linux/drivers/iio/frequency/adf4377.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * ADF4377 driver
 *
 * Copyright 2022 Analog Devices Inc.
 */

#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/property.h>
#include <linux/spi/spi.h>
#include <linux/iio/iio.h>
#include <linux/regmap.h>
#include <linux/units.h>

#include <linux/unaligned.h>

/* ADF4377 REG0000 Map */
#define ADF4377_0000_SOFT_RESET_R_MSK		BIT(7)
#define ADF4377_0000_LSB_FIRST_R_MSK		BIT(6)
#define ADF4377_0000_ADDRESS_ASC_R_MSK		BIT(5)
#define ADF4377_0000_SDO_ACTIVE_R_MSK		BIT(4)
#define ADF4377_0000_SDO_ACTIVE_MSK		BIT(3)
#define ADF4377_0000_ADDRESS_ASC_MSK		BIT(2)
#define ADF4377_0000_LSB_FIRST_MSK		BIT(1)
#define ADF4377_0000_SOFT_RESET_MSK		BIT(0)

/* ADF4377 REG0000 Bit Definition */
#define ADF4377_0000_SDO_ACTIVE_SPI_3W		0x0
#define ADF4377_0000_SDO_ACTIVE_SPI_4W		0x1

#define ADF4377_0000_ADDR_ASC_AUTO_DECR		0x0
#define ADF4377_0000_ADDR_ASC_AUTO_INCR		0x1

#define ADF4377_0000_LSB_FIRST_MSB		0x0
#define ADF4377_0000_LSB_FIRST_LSB		0x1

#define ADF4377_0000_SOFT_RESET_N_OP		0x0
#define ADF4377_0000_SOFT_RESET_EN		0x1

/* ADF4377 REG0001 Map */
#define ADF4377_0001_SINGLE_INSTR_MSK		BIT(7)
#define ADF4377_0001_MASTER_RB_CTRL_MSK		BIT(5)

/* ADF4377 REG0003 Bit Definition */
#define ADF4377_0003_CHIP_TYPE			0x06

/* ADF4377 REG0004 Bit Definition */
#define ADF4377_0004_PRODUCT_ID_LSB		0x0005

/* ADF4377 REG0005 Bit Definition */
#define ADF4377_0005_PRODUCT_ID_MSB		0x0005

/* ADF4377 REG000A Map */
#define ADF4377_000A_SCRATCHPAD_MSK		GENMASK(7, 0)

/* ADF4377 REG000C Bit Definition */
#define ADF4377_000C_VENDOR_ID_LSB		0x56

/* ADF4377 REG000D Bit Definition */
#define ADF4377_000D_VENDOR_ID_MSB		0x04

/* ADF4377 REG000F Bit Definition */
#define ADF4377_000F_R00F_RSV1_MSK		GENMASK(7, 0)

/* ADF4377 REG0010 Map*/
#define ADF4377_0010_N_INT_LSB_MSK		GENMASK(7, 0)

/* ADF4377 REG0011 Map*/
#define ADF4377_0011_EN_AUTOCAL_MSK		BIT(7)
#define ADF4377_0011_EN_RDBLR_MSK		BIT(6)
#define ADF4377_0011_DCLK_DIV2_MSK		GENMASK(5, 4)
#define ADF4377_0011_N_INT_MSB_MSK		GENMASK(3, 0)

/* ADF4377 REG0011 Bit Definition */
#define ADF4377_0011_DCLK_DIV2_1		0x0
#define ADF4377_0011_DCLK_DIV2_2		0x1
#define ADF4377_0011_DCLK_DIV2_4		0x2
#define ADF4377_0011_DCLK_DIV2_8		0x3

/* ADF4377 REG0012 Map*/
#define ADF4377_0012_CLKOUT_DIV_MSK		GENMASK(7, 6)
#define ADF4377_0012_R_DIV_MSK			GENMASK(5, 0)

/* ADF4377 REG0012 Bit Definition */
#define ADF4377_0012_CLKOUT_DIV_1		0x0
#define ADF4377_0012_CLKOUT_DIV_2		0x1
#define ADF4377_0012_CLKOUT_DIV_4		0x2
#define ADF4377_0012_CLKOUT_DIV_8		0x3

/* ADF4377 REG0013 Map */
#define ADF4377_0013_M_VCO_CORE_MSK		GENMASK(5, 4)
#define ADF4377_0013_VCO_BIAS_MSK		GENMASK(3, 0)

/* ADF4377 REG0013 Bit Definition */
#define ADF4377_0013_M_VCO_0			0x0
#define ADF4377_0013_M_VCO_1			0x1
#define ADF4377_0013_M_VCO_2			0x2
#define ADF4377_0013_M_VCO_3			0x3

/* ADF4377 REG0014 Map */
#define ADF4377_0014_M_VCO_BAND_MSK		GENMASK(7, 0)

/* ADF4377 REG0015 Map */
#define ADF4377_0015_BLEED_I_LSB_MSK		GENMASK(7, 6)
#define ADF4377_0015_BLEED_POL_MSK		BIT(5)
#define ADF4377_0015_EN_BLEED_MSK		BIT(4)
#define ADF4377_0015_CP_I_MSK			GENMASK(3, 0)

/* ADF4377 REG0015 Bit Definition */
#define ADF4377_CURRENT_SINK			0x0
#define ADF4377_CURRENT_SOURCE			0x1

