linux/drivers/iio/chemical/atlas-sensor.c

// SPDX-License-Identifier: GPL-2.0+
/*
 * atlas-sensor.c - Support for Atlas Scientific OEM SM sensors
 *
 * Copyright (C) 2015-2019 Konsulko Group
 * Author: Matt Ranostay <[email protected]>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/irq_work.h>
#include <linux/i2c.h>
#include <linux/mod_devicetable.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/pm_runtime.h>

#define ATLAS_REGMAP_NAME	"atlas_regmap"
#define ATLAS_DRV_NAME		"atlas"

#define ATLAS_REG_DEV_TYPE		0x00
#define ATLAS_REG_DEV_VERSION		0x01

#define ATLAS_REG_INT_CONTROL		0x04
#define ATLAS_REG_INT_CONTROL_EN	BIT(3)

#define ATLAS_REG_PWR_CONTROL		0x06

#define ATLAS_REG_PH_CALIB_STATUS	0x0d
#define ATLAS_REG_PH_CALIB_STATUS_MASK	0x07
#define ATLAS_REG_PH_CALIB_STATUS_LOW	BIT(0)
#define ATLAS_REG_PH_CALIB_STATUS_MID	BIT(1)
#define ATLAS_REG_PH_CALIB_STATUS_HIGH	BIT(2)

#define ATLAS_REG_EC_CALIB_STATUS		0x0f
#define ATLAS_REG_EC_CALIB_STATUS_MASK		0x0f
#define ATLAS_REG_EC_CALIB_STATUS_DRY		BIT(0)
#define ATLAS_REG_EC_CALIB_STATUS_SINGLE	BIT(1)
#define ATLAS_REG_EC_CALIB_STATUS_LOW		BIT(2)
#define ATLAS_REG_EC_CALIB_STATUS_HIGH		BIT(3)

#define ATLAS_REG_DO_CALIB_STATUS		0x09
#define ATLAS_REG_DO_CALIB_STATUS_MASK		0x03
#define ATLAS_REG_DO_CALIB_STATUS_PRESSURE	BIT(0)
#define ATLAS_REG_DO_CALIB_STATUS_DO		BIT(1)

#define ATLAS_REG_RTD_DATA		0x0e

#define ATLAS_REG_PH_TEMP_DATA		0x0e
#define ATLAS_REG_PH_DATA		0x16

#define ATLAS_REG_EC_PROBE		0x08
#define ATLAS_REG_EC_TEMP_DATA		0x10
#define ATLAS_REG_EC_DATA		0x18
#define ATLAS_REG_TDS_DATA		0x1c
#define ATLAS_REG_PSS_DATA		0x20

#define ATLAS_REG_ORP_CALIB_STATUS	0x0d
#define ATLAS_REG_ORP_DATA		0x0e

#define ATLAS_REG_DO_TEMP_DATA		0x12
#define ATLAS_REG_DO_DATA		0x22

#define ATLAS_PH_INT_TIME_IN_MS		450
#define ATLAS_EC_INT_TIME_IN_MS		650
#define ATLAS_ORP_INT_TIME_IN_MS	450
#define ATLAS_DO_INT_TIME_IN_MS		450
#define ATLAS_RTD_INT_TIME_IN_MS	450

enum {
	ATLAS_PH_SM,
	ATLAS_EC_SM,
	ATLAS_ORP_SM,
	ATLAS_DO_SM,
	ATLAS_RTD_SM,
};

struct atlas_data {
	struct i2c_client *client;
	struct iio_trigger *trig;
	const struct atlas_device *chip;
	struct regmap *regmap;
	struct irq_work work;
	unsigned int interrupt_enabled;
	/* 96-bit data + 32-bit pad + 64-bit timestamp */
	__be32 buffer[6] __aligned(8);
};

static const struct regmap_config atlas_regmap_config = {
	.name = ATLAS_REGMAP_NAME,
	.reg_bits = 8,
	.val_bits = 8,
};

static int atlas_buffer_num_channels(const struct iio_chan_spec *spec)
{
	int idx = 0;

	for (; spec->type != IIO_TIMESTAMP; spec++)
		idx++;

	return idx;
};

static const struct iio_chan_spec atlas_ph_channels[] = {
	{
		.type = IIO_PH,
		.address = ATLAS_REG_PH_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 'u',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_PH_TEMP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.output = 1,
		.scan_index = -1
	},
};

