:%d\n", ret);
return ret;
}
ret = regmap_set_bits(chip->regmap,
chip->base + RR_ADC_BATT_ID_TRIGGER,
RR_ADC_TRIGGER_CTL);
if (ret < 0) {
dev_err(chip->dev, "BATT_ID trigger set failed:%d\n", ret);
goto out_disable_batt_id;
}
ret = rradc_read_status_in_cont_mode(chip, chan_address);
/* Reset registers back to default values */
regmap_clear_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_TRIGGER,
RR_ADC_TRIGGER_CTL);
out_disable_batt_id:
regmap_clear_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_CTRL,
RR_ADC_BATT_ID_CTRL_CHANNEL_CONV);
return ret;
}
static int rradc_do_conversion(struct rradc_chip *chip,
enum rradc_channel_id chan_address, u16 *data)
{
const struct rradc_channel *chan = &rradc_chans[chan_address];
const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
int ret;
__le16 buf[3];
mutex_lock(&chip->conversion_lock);
switch (chan_address) {
case RR_ADC_BATT_ID:
ret = rradc_prepare_batt_id_conversion(chip, chan_address, data);
if (ret < 0) {
dev_err(chip->dev, "Battery ID conversion failed:%d\n",
ret);
goto unlock_out;
}
break;
case RR_ADC_USBIN_V:
case RR_ADC_DIE_TEMP:
ret = rradc_read_status_in_cont_mode(chip, chan_address);
if (ret < 0) {
dev_err(chip->dev,
"Error reading in continuous mode:%d\n", ret);
goto unlock_out;
}
break;
default:
if (!rradc_is_ready(chip, chan_address)) {
/*
* Usually this means the channel isn't attached, for example
* the in_voltage_usbin_v_input channel will not be ready if
* no USB cable is attached
*/
dev_dbg(chip->dev, "channel '%s' is not ready\n",
iio_chan->extend_name);
ret = -ENODATA;
goto unlock_out;
}
break;
}
ret = rradc_read(chip, chan->lsb, buf, chan->size);
if (ret) {
dev_err(chip->dev, "read data failed\n");
goto unlock_out;
}
/*
* For the battery ID we read the register for every ID ADC and then
* see which one is actually connected.
*/
if (chan_address == RR_ADC_BATT_ID) {
u16 batt_id_150 = le16_to_cpu(buf[2]);
u16 batt_id_15 = le16_to_cpu(buf[1]);
u16 batt_id_5 = le16_to_cpu(buf[0]);
if (!batt_id_150 && !batt_id_15 && !batt_id_5) {
dev_err(chip->dev,
"Invalid batt_id values with all zeros\n");
ret = -EINVAL;
goto unlock_out;
}
if (batt_id_150 <= RR_ADC_BATT_ID_RANGE) {
*data = batt_id_150;
chip->batt_id_data = 150;
} else if (batt_id_15 <= RR_ADC_BATT_ID_RANGE) {
*data = batt_id_15;
chip->batt_id_data = 15;
} else {
*data = batt_id_5;
chip->batt_id_data = 5;
}
} else {
/*
* All of the other channels are either 1 or 2 bytes.
* We can rely on the second byte being 0 for 1-byte channels.