#define ADF4377_0015_CP_0MA7			0x0
#define ADF4377_0015_CP_0MA9			0x1
#define ADF4377_0015_CP_1MA1			0x2
#define ADF4377_0015_CP_1MA3			0x3
#define ADF4377_0015_CP_1MA4			0x4
#define ADF4377_0015_CP_1MA8			0x5
#define ADF4377_0015_CP_2MA2			0x6
#define ADF4377_0015_CP_2MA5			0x7
#define ADF4377_0015_CP_2MA9			0x8
#define ADF4377_0015_CP_3MA6			0x9
#define ADF4377_0015_CP_4MA3			0xA
#define ADF4377_0015_CP_5MA0			0xB
#define ADF4377_0015_CP_5MA7			0xC
#define ADF4377_0015_CP_7MA2			0xD
#define ADF4377_0015_CP_8MA6			0xE
#define ADF4377_0015_CP_10MA1			0xF

/* ADF4377 REG0016 Map */
#define ADF4377_0016_BLEED_I_MSB_MSK		GENMASK(7, 0)

/* ADF4377 REG0017 Map */
#define ADF4377_0016_INV_CLKOUT_MSK		BIT(7)
#define ADF4377_0016_N_DEL_MSK			GENMASK(6, 0)

/* ADF4377 REG0018 Map */
#define ADF4377_0018_CMOS_OV_MSK		BIT(7)
#define ADF4377_0018_R_DEL_MSK			GENMASK(6, 0)

/* ADF4377 REG0018 Bit Definition */
#define ADF4377_0018_1V8_LOGIC			0x0
#define ADF4377_0018_3V3_LOGIC			0x1

/* ADF4377 REG0019 Map */
#define ADF4377_0019_CLKOUT2_OP_MSK		GENMASK(7, 6)
#define ADF4377_0019_CLKOUT1_OP_MSK		GENMASK(5, 4)
#define ADF4377_0019_PD_CLK_MSK			BIT(3)
#define ADF4377_0019_PD_RDET_MSK		BIT(2)
#define ADF4377_0019_PD_ADC_MSK			BIT(1)
#define ADF4377_0019_PD_CALADC_MSK		BIT(0)

/* ADF4377 REG0019 Bit Definition */
#define ADF4377_0019_CLKOUT_320MV		0x0
#define ADF4377_0019_CLKOUT_420MV		0x1
#define ADF4377_0019_CLKOUT_530MV		0x2
#define ADF4377_0019_CLKOUT_640MV		0x3

/* ADF4377 REG001A Map */
#define ADF4377_001A_PD_ALL_MSK			BIT(7)
#define ADF4377_001A_PD_RDIV_MSK		BIT(6)
#define ADF4377_001A_PD_NDIV_MSK		BIT(5)
#define ADF4377_001A_PD_VCO_MSK			BIT(4)
#define ADF4377_001A_PD_LD_MSK			BIT(3)
#define ADF4377_001A_PD_PFDCP_MSK		BIT(2)
#define ADF4377_001A_PD_CLKOUT1_MSK		BIT(1)
#define ADF4377_001A_PD_CLKOUT2_MSK		BIT(0)

/* ADF4377 REG001B Map */
#define ADF4377_001B_EN_LOL_MSK			BIT(7)
#define ADF4377_001B_LDWIN_PW_MSK		BIT(6)
#define ADF4377_001B_EN_LDWIN_MSK		BIT(5)
#define ADF4377_001B_LD_COUNT_MSK		GENMASK(4, 0)

/* ADF4377 REG001B Bit Definition */
#define ADF4377_001B_LDWIN_PW_NARROW		0x0
#define ADF4377_001B_LDWIN_PW_WIDE		0x1

/* ADF4377 REG001C Map */
#define ADF4377_001C_EN_DNCLK_MSK		BIT(7)
#define ADF4377_001C_EN_DRCLK_MSK		BIT(6)
#define ADF4377_001C_RST_LD_MSK			BIT(2)
#define ADF4377_001C_R01C_RSV1_MSK		BIT(0)

/* ADF4377 REG001C Bit Definition */
#define ADF4377_001C_RST_LD_INACTIVE		0x0
#define ADF4377_001C_RST_LD_ACTIVE		0x1

#define ADF4377_001C_R01C_RSV1			0x1

/* ADF4377 REG001D Map */
#define ADF4377_001D_MUXOUT_MSK			GENMASK(7, 4)
#define ADF4377_001D_EN_CPTEST_MSK		BIT(2)
#define ADF4377_001D_CP_DOWN_MSK		BIT(1)
#define ADF4377_001D_CP_UP_MSK			BIT(0)

#define ADF4377_001D_EN_CPTEST_OFF		0x0
#define ADF4377_001D_EN_CPTEST_ON		0x1

#define ADF4377_001D_CP_DOWN_OFF		0x0
#define ADF4377_001D_CP_DOWN_ON			0x1

#define ADF4377_001D_CP_UP_OFF			0x0
#define ADF4377_001D_CP_UP_ON			0x1

/* ADF4377 REG001F Map */
#define ADF4377_001F_BST_REF_MSK		BIT(7)
#define ADF4377_001F_FILT_REF_MSK		BIT(6)
#define ADF4377_001F_REF_SEL_MSK		BIT(5)
#define ADF4377_001F_R01F_RSV1_MSK		GENMASK(4, 0)

/* ADF4377 REG001F Bit Definition */
#define ADF4377_001F_BST_LARGE_REF_IN		0x0
#define ADF4377_001F_BST_SMALL_REF_IN		0x1

