// SPDX-License-Identifier: GPL-2.0-only
/*
* ADMV1014 driver
*
* Copyright 2022 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/device.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/notifier.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
#include <linux/unaligned.h>
/* ADMV1014 Register Map */
#define ADMV1014_REG_SPI_CONTROL 0x00
#define ADMV1014_REG_ALARM 0x01
#define ADMV1014_REG_ALARM_MASKS 0x02
#define ADMV1014_REG_ENABLE 0x03
#define ADMV1014_REG_QUAD 0x04
#define ADMV1014_REG_LO_AMP_PHASE_ADJUST1 0x05
#define ADMV1014_REG_MIXER 0x07
#define ADMV1014_REG_IF_AMP 0x08
#define ADMV1014_REG_IF_AMP_BB_AMP 0x09
#define ADMV1014_REG_BB_AMP_AGC 0x0A
#define ADMV1014_REG_VVA_TEMP_COMP 0x0B
/* ADMV1014_REG_SPI_CONTROL Map */
#define ADMV1014_PARITY_EN_MSK BIT(15)
#define ADMV1014_SPI_SOFT_RESET_MSK BIT(14)
#define ADMV1014_CHIP_ID_MSK GENMASK(11, 4)
#define ADMV1014_CHIP_ID 0x9
#define ADMV1014_REVISION_ID_MSK GENMASK(3, 0)
/* ADMV1014_REG_ALARM Map */
#define ADMV1014_PARITY_ERROR_MSK BIT(15)
#define ADMV1014_TOO_FEW_ERRORS_MSK BIT(14)
#define ADMV1014_TOO_MANY_ERRORS_MSK BIT(13)
#define ADMV1014_ADDRESS_RANGE_ERROR_MSK BIT(12)
/* ADMV1014_REG_ENABLE Map */
#define ADMV1014_IBIAS_PD_MSK BIT(14)
#define ADMV1014_P1DB_COMPENSATION_MSK GENMASK(13, 12)
#define ADMV1014_IF_AMP_PD_MSK BIT(11)
#define ADMV1014_QUAD_BG_PD_MSK BIT(9)
#define ADMV1014_BB_AMP_PD_MSK BIT(8)
#define ADMV1014_QUAD_IBIAS_PD_MSK BIT(7)
#define ADMV1014_DET_EN_MSK BIT(6)
#define ADMV1014_BG_PD_MSK BIT(5)
/* ADMV1014_REG_QUAD Map */
#define ADMV1014_QUAD_SE_MODE_MSK GENMASK(9, 6)
#define ADMV1014_QUAD_FILTERS_MSK GENMASK(3, 0)
/* ADMV1014_REG_LO_AMP_PHASE_ADJUST1 Map */
#define ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK GENMASK(15, 9)
#define ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK GENMASK(8, 2)
/* ADMV1014_REG_MIXER Map */
#define ADMV1014_MIXER_VGATE_MSK GENMASK(15, 9)
#define ADMV1014_DET_PROG_MSK GENMASK(6, 0)
/* ADMV1014_REG_IF_AMP Map */
#define ADMV1014_IF_AMP_COARSE_GAIN_I_MSK GENMASK(11, 8)
#define ADMV1014_IF_AMP_FINE_GAIN_Q_MSK GENMASK(7, 4)
#define ADMV1014_IF_AMP_FINE_GAIN_I_MSK GENMASK(3, 0)
/* ADMV1014_REG_IF_AMP_BB_AMP Map */
#define ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK GENMASK(15, 12)
#define ADMV1014_BB_AMP_OFFSET_Q_MSK GENMASK(9, 5)
#define ADMV1014_BB_AMP_OFFSET_I_MSK GENMASK(4, 0)
/* ADMV1014_REG_BB_AMP_AGC Map */
#define ADMV1014_BB_AMP_REF_GEN_MSK GENMASK(6, 3)
#define ADMV1014_BB_AMP_GAIN_CTRL_MSK GENMASK(2, 1)
#define ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK BIT(0)
/* ADMV1014_REG_VVA_TEMP_COMP Map */
#define ADMV1014_VVA_TEMP_COMP_MSK GENMASK(15, 0)
/* ADMV1014 Miscellaneous Defines */
#define ADMV1014_READ BIT(7)
#define ADMV1014_REG_ADDR_READ_MSK GENMASK(6, 1)
#define ADMV1014_REG_ADDR_WRITE_MSK GENMASK(22, 17)
#define ADMV1014_REG_DATA_MSK GENMASK(16, 1)
#define ADMV1014_NUM_REGULATORS 9
enum {
ADMV1014_IQ_MODE,
ADMV1014_IF_MODE,
};
enum {
ADMV1014_SE_MODE_POS = 6,
ADMV1014_SE_MODE_NEG = 9,
ADMV1014_SE_MODE_DIFF = 12,
};
enum {
ADMV1014_CALIBSCALE_COARSE,
ADMV1014_CALIBSCALE_FINE,
};
static const int detector_table[] = {0, 1, 2, 4, 8, 16, 32, 64};
static const char * const input_mode_names[] = { "iq", "if" };
static const char * const quad_se_mode_names[] = { "se-pos", "se-neg", "diff" };
struct admv1014_state {