*/
*data = le16_to_cpu(buf[0]);
}
unlock_out:
mutex_unlock(&chip->conversion_lock);
return ret;
}
static int rradc_read_scale(struct rradc_chip *chip, int chan_address, int *val,
int *val2)
{
int64_t fab_offset, fab_slope;
int ret;
ret = rradc_get_fab_coeff(chip, &fab_offset, &fab_slope);
if (ret < 0) {
dev_err(chip->dev, "Unable to get fab id coefficients\n");
return -EINVAL;
}
switch (chan_address) {
case RR_ADC_SKIN_TEMP:
*val = MILLI;
*val2 = RR_ADC_BATT_THERM_LSB_K;
return IIO_VAL_FRACTIONAL;
case RR_ADC_USBIN_I:
*val = RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL *
RR_ADC_FS_VOLTAGE_MV;
*val2 = RR_ADC_CHAN_MSB;
return IIO_VAL_FRACTIONAL;
case RR_ADC_DCIN_I:
*val = RR_ADC_CURR_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV;
*val2 = RR_ADC_CHAN_MSB;
return IIO_VAL_FRACTIONAL;
case RR_ADC_USBIN_V:
case RR_ADC_DCIN_V:
*val = RR_ADC_VOLT_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV * MILLI;
*val2 = RR_ADC_CHAN_MSB;
return IIO_VAL_FRACTIONAL;
case RR_ADC_GPIO:
*val = RR_ADC_GPIO_FS_RANGE;
*val2 = RR_ADC_CHAN_MSB;
return IIO_VAL_FRACTIONAL;
case RR_ADC_CHG_TEMP:
/*
* We divide val2 by MILLI instead of multiplying val
* to avoid an integer overflow.
*/
*val = -RR_ADC_TEMP_FS_VOLTAGE_NUM;
*val2 = div64_s64(RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
fab_slope,
MILLI);
return IIO_VAL_FRACTIONAL;
case RR_ADC_DIE_TEMP:
*val = RR_ADC_TEMP_FS_VOLTAGE_NUM;
*val2 = RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
RR_ADC_DIE_TEMP_SLOPE;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
}
static int rradc_read_offset(struct rradc_chip *chip, int chan_address, int *val)
{
int64_t fab_offset, fab_slope;
int64_t offset1, offset2;
int ret;
switch (chan_address) {
case RR_ADC_SKIN_TEMP:
/*
* Offset from kelvin to degC, divided by the
* scale factor (250). We lose some precision here.
* 273150 / 250 = 1092.6
*/
*val = div64_s64(ABSOLUTE_ZERO_MILLICELSIUS,
(MILLI / RR_ADC_BATT_THERM_LSB_K));
return IIO_VAL_INT;
case RR_ADC_CHG_TEMP:
ret = rradc_get_fab_coeff(chip, &fab_offset, &fab_slope);
if (ret < 0) {
dev_err(chip->dev,
"Unable to get fab id coefficients\n");
return -EINVAL;
}
offset1 = -(fab_offset * RR_ADC_TEMP_FS_VOLTAGE_DEN *
RR_ADC_CHAN_MSB);
offset1 += (int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM / 2ULL;
offset1 = div64_s64(offset1,
(int64_t)(RR_ADC_TEMP_FS_VOLTAGE_NUM));
offset2 = (int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
(int64_t)fab_slope;
offset2 += ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM) / 2;
offset2 = div64_s64(
offset2, ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM));
/*
* The -1 is to compensate for lost precision.
* It should actually be -0.7906976744186046.
* This works out to every value being off
* by about +0.091 degrees C after applying offset and scale.