#define ADF4377_001F_FILT_REF_OFF		0x0
#define ADF4377_001F_FILT_REF_ON		0x1

#define ADF4377_001F_REF_SEL_DMA		0x0
#define ADF4377_001F_REF_SEL_LNA		0x1

#define ADF4377_001F_R01F_RSV1			0x7

/* ADF4377 REG0020 Map */
#define ADF4377_0020_RST_SYS_MSK		BIT(4)
#define ADF4377_0020_EN_ADC_CLK_MSK		BIT(3)
#define ADF4377_0020_R020_RSV1_MSK		BIT(0)

/* ADF4377 REG0021 Bit Definition */
#define ADF4377_0021_R021_RSV1			0xD3

/* ADF4377 REG0022 Bit Definition */
#define ADF4377_0022_R022_RSV1			0x32

/* ADF4377 REG0023 Map */
#define ADF4377_0023_CAT_CT_SEL			BIT(7)
#define ADF4377_0023_R023_RSV1_MSK		GENMASK(6, 0)

/* ADF4377 REG0023 Bit Definition */
#define ADF4377_0023_R023_RSV1			0x18

/* ADF4377 REG0024 Map */
#define ADF4377_0024_DCLK_MODE_MSK		BIT(2)

/* ADF4377 REG0025 Map */
#define ADF4377_0025_CLKODIV_DB_MSK		BIT(7)
#define ADF4377_0025_DCLK_DB_MSK		BIT(6)
#define ADF4377_0025_R025_RSV1_MSK		GENMASK(5, 0)

/* ADF4377 REG0025 Bit Definition */
#define ADF4377_0025_R025_RSV1			0x16

/* ADF4377 REG0026 Map */
#define ADF4377_0026_VCO_BAND_DIV_MSK		GENMASK(7, 0)

/* ADF4377 REG0027 Map */
#define ADF4377_0027_SYNTH_LOCK_TO_LSB_MSK	GENMASK(7, 0)

/* ADF4377 REG0028 Map */
#define ADF4377_0028_O_VCO_DB_MSK		BIT(7)
#define ADF4377_0028_SYNTH_LOCK_TO_MSB_MSK	GENMASK(6, 0)

/* ADF4377 REG0029 Map */
#define ADF4377_0029_VCO_ALC_TO_LSB_MSK		GENMASK(7, 0)

/* ADF4377 REG002A Map */
#define ADF4377_002A_DEL_CTRL_DB_MSK		BIT(7)
#define ADF4377_002A_VCO_ALC_TO_MSB_MSK		GENMASK(6, 0)

/* ADF4377 REG002C Map */
#define ADF4377_002C_R02C_RSV1			0xC0

/* ADF4377 REG002D Map */
#define ADF4377_002D_ADC_CLK_DIV_MSK		GENMASK(7, 0)

/* ADF4377 REG002E Map */
#define ADF4377_002E_EN_ADC_CNV_MSK		BIT(7)
#define ADF4377_002E_EN_ADC_MSK			BIT(1)
#define ADF4377_002E_ADC_A_CONV_MSK		BIT(0)

/* ADF4377 REG002E Bit Definition */
#define ADF4377_002E_ADC_A_CONV_ADC_ST_CNV	0x0
#define ADF4377_002E_ADC_A_CONV_VCO_CALIB	0x1

/* ADF4377 REG002F Map */
#define ADF4377_002F_DCLK_DIV1_MSK		GENMASK(1, 0)

/* ADF4377 REG002F Bit Definition */
#define ADF4377_002F_DCLK_DIV1_1		0x0
#define ADF4377_002F_DCLK_DIV1_2		0x1
#define ADF4377_002F_DCLK_DIV1_8		0x2
#define ADF4377_002F_DCLK_DIV1_32		0x3

/* ADF4377 REG0031 Bit Definition */
#define ADF4377_0031_R031_RSV1			0x09

/* ADF4377 REG0032 Map */
#define ADF4377_0032_ADC_CLK_SEL_MSK		BIT(6)
#define ADF4377_0032_R032_RSV1_MSK		GENMASK(5, 0)

/* ADF4377 REG0032 Bit Definition */
#define ADF4377_0032_ADC_CLK_SEL_N_OP		0x0
#define ADF4377_0032_ADC_CLK_SEL_SPI_CLK	0x1

#define ADF4377_0032_R032_RSV1			0x9

/* ADF4377 REG0033 Bit Definition */
#define ADF4377_0033_R033_RSV1			0x18

/* ADF4377 REG0034 Bit Definition */
#define ADF4377_0034_R034_RSV1			0x08

/* ADF4377 REG003A Bit Definition */
#define ADF4377_003A_R03A_RSV1			0x5D

/* ADF4377 REG003B Bit Definition */
#define ADF4377_003B_R03B_RSV1			0x2B

/* ADF4377 REG003D Map */
#define ADF4377_003D_O_VCO_BAND_MSK		BIT(3)
#define ADF4377_003D_O_VCO_CORE_MSK		BIT(2)
#define ADF4377_003D_O_VCO_BIAS_MSK		BIT(1)

/* ADF4377 REG003D Bit Definition */
#define ADF4377_003D_O_VCO_BAND_VCO_CALIB	0x0
#define ADF4377_003D_O_VCO_BAND_M_VCO		0x1