struct spi_device *spi;
struct clk *clkin;
struct notifier_block nb;
/* Protect against concurrent accesses to the device and to data*/
struct mutex lock;
struct regulator_bulk_data regulators[ADMV1014_NUM_REGULATORS];
unsigned int input_mode;
unsigned int quad_se_mode;
unsigned int p1db_comp;
bool det_en;
u8 data[3] __aligned(IIO_DMA_MINALIGN);
};
static const int mixer_vgate_table[] = {106, 107, 108, 110, 111, 112, 113, 114,
117, 118, 119, 120, 122, 123, 44, 45};
static int __admv1014_spi_read(struct admv1014_state *st, unsigned int reg,
unsigned int *val)
{
struct spi_transfer t = {};
int ret;
st->data[0] = ADMV1014_READ | FIELD_PREP(ADMV1014_REG_ADDR_READ_MSK, reg);
st->data[1] = 0;
st->data[2] = 0;
t.rx_buf = &st->data[0];
t.tx_buf = &st->data[0];
t.len = sizeof(st->data);
ret = spi_sync_transfer(st->spi, &t, 1);
if (ret)
return ret;
*val = FIELD_GET(ADMV1014_REG_DATA_MSK, get_unaligned_be24(&st->data[0]));
return ret;
}
static int admv1014_spi_read(struct admv1014_state *st, unsigned int reg,
unsigned int *val)
{
int ret;
mutex_lock(&st->lock);
ret = __admv1014_spi_read(st, reg, val);
mutex_unlock(&st->lock);
return ret;
}
static int __admv1014_spi_write(struct admv1014_state *st,
unsigned int reg,
unsigned int val)
{
put_unaligned_be24(FIELD_PREP(ADMV1014_REG_DATA_MSK, val) |
FIELD_PREP(ADMV1014_REG_ADDR_WRITE_MSK, reg), &st->data[0]);
return spi_write(st->spi, &st->data[0], 3);
}
static int admv1014_spi_write(struct admv1014_state *st, unsigned int reg,
unsigned int val)
{
int ret;
mutex_lock(&st->lock);
ret = __admv1014_spi_write(st, reg, val);
mutex_unlock(&st->lock);
return ret;
}
static int __admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg,
unsigned int mask, unsigned int val)
{
unsigned int data, temp;
int ret;
ret = __admv1014_spi_read(st, reg, &data);
if (ret)
return ret;
temp = (data & ~mask) | (val & mask);
return __admv1014_spi_write(st, reg, temp);
}
static int admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg,
unsigned int mask, unsigned int val)
{
int ret;
mutex_lock(&st->lock);
ret = __admv1014_spi_update_bits(st, reg, mask, val);
mutex_unlock(&st->lock);
return ret;
}
static int admv1014_update_quad_filters(struct admv1014_state *st)
{
unsigned int filt_raw;
u64 rate = clk_get_rate(st->clkin);
if (rate >= (5400 * HZ_PER_MHZ) && rate <= (7000 * HZ_PER_MHZ))
filt_raw = 15;
else if (rate > (7000 * HZ_PER_MHZ) && rate <= (8000 * HZ_PER_MHZ))
filt_raw = 10;
else if (rate > (8000 * HZ_PER_MHZ) && rate <= (9200 * HZ_PER_MHZ))
filt_raw = 5;
else
filt_raw = 0;
return __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD,
ADMV1014_QUAD_FILTERS_MSK,
FIELD_PREP(ADMV1014_QUAD_FILTERS_MSK, filt_raw));
}
static int admv1014_update_vcm_settings(struct admv1014_state *st)
{
unsigned int i, vcm_mv, vcm_comp, bb_sw_hl_cm;
int ret;
vcm_mv = regulator_get_voltage(st->regulators[0].consumer) / 1000;
for (i = 0; i < ARRAY_SIZE(mixer_vgate_table); i++) {
vcm_comp = 1050 + mult_frac(i, 450, 8);
if (vcm_mv != vcm_comp)
continue;
ret = __admv1014_spi_update_bits(st, ADMV1014_REG_MIXER,
ADMV1014_MIXER_VGATE_MSK,
FIELD_PREP(ADMV1014_MIXER_VGATE_MSK,
mixer_vgate_table[i]));
if (ret)
return ret;
bb_sw_hl_cm = ~(i / 8);
bb_sw_hl_cm = FIELD_PREP(ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK, bb_sw_hl_cm);
return __admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC,