#define ATLAS_CONCENTRATION_CHANNEL(_idx, _addr) \
	{\
		.type = IIO_CONCENTRATION, \
		.indexed = 1, \
		.channel = _idx, \
		.address = _addr, \
		.info_mask_separate = \
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \
		.scan_index = _idx + 1, \
		.scan_type = { \
			.sign = 'u', \
			.realbits = 32, \
			.storagebits = 32, \
			.endianness = IIO_BE, \
		}, \
	}

static const struct iio_chan_spec atlas_ec_channels[] = {
	{
		.type = IIO_ELECTRICALCONDUCTIVITY,
		.address = ATLAS_REG_EC_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 'u',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	ATLAS_CONCENTRATION_CHANNEL(0, ATLAS_REG_TDS_DATA),
	ATLAS_CONCENTRATION_CHANNEL(1, ATLAS_REG_PSS_DATA),
	IIO_CHAN_SOFT_TIMESTAMP(3),
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_EC_TEMP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.output = 1,
		.scan_index = -1
	},
};

static const struct iio_chan_spec atlas_orp_channels[] = {
	{
		.type = IIO_VOLTAGE,
		.address = ATLAS_REG_ORP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 's',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
};

static const struct iio_chan_spec atlas_do_channels[] = {
	{
		.type = IIO_CONCENTRATION,
		.address = ATLAS_REG_DO_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.scan_index = 0,
		.scan_type = {
			.sign = 'u',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_DO_TEMP_DATA,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
		.output = 1,
		.scan_index = -1
	},
};

static const struct iio_chan_spec atlas_rtd_channels[] = {
	{
		.type = IIO_TEMP,
		.address = ATLAS_REG_RTD_DATA,
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
		.scan_index = 0,
		.scan_type = {
			.sign = 's',
			.realbits = 32,
			.storagebits = 32,
			.endianness = IIO_BE,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(1),
};

static int atlas_check_ph_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;

	ret = regmap_read(data->regmap, ATLAS_REG_PH_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_MASK)) {
		dev_warn(dev, "device has not been calibrated\n");
		return 0;
	}

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_LOW))
		dev_warn(dev, "device missing low point calibration\n");

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_MID))
		dev_warn(dev, "device missing mid point calibration\n");

	if (!(val & ATLAS_REG_PH_CALIB_STATUS_HIGH))
		dev_warn(dev, "device missing high point calibration\n");

	return 0;
}

static int atlas_check_ec_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;
	__be16	rval;

	ret = regmap_bulk_read(data->regmap, ATLAS_REG_EC_PROBE, &rval, 2);
	if (ret)
		return ret;

	val = be16_to_cpu(rval);
	dev_info(dev, "probe set to K = %d.%.2d", val / 100, val % 100);

	ret = regmap_read(data->regmap, ATLAS_REG_EC_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!(val & ATLAS_REG_EC_CALIB_STATUS_MASK)) {
		dev_warn(dev, "device has not been calibrated\n");
		return 0;
	}

	if (!(val & ATLAS_REG_EC_CALIB_STATUS_DRY))
		dev_warn(dev, "device missing dry point calibration\n");

	if (val & ATLAS_REG_EC_CALIB_STATUS_SINGLE) {
		dev_warn(dev, "device using single point calibration\n");
	} else {
		if (!(val & ATLAS_REG_EC_CALIB_STATUS_LOW))
			dev_warn(dev, "device missing low point calibration\n");

		if (!(val & ATLAS_REG_EC_CALIB_STATUS_HIGH))
			dev_warn(dev, "device missing high point calibration\n");
	}

	return 0;
}

static int atlas_check_orp_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;

	ret = regmap_read(data->regmap, ATLAS_REG_ORP_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!val)
		dev_warn(dev, "device has not been calibrated\n");

	return 0;
}

static int atlas_check_do_calibration(struct atlas_data *data)
{
	struct device *dev = &data->client->dev;
	int ret;
	unsigned int val;

	ret = regmap_read(data->regmap, ATLAS_REG_DO_CALIB_STATUS, &val);
	if (ret)
		return ret;

	if (!(val & ATLAS_REG_DO_CALIB_STATUS_MASK)) {
		dev_warn(dev, "device has not been calibrated\n");
		return 0;
	}

	if (!(val & ATLAS_REG_DO_CALIB_STATUS_PRESSURE))
		dev_warn(dev, "device missing atmospheric pressure calibration\n");