#define ADF4377_003D_O_VCO_CORE_VCO_CALIB	0x0
#define ADF4377_003D_O_VCO_CORE_M_VCO		0x1

#define ADF4377_003D_O_VCO_BIAS_VCO_CALIB	0x0
#define ADF4377_003D_O_VCO_BIAS_M_VCO		0x1

/* ADF4377 REG0042 Map */
#define ADF4377_0042_R042_RSV1			0x05

/* ADF4377 REG0045 Map */
#define ADF4377_0045_ADC_ST_CNV_MSK		BIT(0)

/* ADF4377 REG0049 Map */
#define ADF4377_0049_EN_CLK2_MSK		BIT(7)
#define ADF4377_0049_EN_CLK1_MSK		BIT(6)
#define ADF4377_0049_REF_OK_MSK			BIT(3)
#define ADF4377_0049_ADC_BUSY_MSK		BIT(2)
#define ADF4377_0049_FSM_BUSY_MSK		BIT(1)
#define ADF4377_0049_LOCKED_MSK			BIT(0)

/* ADF4377 REG004B Map */
#define ADF4377_004B_VCO_CORE_MSK		GENMASK(1, 0)

/* ADF4377 REG004C Map */
#define ADF4377_004C_CHIP_TEMP_LSB_MSK		GENMASK(7, 0)

/* ADF4377 REG004D Map */
#define ADF4377_004D_CHIP_TEMP_MSB_MSK		BIT(0)

/* ADF4377 REG004F Map */
#define ADF4377_004F_VCO_BAND_MSK		GENMASK(7, 0)

/* ADF4377 REG0051 Map */
#define ADF4377_0051_VCO_BIAS_MSK		GENMASK(3, 0)

/* ADF4377 REG0054 Map */
#define ADF4377_0054_CHIP_VERSION_MSK		GENMASK(7, 0)

/* Specifications */
#define ADF4377_SPI_READ_CMD			BIT(7)
#define ADF4377_MAX_VCO_FREQ			(12800ULL * HZ_PER_MHZ)
#define ADF4377_MIN_VCO_FREQ			(6400ULL * HZ_PER_MHZ)
#define ADF4377_MAX_REFIN_FREQ			(1000 * HZ_PER_MHZ)
#define ADF4377_MIN_REFIN_FREQ			(10 * HZ_PER_MHZ)
#define ADF4377_MAX_FREQ_PFD			(500 * HZ_PER_MHZ)
#define ADF4377_MIN_FREQ_PFD			(3 * HZ_PER_MHZ)
#define ADF4377_MAX_CLKPN_FREQ			ADF4377_MAX_VCO_FREQ
#define ADF4377_MIN_CLKPN_FREQ			(ADF4377_MIN_VCO_FREQ / 8)
#define ADF4377_FREQ_PFD_80MHZ			(80 * HZ_PER_MHZ)
#define ADF4377_FREQ_PFD_125MHZ			(125 * HZ_PER_MHZ)
#define ADF4377_FREQ_PFD_160MHZ			(160 * HZ_PER_MHZ)
#define ADF4377_FREQ_PFD_250MHZ			(250 * HZ_PER_MHZ)
#define ADF4377_FREQ_PFD_320MHZ			(320 * HZ_PER_MHZ)

enum {
	ADF4377_FREQ,
};

enum muxout_select_mode {
	ADF4377_MUXOUT_HIGH_Z = 0x0,
	ADF4377_MUXOUT_LKDET = 0x1,
	ADF4377_MUXOUT_LOW = 0x2,
	ADF4377_MUXOUT_DIV_RCLK_2 = 0x4,
	ADF4377_MUXOUT_DIV_NCLK_2 = 0x5,
	ADF4377_MUXOUT_HIGH = 0x8,
};

struct adf4377_chip_info {
	const char *name;
	bool has_gpio_enclk2;
};

struct adf4377_state {
	const struct adf4377_chip_info	*chip_info;
	struct spi_device	*spi;
	struct regmap		*regmap;
	struct clk		*clkin;
	/* Protect against concurrent accesses to the device and data content */
	struct mutex		lock;
	struct notifier_block	nb;
	/* Reference Divider */
	unsigned int		ref_div_factor;
	/* PFD Frequency */
	unsigned int		f_pfd;
	/* Input Reference Clock */
	unsigned int		clkin_freq;
	/* CLKOUT Divider */
	u8			clkout_div_sel;
	/* Feedback Divider (N) */
	u16			n_int;
	u16			synth_lock_timeout;
	u16			vco_alc_timeout;
	u16			adc_clk_div;
	u16			vco_band_div;
	u8			dclk_div1;
	u8			dclk_div2;
	u8			dclk_mode;
	unsigned int		f_div_rclk;
	enum muxout_select_mode	muxout_select;
	struct gpio_desc	*gpio_ce;
	struct gpio_desc	*gpio_enclk1;
	struct gpio_desc	*gpio_enclk2;
	u8			buf[2] __aligned(IIO_DMA_MINALIGN);
};

static const char * const adf4377_muxout_modes[] = {
	[ADF4377_MUXOUT_HIGH_Z] = "high_z",
	[ADF4377_MUXOUT_LKDET] = "lock_detect",
	[ADF4377_MUXOUT_LOW] = "muxout_low",
	[ADF4377_MUXOUT_DIV_RCLK_2] = "f_div_rclk_2",
	[ADF4377_MUXOUT_DIV_NCLK_2] = "f_div_nclk_2",
	[ADF4377_MUXOUT_HIGH] = "muxout_high",
};