ADMV1014_BB_AMP_REF_GEN_MSK |
ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK,
FIELD_PREP(ADMV1014_BB_AMP_REF_GEN_MSK, i) |
bb_sw_hl_cm);
}
return -EINVAL;
}
static int admv1014_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct admv1014_state *st = iio_priv(indio_dev);
unsigned int data;
int ret;
switch (info) {
case IIO_CHAN_INFO_OFFSET:
ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data);
if (ret)
return ret;
if (chan->channel2 == IIO_MOD_I)
*val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_I_MSK, data);
else
*val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_Q_MSK, data);
return IIO_VAL_INT;
case IIO_CHAN_INFO_PHASE:
ret = admv1014_spi_read(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, &data);
if (ret)
return ret;
if (chan->channel2 == IIO_MOD_I)
*val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, data);
else
*val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, data);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
ret = admv1014_spi_read(st, ADMV1014_REG_MIXER, &data);
if (ret)
return ret;
*val = FIELD_GET(ADMV1014_DET_PROG_MSK, data);
return IIO_VAL_INT;
case IIO_CHAN_INFO_CALIBSCALE:
ret = admv1014_spi_read(st, ADMV1014_REG_BB_AMP_AGC, &data);
if (ret)
return ret;
*val = FIELD_GET(ADMV1014_BB_AMP_GAIN_CTRL_MSK, data);
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int admv1014_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
int data;
unsigned int msk;
struct admv1014_state *st = iio_priv(indio_dev);
switch (info) {
case IIO_CHAN_INFO_OFFSET:
if (chan->channel2 == IIO_MOD_I) {
msk = ADMV1014_BB_AMP_OFFSET_I_MSK;
data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_I_MSK, val);
} else {
msk = ADMV1014_BB_AMP_OFFSET_Q_MSK;
data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_Q_MSK, val);
}
return admv1014_spi_update_bits(st, ADMV1014_REG_IF_AMP_BB_AMP, msk, data);
case IIO_CHAN_INFO_PHASE:
if (chan->channel2 == IIO_MOD_I) {
msk = ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK;
data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, val);
} else {
msk = ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK;
data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, val);
}
return admv1014_spi_update_bits(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, msk, data);
case IIO_CHAN_INFO_SCALE:
return admv1014_spi_update_bits(st, ADMV1014_REG_MIXER,
ADMV1014_DET_PROG_MSK,
FIELD_PREP(ADMV1014_DET_PROG_MSK, val));
case IIO_CHAN_INFO_CALIBSCALE:
return admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC,
ADMV1014_BB_AMP_GAIN_CTRL_MSK,
FIELD_PREP(ADMV1014_BB_AMP_GAIN_CTRL_MSK, val));
default:
return -EINVAL;
}
}
static ssize_t admv1014_read(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct admv1014_state *st = iio_priv(indio_dev);
unsigned int data;
int ret;
switch (private) {
case ADMV1014_CALIBSCALE_COARSE:
if (chan->channel2 == IIO_MOD_I) {
ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data);
if (ret)
return ret;
data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data);
} else {
ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data);
if (ret)
return ret;
data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data);
}
break;
case ADMV1014_CALIBSCALE_FINE:
ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data);
if (ret)
return ret;
if (chan->channel2 == IIO_MOD_I)