	if (!(val & ATLAS_REG_DO_CALIB_STATUS_DO))
		dev_warn(dev, "device missing dissolved oxygen calibration\n");

	return 0;
}

struct atlas_device {
	const struct iio_chan_spec *channels;
	int num_channels;
	int data_reg;

	int (*calibration)(struct atlas_data *data);
	int delay;
};

static const struct atlas_device atlas_devices[] = {
	[ATLAS_PH_SM] = {
				.channels = atlas_ph_channels,
				.num_channels = 3,
				.data_reg = ATLAS_REG_PH_DATA,
				.calibration = &atlas_check_ph_calibration,
				.delay = ATLAS_PH_INT_TIME_IN_MS,
	},
	[ATLAS_EC_SM] = {
				.channels = atlas_ec_channels,
				.num_channels = 5,
				.data_reg = ATLAS_REG_EC_DATA,
				.calibration = &atlas_check_ec_calibration,
				.delay = ATLAS_EC_INT_TIME_IN_MS,
	},
	[ATLAS_ORP_SM] = {
				.channels = atlas_orp_channels,
				.num_channels = 2,
				.data_reg = ATLAS_REG_ORP_DATA,
				.calibration = &atlas_check_orp_calibration,
				.delay = ATLAS_ORP_INT_TIME_IN_MS,
	},
	[ATLAS_DO_SM] = {
				.channels = atlas_do_channels,
				.num_channels = 3,
				.data_reg = ATLAS_REG_DO_DATA,
				.calibration = &atlas_check_do_calibration,
				.delay = ATLAS_DO_INT_TIME_IN_MS,
	},
	[ATLAS_RTD_SM] = {
				.channels = atlas_rtd_channels,
				.num_channels = 2,
				.data_reg = ATLAS_REG_RTD_DATA,
				.delay = ATLAS_RTD_INT_TIME_IN_MS,
	},
};

static int atlas_set_powermode(struct atlas_data *data, int on)
{
	return regmap_write(data->regmap, ATLAS_REG_PWR_CONTROL, on);
}

static int atlas_set_interrupt(struct atlas_data *data, bool state)
{
	if (!data->interrupt_enabled)
		return 0;

	return regmap_update_bits(data->regmap, ATLAS_REG_INT_CONTROL,
				  ATLAS_REG_INT_CONTROL_EN,
				  state ? ATLAS_REG_INT_CONTROL_EN : 0);
}

static int atlas_buffer_postenable(struct iio_dev *indio_dev)
{
	struct atlas_data *data = iio_priv(indio_dev);
	int ret;

	ret = pm_runtime_resume_and_get(&data->client->dev);
	if (ret)
		return ret;

	return atlas_set_interrupt(data, true);
}

static int atlas_buffer_predisable(struct iio_dev *indio_dev)
{
	struct atlas_data *data = iio_priv(indio_dev);
	int ret;

	ret = atlas_set_interrupt(data, false);
	if (ret)
		return ret;

	pm_runtime_mark_last_busy(&data->client->dev);
	ret = pm_runtime_put_autosuspend(&data->client->dev);
	if (ret)
		return ret;

	return 0;
}

static const struct iio_buffer_setup_ops atlas_buffer_setup_ops = {
	.postenable = atlas_buffer_postenable,
	.predisable = atlas_buffer_predisable,
};

static void atlas_work_handler(struct irq_work *work)
{
	struct atlas_data *data = container_of(work, struct atlas_data, work);

	iio_trigger_poll(data->trig);
}

static irqreturn_t atlas_trigger_handler(int irq, void *private)
{
	struct iio_poll_func *pf = private;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct atlas_data *data = iio_priv(indio_dev);
	int channels = atlas_buffer_num_channels(data->chip->channels);
	int ret;

	ret = regmap_bulk_read(data->regmap, data->chip->data_reg,
			      &data->buffer, sizeof(__be32) * channels);

	if (!ret)
		iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
				iio_get_time_ns(indio_dev));

	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static irqreturn_t atlas_interrupt_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct atlas_data *data = iio_priv(indio_dev);

	irq_work_queue(&data->work);

	return IRQ_HANDLED;
}

static int atlas_read_measurement(struct atlas_data *data, int reg, __be32 *val)
{
	struct device *dev = &data->client->dev;
	int suspended = pm_runtime_suspended(dev);
	int ret;

	ret = pm_runtime_resume_and_get(dev);
	if (ret)
		return ret;

	if (suspended)
		msleep(data->chip->delay);

	ret = regmap_bulk_read(data->regmap, reg, val, sizeof(*val));