static const struct reg_sequence adf4377_reg_defaults[] = {
	{ 0x42,  ADF4377_0042_R042_RSV1 },
	{ 0x3B,  ADF4377_003B_R03B_RSV1 },
	{ 0x3A,  ADF4377_003A_R03A_RSV1 },
	{ 0x34,  ADF4377_0034_R034_RSV1 },
	{ 0x33,  ADF4377_0033_R033_RSV1 },
	{ 0x32,  ADF4377_0032_R032_RSV1 },
	{ 0x31,  ADF4377_0031_R031_RSV1 },
	{ 0x2C,  ADF4377_002C_R02C_RSV1 },
	{ 0x25,  ADF4377_0025_R025_RSV1 },
	{ 0x23,  ADF4377_0023_R023_RSV1 },
	{ 0x22,  ADF4377_0022_R022_RSV1 },
	{ 0x21,  ADF4377_0021_R021_RSV1 },
	{ 0x1f,  ADF4377_001F_R01F_RSV1 },
	{ 0x1c,  ADF4377_001C_R01C_RSV1 },
};

static const struct regmap_config adf4377_regmap_config = {
	.reg_bits = 16,
	.val_bits = 8,
	.read_flag_mask = BIT(7),
	.max_register = 0x54,
};

static int adf4377_reg_access(struct iio_dev *indio_dev,
			      unsigned int reg,
			      unsigned int write_val,
			      unsigned int *read_val)
{
	struct adf4377_state *st = iio_priv(indio_dev);

	if (read_val)
		return regmap_read(st->regmap, reg, read_val);

	return regmap_write(st->regmap, reg, write_val);
}

static const struct iio_info adf4377_info = {
	.debugfs_reg_access = &adf4377_reg_access,
};

static int adf4377_soft_reset(struct adf4377_state *st)
{
	unsigned int read_val;
	int ret;

	ret = regmap_update_bits(st->regmap, 0x0, ADF4377_0000_SOFT_RESET_MSK |
				 ADF4377_0000_SOFT_RESET_R_MSK,
				 FIELD_PREP(ADF4377_0000_SOFT_RESET_MSK, 1) |
				 FIELD_PREP(ADF4377_0000_SOFT_RESET_R_MSK, 1));
	if (ret)
		return ret;

	return regmap_read_poll_timeout(st->regmap, 0x0, read_val,
					!(read_val & (ADF4377_0000_SOFT_RESET_R_MSK |
					ADF4377_0000_SOFT_RESET_R_MSK)), 200, 200 * 100);
}

static int adf4377_get_freq(struct adf4377_state *st, u64 *freq)
{
	unsigned int ref_div_factor, n_int;
	u64 clkin_freq;
	int ret;

	mutex_lock(&st->lock);
	ret = regmap_read(st->regmap, 0x12, &ref_div_factor);
	if (ret)
		goto exit;

	ret = regmap_bulk_read(st->regmap, 0x10, st->buf, sizeof(st->buf));
	if (ret)
		goto exit;

	clkin_freq = clk_get_rate(st->clkin);
	ref_div_factor = FIELD_GET(ADF4377_0012_R_DIV_MSK, ref_div_factor);
	n_int = FIELD_GET(ADF4377_0010_N_INT_LSB_MSK | ADF4377_0011_N_INT_MSB_MSK,
			  get_unaligned_le16(&st->buf));

	*freq = div_u64(clkin_freq, ref_div_factor) * n_int;
exit:
	mutex_unlock(&st->lock);

	return ret;
}

static int adf4377_set_freq(struct adf4377_state *st, u64 freq)
{
	unsigned int read_val;
	u64 f_vco;
	int ret;

	mutex_lock(&st->lock);

	if (freq > ADF4377_MAX_CLKPN_FREQ || freq < ADF4377_MIN_CLKPN_FREQ) {
		ret = -EINVAL;
		goto exit;
	}

	ret = regmap_update_bits(st->regmap, 0x1C, ADF4377_001C_EN_DNCLK_MSK |
				 ADF4377_001C_EN_DRCLK_MSK,
				 FIELD_PREP(ADF4377_001C_EN_DNCLK_MSK, 1) |
				 FIELD_PREP(ADF4377_001C_EN_DRCLK_MSK, 1));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x11, ADF4377_0011_EN_AUTOCAL_MSK |
				 ADF4377_0011_DCLK_DIV2_MSK,
				 FIELD_PREP(ADF4377_0011_EN_AUTOCAL_MSK, 1) |
				 FIELD_PREP(ADF4377_0011_DCLK_DIV2_MSK, st->dclk_div2));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x2E, ADF4377_002E_EN_ADC_CNV_MSK |
				 ADF4377_002E_EN_ADC_MSK |
				 ADF4377_002E_ADC_A_CONV_MSK,
				 FIELD_PREP(ADF4377_002E_EN_ADC_CNV_MSK, 1) |
				 FIELD_PREP(ADF4377_002E_EN_ADC_MSK, 1) |
				 FIELD_PREP(ADF4377_002E_ADC_A_CONV_MSK,
					    ADF4377_002E_ADC_A_CONV_VCO_CALIB));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x20, ADF4377_0020_EN_ADC_CLK_MSK,
				 FIELD_PREP(ADF4377_0020_EN_ADC_CLK_MSK, 1));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x2F, ADF4377_002F_DCLK_DIV1_MSK,
				 FIELD_PREP(ADF4377_002F_DCLK_DIV1_MSK, st->dclk_div1));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x24, ADF4377_0024_DCLK_MODE_MSK,
				 FIELD_PREP(ADF4377_0024_DCLK_MODE_MSK, st->dclk_mode));
	if (ret)
		goto exit;