data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data);
else
data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data);
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", data);
}
static ssize_t admv1014_write(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct admv1014_state *st = iio_priv(indio_dev);
unsigned int data, addr, msk;
int ret;
ret = kstrtouint(buf, 10, &data);
if (ret)
return ret;
switch (private) {
case ADMV1014_CALIBSCALE_COARSE:
if (chan->channel2 == IIO_MOD_I) {
addr = ADMV1014_REG_IF_AMP;
msk = ADMV1014_IF_AMP_COARSE_GAIN_I_MSK;
data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data);
} else {
addr = ADMV1014_REG_IF_AMP_BB_AMP;
msk = ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK;
data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data);
}
break;
case ADMV1014_CALIBSCALE_FINE:
addr = ADMV1014_REG_IF_AMP;
if (chan->channel2 == IIO_MOD_I) {
msk = ADMV1014_IF_AMP_FINE_GAIN_I_MSK;
data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data);
} else {
msk = ADMV1014_IF_AMP_FINE_GAIN_Q_MSK;
data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data);
}
break;
default:
return -EINVAL;
}
ret = admv1014_spi_update_bits(st, addr, msk, data);
return ret ? ret : len;
}
static int admv1014_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
switch (info) {
case IIO_CHAN_INFO_SCALE:
*vals = detector_table;
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(detector_table);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int admv1014_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int write_val,
unsigned int *read_val)
{
struct admv1014_state *st = iio_priv(indio_dev);
if (read_val)
return admv1014_spi_read(st, reg, read_val);
else
return admv1014_spi_write(st, reg, write_val);
}
static const struct iio_info admv1014_info = {
.read_raw = admv1014_read_raw,
.write_raw = admv1014_write_raw,
.read_avail = &admv1014_read_avail,
.debugfs_reg_access = &admv1014_reg_access,
};
static const char * const admv1014_reg_name[] = {
"vcm", "vcc-if-bb", "vcc-vga", "vcc-vva", "vcc-lna-3p3",
"vcc-lna-1p5", "vcc-bg", "vcc-quad", "vcc-mixer"
};
static int admv1014_freq_change(struct notifier_block *nb, unsigned long action, void *data)
{
struct admv1014_state *st = container_of(nb, struct admv1014_state, nb);
int ret;
if (action == POST_RATE_CHANGE) {
mutex_lock(&st->lock);
ret = notifier_from_errno(admv1014_update_quad_filters(st));
mutex_unlock(&st->lock);
return ret;
}
return NOTIFY_OK;
}
#define _ADMV1014_EXT_INFO(_name, _shared, _ident) { \
.name = _name, \
.read = admv1014_read, \
.write = admv1014_write, \
.private = _ident, \
.shared = _shared, \
}
static const struct iio_chan_spec_ext_info admv1014_ext_info[] = {
_ADMV1014_EXT_INFO("calibscale_coarse", IIO_SEPARATE, ADMV1014_CALIBSCALE_COARSE),
_ADMV1014_EXT_INFO("calibscale_fine", IIO_SEPARATE, ADMV1014_CALIBSCALE_FINE),
{ }
};
#define ADMV1014_CHAN_IQ(_channel, rf_comp) { \
.type = IIO_ALTVOLTAGE, \
.modified = 1, \
.output = 0, \
.indexed = 1, \
.channel2 = IIO_MOD_##rf_comp, \
.channel = _channel, \
.info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_CALIBSCALE), \
}
#define ADMV1014_CHAN_IF(_channel, rf_comp) { \
.type = IIO_ALTVOLTAGE, \
.modified = 1, \
.output = 0, \
.indexed = 1, \
.channel2 = IIO_MOD_##rf_comp, \
.channel = _channel, \