*/
*val = (int)(offset1 - offset2 - 1);
return IIO_VAL_INT;
case RR_ADC_DIE_TEMP:
offset1 = -RR_ADC_DIE_TEMP_OFFSET *
(int64_t)RR_ADC_TEMP_FS_VOLTAGE_DEN *
(int64_t)RR_ADC_CHAN_MSB;
offset1 = div64_s64(offset1, RR_ADC_TEMP_FS_VOLTAGE_NUM);
offset2 = -(int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
RR_ADC_DIE_TEMP_SLOPE;
offset2 = div64_s64(offset2,
((int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM));
/*
* The result is -339, it should be -338.69789, this results
* in the calculated die temp being off by
* -0.004 - -0.0175 degrees C
*/
*val = (int)(offset1 - offset2);
return IIO_VAL_INT;
default:
break;
}
return -EINVAL;
}
static int rradc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan_spec, int *val,
int *val2, long mask)
{
struct rradc_chip *chip = iio_priv(indio_dev);
const struct rradc_channel *chan;
int ret;
u16 adc_code;
if (chan_spec->address >= RR_ADC_CHAN_MAX) {
dev_err(chip->dev, "Invalid channel index:%lu\n",
chan_spec->address);
return -EINVAL;
}
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return rradc_read_scale(chip, chan_spec->address, val, val2);
case IIO_CHAN_INFO_OFFSET:
return rradc_read_offset(chip, chan_spec->address, val);
case IIO_CHAN_INFO_RAW:
ret = rradc_do_conversion(chip, chan_spec->address, &adc_code);
if (ret < 0)
return ret;
*val = adc_code;
return IIO_VAL_INT;
case IIO_CHAN_INFO_PROCESSED:
chan = &rradc_chans[chan_spec->address];
if (!chan->scale_fn)
return -EINVAL;
ret = rradc_do_conversion(chip, chan_spec->address, &adc_code);
if (ret < 0)
return ret;
*val = chan->scale_fn(chip, adc_code, val);
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int rradc_read_label(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, char *label)
{
return snprintf(label, PAGE_SIZE, "%s\n",
rradc_chans[chan->address].label);
}
static const struct iio_info rradc_info = {
.read_raw = rradc_read_raw,
.read_label = rradc_read_label,
};
static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX] = {
{
.label = "batt_id",
.scale_fn = rradc_post_process_batt_id,
.lsb = RR_ADC_BATT_ID_5_LSB,
.status = RR_ADC_BATT_ID_STS,
.size = 6,
.trigger_addr = RR_ADC_BATT_ID_TRIGGER,
.trigger_mask = BIT(0),
}, {
.label = "batt",
.lsb = RR_ADC_BATT_THERM_LSB,
.status = RR_ADC_BATT_THERM_STS,
.size = 2,
.trigger_addr = RR_ADC_BATT_THERM_TRIGGER,
}, {
.label = "pmi8998_skin",
.lsb = RR_ADC_SKIN_TEMP_LSB,
.status = RR_ADC_AUX_THERM_STS,
.size = 2,
.trigger_addr = RR_ADC_AUX_THERM_TRIGGER,
}, {
.label = "usbin_i",
.lsb = RR_ADC_USB_IN_I_LSB,
.status = RR_ADC_USB_IN_I_STS,
.size = 2,
.trigger_addr = RR_ADC_USB_IN_I_TRIGGER,
}, {
.label = "usbin_v",
.lsb = RR_ADC_USB_IN_V_LSB,
.status = RR_ADC_USB_IN_V_STS,
.size = 2,
.trigger_addr = RR_ADC_USB_IN_V_TRIGGER,
.trigger_mask = BIT(7),
}, {
.label = "dcin_i",
.lsb = RR_ADC_DC_IN_I_LSB,
.status = RR_ADC_DC_IN_I_STS,
.size = 2,
.trigger_addr = RR_ADC_DC_IN_I_TRIGGER,
}, {
.label = "dcin_v",
.lsb = RR_ADC_DC_IN_V_LSB,
.status = RR_ADC_DC_IN_V_STS,
.size = 2,
.trigger_addr = RR_ADC_DC_IN_V_TRIGGER,
}, {
.label = "pmi8998_die",
.lsb = RR_ADC_PMI_DIE_TEMP_LSB,
.status = RR_ADC_PMI_DIE_TEMP_STS,
.size = 2,
.trigger_addr = RR_ADC_PMI_DIE_TEMP_TRIGGER,
.trigger_mask = RR_ADC_TRIGGER_EVERY_CYCLE,
}, {
.label = "chg",
.lsb = RR_ADC_CHARGER_TEMP_LSB,
.status = RR_ADC_CHARGER_TEMP_STS,
.size = 2,
.trigger_addr = RR_ADC_CHARGER_TEMP_TRIGGER,
}, {
.label = "gpio",
.lsb = RR_ADC_GPIO_LSB,
.status = RR_ADC_GPIO_STS,
.size = 2,
.trigger_addr = RR_ADC_GPIO_TRIGGER,
},
};