	ret = regmap_write(st->regmap, 0x27,
			   FIELD_PREP(ADF4377_0027_SYNTH_LOCK_TO_LSB_MSK,
				      st->synth_lock_timeout));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x28, ADF4377_0028_SYNTH_LOCK_TO_MSB_MSK,
				 FIELD_PREP(ADF4377_0028_SYNTH_LOCK_TO_MSB_MSK,
					    st->synth_lock_timeout >> 8));
	if (ret)
		goto exit;

	ret = regmap_write(st->regmap, 0x29,
			   FIELD_PREP(ADF4377_0029_VCO_ALC_TO_LSB_MSK,
				      st->vco_alc_timeout));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x2A, ADF4377_002A_VCO_ALC_TO_MSB_MSK,
				 FIELD_PREP(ADF4377_002A_VCO_ALC_TO_MSB_MSK,
					    st->vco_alc_timeout >> 8));
	if (ret)
		goto exit;

	ret = regmap_write(st->regmap, 0x26,
			   FIELD_PREP(ADF4377_0026_VCO_BAND_DIV_MSK, st->vco_band_div));
	if (ret)
		goto exit;

	ret = regmap_write(st->regmap, 0x2D,
			   FIELD_PREP(ADF4377_002D_ADC_CLK_DIV_MSK, st->adc_clk_div));
	if (ret)
		goto exit;

	st->clkout_div_sel = 0;

	f_vco = freq;

	while (f_vco < ADF4377_MIN_VCO_FREQ) {
		f_vco <<= 1;
		st->clkout_div_sel++;
	}

	st->n_int = div_u64(freq, st->f_pfd);

	ret = regmap_update_bits(st->regmap, 0x11, ADF4377_0011_EN_RDBLR_MSK |
				 ADF4377_0011_N_INT_MSB_MSK,
				 FIELD_PREP(ADF4377_0011_EN_RDBLR_MSK, 0) |
				 FIELD_PREP(ADF4377_0011_N_INT_MSB_MSK, st->n_int >> 8));
	if (ret)
		goto exit;

	ret = regmap_update_bits(st->regmap, 0x12, ADF4377_0012_R_DIV_MSK |
				 ADF4377_0012_CLKOUT_DIV_MSK,
				 FIELD_PREP(ADF4377_0012_CLKOUT_DIV_MSK, st->clkout_div_sel) |
				 FIELD_PREP(ADF4377_0012_R_DIV_MSK, st->ref_div_factor));
	if (ret)
		goto exit;

	ret = regmap_write(st->regmap, 0x10,
			   FIELD_PREP(ADF4377_0010_N_INT_LSB_MSK, st->n_int));
	if (ret)
		goto exit;

	ret = regmap_read_poll_timeout(st->regmap, 0x49, read_val,
				       !(read_val & (ADF4377_0049_FSM_BUSY_MSK)), 200, 200 * 100);
	if (ret)
		goto exit;

	/* Disable EN_DNCLK, EN_DRCLK */
	ret = regmap_update_bits(st->regmap, 0x1C, ADF4377_001C_EN_DNCLK_MSK |
				 ADF4377_001C_EN_DRCLK_MSK,
				 FIELD_PREP(ADF4377_001C_EN_DNCLK_MSK, 0) |
				 FIELD_PREP(ADF4377_001C_EN_DRCLK_MSK, 0));
	if (ret)
		goto exit;

	/* Disable EN_ADC_CLK */
	ret = regmap_update_bits(st->regmap, 0x20, ADF4377_0020_EN_ADC_CLK_MSK,
				 FIELD_PREP(ADF4377_0020_EN_ADC_CLK_MSK, 0));
	if (ret)
		goto exit;

	/* Set output Amplitude */
	ret = regmap_update_bits(st->regmap, 0x19, ADF4377_0019_CLKOUT2_OP_MSK |
				 ADF4377_0019_CLKOUT1_OP_MSK,
				 FIELD_PREP(ADF4377_0019_CLKOUT1_OP_MSK,
					    ADF4377_0019_CLKOUT_420MV) |
				 FIELD_PREP(ADF4377_0019_CLKOUT2_OP_MSK,
					    ADF4377_0019_CLKOUT_420MV));

exit:
	mutex_unlock(&st->lock);

	return ret;
}

static void adf4377_gpio_init(struct adf4377_state *st)
{
	if (st->gpio_ce) {
		gpiod_set_value(st->gpio_ce, 1);