.info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) | \
BIT(IIO_CHAN_INFO_OFFSET), \
}
#define ADMV1014_CHAN_POWER(_channel) { \
.type = IIO_POWER, \
.output = 0, \
.indexed = 1, \
.channel = _channel, \
.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \
}
#define ADMV1014_CHAN_CALIBSCALE(_channel, rf_comp, _admv1014_ext_info) { \
.type = IIO_ALTVOLTAGE, \
.modified = 1, \
.output = 0, \
.indexed = 1, \
.channel2 = IIO_MOD_##rf_comp, \
.channel = _channel, \
.ext_info = _admv1014_ext_info, \
}
static const struct iio_chan_spec admv1014_channels_iq[] = {
ADMV1014_CHAN_IQ(0, I),
ADMV1014_CHAN_IQ(0, Q),
ADMV1014_CHAN_POWER(0),
};
static const struct iio_chan_spec admv1014_channels_if[] = {
ADMV1014_CHAN_IF(0, I),
ADMV1014_CHAN_IF(0, Q),
ADMV1014_CHAN_CALIBSCALE(0, I, admv1014_ext_info),
ADMV1014_CHAN_CALIBSCALE(0, Q, admv1014_ext_info),
ADMV1014_CHAN_POWER(0),
};
static void admv1014_clk_disable(void *data)
{
clk_disable_unprepare(data);
}
static void admv1014_reg_disable(void *data)
{
regulator_bulk_disable(ADMV1014_NUM_REGULATORS, data);
}
static void admv1014_powerdown(void *data)
{
unsigned int enable_reg, enable_reg_msk;
/* Disable all components in the Enable Register */
enable_reg_msk = ADMV1014_IBIAS_PD_MSK |
ADMV1014_IF_AMP_PD_MSK |
ADMV1014_QUAD_BG_PD_MSK |
ADMV1014_BB_AMP_PD_MSK |
ADMV1014_QUAD_IBIAS_PD_MSK |
ADMV1014_BG_PD_MSK;
enable_reg = FIELD_PREP(ADMV1014_IBIAS_PD_MSK, 1) |
FIELD_PREP(ADMV1014_IF_AMP_PD_MSK, 1) |
FIELD_PREP(ADMV1014_QUAD_BG_PD_MSK, 1) |
FIELD_PREP(ADMV1014_BB_AMP_PD_MSK, 1) |
FIELD_PREP(ADMV1014_QUAD_IBIAS_PD_MSK, 1) |
FIELD_PREP(ADMV1014_BG_PD_MSK, 1);
admv1014_spi_update_bits(data, ADMV1014_REG_ENABLE,
enable_reg_msk, enable_reg);
}
static int admv1014_init(struct admv1014_state *st)
{
unsigned int chip_id, enable_reg, enable_reg_msk;
struct spi_device *spi = st->spi;
int ret;
ret = regulator_bulk_enable(ADMV1014_NUM_REGULATORS, st->regulators);
if (ret) {
dev_err(&spi->dev, "Failed to enable regulators");
return ret;
}
ret = devm_add_action_or_reset(&spi->dev, admv1014_reg_disable, st->regulators);
if (ret)
return ret;
ret = clk_prepare_enable(st->clkin);
if (ret)
return ret;
ret = devm_add_action_or_reset(&spi->dev, admv1014_clk_disable, st->clkin);
if (ret)
return ret;
st->nb.notifier_call = admv1014_freq_change;
ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb);
if (ret)
return ret;
ret = devm_add_action_or_reset(&spi->dev, admv1014_powerdown, st);
if (ret)
return ret;
/* Perform a software reset */
ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL,
ADMV1014_SPI_SOFT_RESET_MSK,
FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 1));
if (ret) {
dev_err(&spi->dev, "ADMV1014 SPI software reset failed.\n");
return ret;
}
ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL,
ADMV1014_SPI_SOFT_RESET_MSK,
FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 0));
if (ret) {
dev_err(&spi->dev, "ADMV1014 SPI software reset disable failed.\n");
return ret;
}
ret = __admv1014_spi_write(st, ADMV1014_REG_VVA_TEMP_COMP, 0x727C);
if (ret) {
dev_err(&spi->dev, "Writing default Temperature Compensation value failed.\n");
return ret;
}
ret = __admv1014_spi_read(st, ADMV1014_REG_SPI_CONTROL, &chip_id);
if (ret)
return ret;
chip_id = FIELD_GET(ADMV1014_CHIP_ID_MSK, chip_id);
if (chip_id != ADMV1014_CHIP_ID) {
dev_err(&spi->dev, "Invalid Chip ID.\n");
return -EINVAL;
}