static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX] = {
{
.type = IIO_RESISTANCE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.address = RR_ADC_BATT_ID,
.channel = 0,
.indexed = 1,
}, {
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.address = RR_ADC_BATT_THERM,
.channel = 0,
.indexed = 1,
}, {
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.address = RR_ADC_SKIN_TEMP,
.channel = 1,
.indexed = 1,
}, {
.type = IIO_CURRENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.address = RR_ADC_USBIN_I,
.channel = 0,
.indexed = 1,
}, {
.type = IIO_VOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.address = RR_ADC_USBIN_V,
.channel = 0,
.indexed = 1,
}, {
.type = IIO_CURRENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.address = RR_ADC_DCIN_I,
.channel = 1,
.indexed = 1,
}, {
.type = IIO_VOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.address = RR_ADC_DCIN_V,
.channel = 1,
.indexed = 1,
}, {
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.address = RR_ADC_DIE_TEMP,
.channel = 2,
.indexed = 1,
}, {
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE),
.address = RR_ADC_CHG_TEMP,
.channel = 3,
.indexed = 1,
}, {
.type = IIO_VOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_SCALE),
.address = RR_ADC_GPIO,
.channel = 2,
.indexed = 1,
},
};
static int rradc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct rradc_chip *chip;
int ret, i, batt_id_delay;
indio_dev = devm_iio_device_alloc(dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
chip = iio_priv(indio_dev);
chip->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!chip->regmap) {
dev_err(dev, "Couldn't get parent's regmap\n");
return -EINVAL;
}
chip->dev = dev;
mutex_init(&chip->conversion_lock);
ret = device_property_read_u32(dev, "reg", &chip->base);
if (ret < 0) {
dev_err(chip->dev, "Couldn't find reg address, ret = %d\n",
ret);
return ret;
}
batt_id_delay = -1;
ret = device_property_read_u32(dev, "qcom,batt-id-delay-ms",
&batt_id_delay);
if (!ret) {
for (i = 0; i < RRADC_BATT_ID_DELAY_MAX; i++) {
if (batt_id_delay == batt_id_delays[i])
break;
}
if (i == RRADC_BATT_ID_DELAY_MAX)
batt_id_delay = -1;
}
if (batt_id_delay >= 0) {
batt_id_delay = FIELD_PREP(BATT_ID_SETTLE_MASK, batt_id_delay);
ret = regmap_set_bits(chip->regmap,
chip->base + RR_ADC_BATT_ID_CFG,
batt_id_delay);
if (ret < 0) {
dev_err(chip->dev,
"BATT_ID settling time config failed:%d\n",
ret);
}
}
/* Get the PMIC revision, we need it to handle some varying coefficients */
chip->pmic = qcom_pmic_get(chip->dev);
if (IS_ERR(chip->pmic)) {
dev_err(chip->dev, "Unable to get reference to PMIC device\n");
return PTR_ERR(chip->pmic);
}
switch (chip->pmic->subtype) {
case PMI8998_SUBTYPE:
indio_dev->name = "pmi8998-rradc";
break;
case PM660_SUBTYPE:
indio_dev->name = "pm660-rradc";
break;
default:
indio_dev->name = DRIVER_NAME;
break;
}
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &rradc_info;
indio_dev->channels = rradc_iio_chans;
indio_dev->num_channels = ARRAY_SIZE(rradc_iio_chans);
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id rradc_match_table[] = {
{ .compatible = "qcom,pm660-rradc" },
{ .compatible = "qcom,pmi8998-rradc" },
{ }
};
MODULE_DEVICE_TABLE(of, rradc_match_table);
static struct platform_driver rradc_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = rradc_match_table,
},
.probe = rradc_probe,
};
module_platform_driver(rradc_driver);
MODULE_DESCRIPTION("QCOM SPMI PMIC RR ADC driver");
MODULE_AUTHOR("Caleb Connolly <[email protected]>");
MODULE_LICENSE("GPL");