		/* Delay for SPI register bits to settle to their power-on reset state */
		fsleep(200);
	}

	if (st->gpio_enclk1)
		gpiod_set_value(st->gpio_enclk1, 1);

	if (st->gpio_enclk2)
		gpiod_set_value(st->gpio_enclk2, 1);
}

static int adf4377_init(struct adf4377_state *st)
{
	struct spi_device *spi = st->spi;
	int ret;

	adf4377_gpio_init(st);

	ret = adf4377_soft_reset(st);
	if (ret) {
		dev_err(&spi->dev, "Failed to soft reset.\n");
		return ret;
	}

	ret = regmap_multi_reg_write(st->regmap, adf4377_reg_defaults,
				     ARRAY_SIZE(adf4377_reg_defaults));
	if (ret) {
		dev_err(&spi->dev, "Failed to set default registers.\n");
		return ret;
	}

	ret = regmap_update_bits(st->regmap, 0x00,
				 ADF4377_0000_SDO_ACTIVE_MSK | ADF4377_0000_SDO_ACTIVE_R_MSK,
				 FIELD_PREP(ADF4377_0000_SDO_ACTIVE_MSK,
					    ADF4377_0000_SDO_ACTIVE_SPI_4W) |
				 FIELD_PREP(ADF4377_0000_SDO_ACTIVE_R_MSK,
					    ADF4377_0000_SDO_ACTIVE_SPI_4W));
	if (ret) {
		dev_err(&spi->dev, "Failed to set 4-Wire Operation.\n");
		return ret;
	}

	st->clkin_freq = clk_get_rate(st->clkin);

	/* Power Up */
	ret = regmap_write(st->regmap, 0x1a,
			   FIELD_PREP(ADF4377_001A_PD_ALL_MSK, 0) |
			   FIELD_PREP(ADF4377_001A_PD_RDIV_MSK, 0) |
			   FIELD_PREP(ADF4377_001A_PD_NDIV_MSK, 0) |
			   FIELD_PREP(ADF4377_001A_PD_VCO_MSK, 0) |
			   FIELD_PREP(ADF4377_001A_PD_LD_MSK, 0) |
			   FIELD_PREP(ADF4377_001A_PD_PFDCP_MSK, 0) |
			   FIELD_PREP(ADF4377_001A_PD_CLKOUT1_MSK, 0) |
			   FIELD_PREP(ADF4377_001A_PD_CLKOUT2_MSK, 0));
	if (ret) {
		dev_err(&spi->dev, "Failed to set power down registers.\n");
		return ret;
	}

	/* Set Mux Output */
	ret = regmap_update_bits(st->regmap, 0x1D,
				 ADF4377_001D_MUXOUT_MSK,
				 FIELD_PREP(ADF4377_001D_MUXOUT_MSK, st->muxout_select));
	if (ret)
		return ret;

	/* Compute PFD */
	st->ref_div_factor = 0;
	do {
		st->ref_div_factor++;
		st->f_pfd = st->clkin_freq / st->ref_div_factor;
	} while (st->f_pfd > ADF4377_MAX_FREQ_PFD);

	if (st->f_pfd > ADF4377_MAX_FREQ_PFD || st->f_pfd < ADF4377_MIN_FREQ_PFD)
		return -EINVAL;

	st->f_div_rclk = st->f_pfd;

	if (st->f_pfd <= ADF4377_FREQ_PFD_80MHZ) {
		st->dclk_div1 = ADF4377_002F_DCLK_DIV1_1;
		st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1;
		st->dclk_mode = 0;
	} else if (st->f_pfd <= ADF4377_FREQ_PFD_125MHZ) {
		st->dclk_div1 = ADF4377_002F_DCLK_DIV1_1;
		st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1;
		st->dclk_mode = 1;
	} else if (st->f_pfd <= ADF4377_FREQ_PFD_160MHZ) {
		st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2;
		st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1;
		st->dclk_mode = 0;
		st->f_div_rclk /= 2;
	} else if (st->f_pfd <= ADF4377_FREQ_PFD_250MHZ) {
		st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2;
		st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1;
		st->dclk_mode = 1;
		st->f_div_rclk /= 2;
	} else if (st->f_pfd <= ADF4377_FREQ_PFD_320MHZ) {
		st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2;
		st->dclk_div2 = ADF4377_0011_DCLK_DIV2_2;
		st->dclk_mode = 0;
		st->f_div_rclk /= 4;
	} else {
		st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2;
		st->dclk_div2 = ADF4377_0011_DCLK_DIV2_2;
		st->dclk_mode = 1;
		st->f_div_rclk /= 4;
	}

	st->synth_lock_timeout = DIV_ROUND_UP(st->f_div_rclk, 50000);
	st->vco_alc_timeout = DIV_ROUND_UP(st->f_div_rclk, 20000);
	st->vco_band_div = DIV_ROUND_UP(st->f_div_rclk, 150000 * 16 * (1 << st->dclk_mode));
	st->adc_clk_div = DIV_ROUND_UP((st->f_div_rclk / 400000 - 2), 4);

	return 0;
}

static ssize_t adf4377_read(struct iio_dev *indio_dev, uintptr_t private,
			    const struct iio_chan_spec *chan, char *buf)
{
	struct adf4377_state *st = iio_priv(indio_dev);
	u64 val = 0;
	int ret;

	switch ((u32)private) {
	case ADF4377_FREQ:
		ret = adf4377_get_freq(st, &val);
		if (ret)
			return ret;

		return sysfs_emit(buf, "%llu\n", val);
	default:
		return -EINVAL;
	}
}

static ssize_t adf4377_write(struct iio_dev *indio_dev, uintptr_t private,
			     const struct iio_chan_spec *chan, const char *buf,
			     size_t len)
{
	struct adf4377_state *st = iio_priv(indio_dev);
	unsigned long long freq;
	int ret;

	switch ((u32)private) {
	case ADF4377_FREQ:
		ret = kstrtoull(buf, 10, &freq);
		if (ret)
			return ret;

		ret = adf4377_set_freq(st, freq);
		if (ret)
			return ret;