ret = __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD,
ADMV1014_QUAD_SE_MODE_MSK,
FIELD_PREP(ADMV1014_QUAD_SE_MODE_MSK,
st->quad_se_mode));
if (ret) {
dev_err(&spi->dev, "Writing Quad SE Mode failed.\n");
return ret;
}
ret = admv1014_update_quad_filters(st);
if (ret) {
dev_err(&spi->dev, "Update Quad Filters failed.\n");
return ret;
}
ret = admv1014_update_vcm_settings(st);
if (ret) {
dev_err(&spi->dev, "Update VCM Settings failed.\n");
return ret;
}
enable_reg_msk = ADMV1014_P1DB_COMPENSATION_MSK |
ADMV1014_IF_AMP_PD_MSK |
ADMV1014_BB_AMP_PD_MSK |
ADMV1014_DET_EN_MSK;
enable_reg = FIELD_PREP(ADMV1014_P1DB_COMPENSATION_MSK, st->p1db_comp ? 3 : 0) |
FIELD_PREP(ADMV1014_IF_AMP_PD_MSK,
(st->input_mode == ADMV1014_IF_MODE) ? 0 : 1) |
FIELD_PREP(ADMV1014_BB_AMP_PD_MSK,
(st->input_mode == ADMV1014_IF_MODE) ? 1 : 0) |
FIELD_PREP(ADMV1014_DET_EN_MSK, st->det_en);
return __admv1014_spi_update_bits(st, ADMV1014_REG_ENABLE, enable_reg_msk, enable_reg);
}
static int admv1014_properties_parse(struct admv1014_state *st)
{
unsigned int i;
struct spi_device *spi = st->spi;
int ret;
st->det_en = device_property_read_bool(&spi->dev, "adi,detector-enable");
st->p1db_comp = device_property_read_bool(&spi->dev, "adi,p1db-compensation-enable");
ret = device_property_match_property_string(&spi->dev, "adi,input-mode",
input_mode_names,
ARRAY_SIZE(input_mode_names));
if (ret >= 0)
st->input_mode = ret;
else
st->input_mode = ADMV1014_IQ_MODE;
ret = device_property_match_property_string(&spi->dev, "adi,quad-se-mode",
quad_se_mode_names,
ARRAY_SIZE(quad_se_mode_names));
if (ret >= 0)
st->quad_se_mode = ADMV1014_SE_MODE_POS + (ret * 3);
else
st->quad_se_mode = ADMV1014_SE_MODE_POS;
for (i = 0; i < ADMV1014_NUM_REGULATORS; ++i)
st->regulators[i].supply = admv1014_reg_name[i];
ret = devm_regulator_bulk_get(&st->spi->dev, ADMV1014_NUM_REGULATORS,
st->regulators);
if (ret) {
dev_err(&spi->dev, "Failed to request regulators");
return ret;
}
st->clkin = devm_clk_get(&spi->dev, "lo_in");
if (IS_ERR(st->clkin))
return dev_err_probe(&spi->dev, PTR_ERR(st->clkin),
"failed to get the LO input clock\n");
return 0;
}
static int admv1014_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct admv1014_state *st;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
ret = admv1014_properties_parse(st);
if (ret)
return ret;
indio_dev->info = &admv1014_info;
indio_dev->name = "admv1014";
if (st->input_mode == ADMV1014_IQ_MODE) {
indio_dev->channels = admv1014_channels_iq;
indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_iq);
} else {
indio_dev->channels = admv1014_channels_if;
indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_if);
}
st->spi = spi;
mutex_init(&st->lock);
ret = admv1014_init(st);
if (ret)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct spi_device_id admv1014_id[] = {
{ "admv1014", 0 },
{}
};
MODULE_DEVICE_TABLE(spi, admv1014_id);
static const struct of_device_id admv1014_of_match[] = {
{ .compatible = "adi,admv1014" },
{}
};
MODULE_DEVICE_TABLE(of, admv1014_of_match);
static struct spi_driver admv1014_driver = {
.driver = {
.name = "admv1014",
.of_match_table = admv1014_of_match,
},
.probe = admv1014_probe,
.id_table = admv1014_id,
};
module_spi_driver(admv1014_driver);
MODULE_AUTHOR("Antoniu Miclaus <[email protected]");
MODULE_DESCRIPTION("Analog Devices ADMV1014");
MODULE_LICENSE("GPL v2");