	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return ret;
}

static int atlas_read_raw(struct iio_dev *indio_dev,
			  struct iio_chan_spec const *chan,
			  int *val, int *val2, long mask)
{
	struct atlas_data *data = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_PROCESSED:
	case IIO_CHAN_INFO_RAW: {
		int ret;
		__be32 reg;

		switch (chan->type) {
		case IIO_TEMP:
			ret = regmap_bulk_read(data->regmap, chan->address,
					       &reg, sizeof(reg));
			break;
		case IIO_PH:
		case IIO_CONCENTRATION:
		case IIO_ELECTRICALCONDUCTIVITY:
		case IIO_VOLTAGE:
			ret = iio_device_claim_direct_mode(indio_dev);
			if (ret)
				return ret;

			ret = atlas_read_measurement(data, chan->address, &reg);

			iio_device_release_direct_mode(indio_dev);
			break;
		default:
			ret = -EINVAL;
		}

		if (!ret) {
			*val = be32_to_cpu(reg);
			ret = IIO_VAL_INT;
		}
		return ret;
	}
	case IIO_CHAN_INFO_SCALE:
		switch (chan->type) {
		case IIO_TEMP:
			*val = 10;
			return IIO_VAL_INT;
		case IIO_PH:
			*val = 1; /* 0.001 */
			*val2 = 1000;
			break;
		case IIO_ELECTRICALCONDUCTIVITY:
			*val = 1; /* 0.00001 */
			*val2 = 100000;
			break;
		case IIO_CONCENTRATION:
			*val = 0; /* 0.000000001 */
			*val2 = 1000;
			return IIO_VAL_INT_PLUS_NANO;
		case IIO_VOLTAGE:
			*val = 1; /* 0.1 */
			*val2 = 10;
			break;
		default:
			return -EINVAL;
		}
		return IIO_VAL_FRACTIONAL;
	}

	return -EINVAL;
}

static int atlas_write_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int val, int val2, long mask)
{
	struct atlas_data *data = iio_priv(indio_dev);
	__be32 reg = cpu_to_be32(val / 10);

	if (val2 != 0 || val < 0 || val > 20000)
		return -EINVAL;

	if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_TEMP)
		return -EINVAL;

	return regmap_bulk_write(data->regmap, chan->address,
				 &reg, sizeof(reg));
}

static const struct iio_info atlas_info = {
	.read_raw = atlas_read_raw,
	.write_raw = atlas_write_raw,
};

static const struct i2c_device_id atlas_id[] = {
	{ "atlas-ph-sm", (kernel_ulong_t)&atlas_devices[ATLAS_PH_SM] },
	{ "atlas-ec-sm", (kernel_ulong_t)&atlas_devices[ATLAS_EC_SM] },
	{ "atlas-orp-sm", (kernel_ulong_t)&atlas_devices[ATLAS_ORP_SM] },
	{ "atlas-do-sm", (kernel_ulong_t)&atlas_devices[ATLAS_DO_SM] },
	{ "atlas-rtd-sm", (kernel_ulong_t)&atlas_devices[ATLAS_RTD_SM] },
	{}
};
MODULE_DEVICE_TABLE(i2c, atlas_id);

static const struct of_device_id atlas_dt_ids[] = {
	{ .compatible = "atlas,ph-sm", .data = &atlas_devices[ATLAS_PH_SM] },
	{ .compatible = "atlas,ec-sm", .data = &atlas_devices[ATLAS_EC_SM] },
	{ .compatible = "atlas,orp-sm", .data = &atlas_devices[ATLAS_ORP_SM] },
	{ .compatible = "atlas,do-sm", .data = &atlas_devices[ATLAS_DO_SM] },
	{ .compatible = "atlas,rtd-sm", .data = &atlas_devices[ATLAS_RTD_SM] },
	{ }
};
MODULE_DEVICE_TABLE(of, atlas_dt_ids);

static int atlas_probe(struct i2c_client *client)
{
	struct atlas_data *data;
	const struct atlas_device *chip;
	struct iio_trigger *trig;
	struct iio_dev *indio_dev;
	int ret;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;

	chip = i2c_get_match_data(client);