		return len;
	default:
		return -EINVAL;
	}
}

#define _ADF4377_EXT_INFO(_name, _shared, _ident) { \
		.name = _name, \
		.read = adf4377_read, \
		.write = adf4377_write, \
		.private = _ident, \
		.shared = _shared, \
	}

static const struct iio_chan_spec_ext_info adf4377_ext_info[] = {
	/*
	 * Usually we use IIO_CHAN_INFO_FREQUENCY, but there are
	 * values > 2^32 in order to support the entire frequency range
	 * in Hz.
	 */
	_ADF4377_EXT_INFO("frequency", IIO_SEPARATE, ADF4377_FREQ),
	{ }
};

static const struct iio_chan_spec adf4377_channels[] = {
	{
		.type = IIO_ALTVOLTAGE,
		.indexed = 1,
		.output = 1,
		.channel = 0,
		.ext_info = adf4377_ext_info,
	},
};

static int adf4377_properties_parse(struct adf4377_state *st)
{
	struct spi_device *spi = st->spi;
	int ret;

	st->clkin = devm_clk_get_enabled(&spi->dev, "ref_in");
	if (IS_ERR(st->clkin))
		return dev_err_probe(&spi->dev, PTR_ERR(st->clkin),
				     "failed to get the reference input clock\n");

	st->gpio_ce = devm_gpiod_get_optional(&st->spi->dev, "chip-enable",
					      GPIOD_OUT_LOW);
	if (IS_ERR(st->gpio_ce))
		return dev_err_probe(&spi->dev, PTR_ERR(st->gpio_ce),
				     "failed to get the CE GPIO\n");

	st->gpio_enclk1 = devm_gpiod_get_optional(&st->spi->dev, "clk1-enable",
						  GPIOD_OUT_LOW);
	if (IS_ERR(st->gpio_enclk1))
		return dev_err_probe(&spi->dev, PTR_ERR(st->gpio_enclk1),
				     "failed to get the CE GPIO\n");

	if (st->chip_info->has_gpio_enclk2) {
		st->gpio_enclk2 = devm_gpiod_get_optional(&st->spi->dev, "clk2-enable",
							  GPIOD_OUT_LOW);
		if (IS_ERR(st->gpio_enclk2))
			return dev_err_probe(&spi->dev, PTR_ERR(st->gpio_enclk2),
					"failed to get the CE GPIO\n");
	}

	ret = device_property_match_property_string(&spi->dev, "adi,muxout-select",
						    adf4377_muxout_modes,
						    ARRAY_SIZE(adf4377_muxout_modes));
	if (ret >= 0)
		st->muxout_select = ret;
	else
		st->muxout_select = ADF4377_MUXOUT_HIGH_Z;

	return 0;
}

static int adf4377_freq_change(struct notifier_block *nb, unsigned long action, void *data)
{
	struct adf4377_state *st = container_of(nb, struct adf4377_state, nb);
	int ret;

	if (action == POST_RATE_CHANGE) {
		mutex_lock(&st->lock);
		ret = notifier_from_errno(adf4377_init(st));
		mutex_unlock(&st->lock);
		return ret;
	}

	return NOTIFY_OK;
}

static const struct adf4377_chip_info adf4377_chip_info = {
	.name = "adf4377",
	.has_gpio_enclk2 = true,
};

static const struct adf4377_chip_info adf4378_chip_info = {
	.name = "adf4378",
	.has_gpio_enclk2 = false,
};

static int adf4377_probe(struct spi_device *spi)
{
	struct iio_dev *indio_dev;
	struct regmap *regmap;
	struct adf4377_state *st;
	int ret;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	regmap = devm_regmap_init_spi(spi, &adf4377_regmap_config);
	if (IS_ERR(regmap))
		return PTR_ERR(regmap);

	st = iio_priv(indio_dev);

	indio_dev->info = &adf4377_info;
	indio_dev->name = "adf4377";
	indio_dev->channels = adf4377_channels;
	indio_dev->num_channels = ARRAY_SIZE(adf4377_channels);

	st->regmap = regmap;
	st->spi = spi;
	st->chip_info = spi_get_device_match_data(spi);
	mutex_init(&st->lock);

	ret = adf4377_properties_parse(st);
	if (ret)
		return ret;

	st->nb.notifier_call = adf4377_freq_change;
	ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb);
	if (ret)
		return ret;

	ret = adf4377_init(st);
	if (ret)
		return ret;

	return devm_iio_device_register(&spi->dev, indio_dev);
}

static const struct spi_device_id adf4377_id[] = {
	{ "adf4377", (kernel_ulong_t)&adf4377_chip_info },
	{ "adf4378", (kernel_ulong_t)&adf4378_chip_info },
	{}
};
MODULE_DEVICE_TABLE(spi, adf4377_id);

static const struct of_device_id adf4377_of_match[] = {
	{ .compatible = "adi,adf4377", .data = &adf4377_chip_info },
	{ .compatible = "adi,adf4378", .data = &adf4378_chip_info },
	{}
};
MODULE_DEVICE_TABLE(of, adf4377_of_match);

static struct spi_driver adf4377_driver = {
	.driver = {
		.name = "adf4377",
		.of_match_table = adf4377_of_match,
	},
	.probe = adf4377_probe,
	.id_table = adf4377_id,
};
module_spi_driver(adf4377_driver);

MODULE_AUTHOR("Antoniu Miclaus <[email protected]>");
MODULE_DESCRIPTION("Analog Devices ADF4377");
MODULE_LICENSE("GPL");