	indio_dev->info = &atlas_info;
	indio_dev->name = ATLAS_DRV_NAME;
	indio_dev->channels = chip->channels;
	indio_dev->num_channels = chip->num_channels;
	indio_dev->modes = INDIO_BUFFER_SOFTWARE | INDIO_DIRECT_MODE;

	trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d",
				      indio_dev->name, iio_device_id(indio_dev));

	if (!trig)
		return -ENOMEM;

	data = iio_priv(indio_dev);
	data->client = client;
	data->trig = trig;
	data->chip = chip;
	iio_trigger_set_drvdata(trig, indio_dev);

	i2c_set_clientdata(client, indio_dev);

	data->regmap = devm_regmap_init_i2c(client, &atlas_regmap_config);
	if (IS_ERR(data->regmap)) {
		dev_err(&client->dev, "regmap initialization failed\n");
		return PTR_ERR(data->regmap);
	}

	ret = pm_runtime_set_active(&client->dev);
	if (ret)
		return ret;

	ret = chip->calibration(data);
	if (ret)
		return ret;

	ret = iio_trigger_register(trig);
	if (ret) {
		dev_err(&client->dev, "failed to register trigger\n");
		return ret;
	}

	ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
		&atlas_trigger_handler, &atlas_buffer_setup_ops);
	if (ret) {
		dev_err(&client->dev, "cannot setup iio trigger\n");
		goto unregister_trigger;
	}

	init_irq_work(&data->work, atlas_work_handler);

	if (client->irq > 0) {
		/* interrupt pin toggles on new conversion */
		ret = devm_request_threaded_irq(&client->dev, client->irq,
				NULL, atlas_interrupt_handler,
				IRQF_TRIGGER_RISING |
				IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
				"atlas_irq",
				indio_dev);

		if (ret)
			dev_warn(&client->dev,
				"request irq (%d) failed\n", client->irq);
		else
			data->interrupt_enabled = 1;
	}

	ret = atlas_set_powermode(data, 1);
	if (ret) {
		dev_err(&client->dev, "cannot power device on");
		goto unregister_buffer;
	}

	pm_runtime_enable(&client->dev);
	pm_runtime_set_autosuspend_delay(&client->dev, 2500);
	pm_runtime_use_autosuspend(&client->dev);

	ret = iio_device_register(indio_dev);
	if (ret) {
		dev_err(&client->dev, "unable to register device\n");
		goto unregister_pm;
	}

	return 0;

unregister_pm:
	pm_runtime_disable(&client->dev);
	atlas_set_powermode(data, 0);

unregister_buffer:
	iio_triggered_buffer_cleanup(indio_dev);

unregister_trigger:
	iio_trigger_unregister(data->trig);

	return ret;
}

static void atlas_remove(struct i2c_client *client)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(client);
	struct atlas_data *data = iio_priv(indio_dev);
	int ret;

	iio_device_unregister(indio_dev);
	iio_triggered_buffer_cleanup(indio_dev);
	iio_trigger_unregister(data->trig);

	pm_runtime_disable(&client->dev);
	pm_runtime_set_suspended(&client->dev);

	ret = atlas_set_powermode(data, 0);
	if (ret)
		dev_err(&client->dev, "Failed to power down device (%pe)\n",
			ERR_PTR(ret));
}

static int atlas_runtime_suspend(struct device *dev)
{
	struct atlas_data *data =
		     iio_priv(i2c_get_clientdata(to_i2c_client(dev)));

	return atlas_set_powermode(data, 0);
}

static int atlas_runtime_resume(struct device *dev)
{
	struct atlas_data *data =
		     iio_priv(i2c_get_clientdata(to_i2c_client(dev)));

	return atlas_set_powermode(data, 1);
}

static const struct dev_pm_ops atlas_pm_ops = {
	RUNTIME_PM_OPS(atlas_runtime_suspend, atlas_runtime_resume, NULL)
};

static struct i2c_driver atlas_driver = {
	.driver = {
		.name	= ATLAS_DRV_NAME,
		.of_match_table	= atlas_dt_ids,
		.pm	= pm_ptr(&atlas_pm_ops),
	},
	.probe		= atlas_probe,
	.remove		= atlas_remove,
	.id_table	= atlas_id,
};
module_i2c_driver(atlas_driver);

MODULE_AUTHOR("Matt Ranostay <[email protected]>");
MODULE_DESCRIPTION("Atlas Scientific SM sensors");
MODULE_LICENSE("GPL");