linux/drivers/iio/frequency/admv1014.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * ADMV1014 driver
 *
 * Copyright 2022 Analog Devices Inc.
 */

#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/device.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/notifier.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/units.h>

#include <linux/unaligned.h>

/* ADMV1014 Register Map */
#define ADMV1014_REG_SPI_CONTROL		0x00
#define ADMV1014_REG_ALARM			0x01
#define ADMV1014_REG_ALARM_MASKS		0x02
#define ADMV1014_REG_ENABLE			0x03
#define ADMV1014_REG_QUAD			0x04
#define ADMV1014_REG_LO_AMP_PHASE_ADJUST1	0x05
#define ADMV1014_REG_MIXER			0x07
#define ADMV1014_REG_IF_AMP			0x08
#define ADMV1014_REG_IF_AMP_BB_AMP		0x09
#define ADMV1014_REG_BB_AMP_AGC			0x0A
#define ADMV1014_REG_VVA_TEMP_COMP		0x0B

/* ADMV1014_REG_SPI_CONTROL Map */
#define ADMV1014_PARITY_EN_MSK			BIT(15)
#define ADMV1014_SPI_SOFT_RESET_MSK		BIT(14)
#define ADMV1014_CHIP_ID_MSK			GENMASK(11, 4)
#define ADMV1014_CHIP_ID			0x9
#define ADMV1014_REVISION_ID_MSK		GENMASK(3, 0)

/* ADMV1014_REG_ALARM Map */
#define ADMV1014_PARITY_ERROR_MSK		BIT(15)
#define ADMV1014_TOO_FEW_ERRORS_MSK		BIT(14)
#define ADMV1014_TOO_MANY_ERRORS_MSK		BIT(13)
#define ADMV1014_ADDRESS_RANGE_ERROR_MSK	BIT(12)

/* ADMV1014_REG_ENABLE Map */
#define ADMV1014_IBIAS_PD_MSK			BIT(14)
#define ADMV1014_P1DB_COMPENSATION_MSK		GENMASK(13, 12)
#define ADMV1014_IF_AMP_PD_MSK			BIT(11)
#define ADMV1014_QUAD_BG_PD_MSK			BIT(9)
#define ADMV1014_BB_AMP_PD_MSK			BIT(8)
#define ADMV1014_QUAD_IBIAS_PD_MSK		BIT(7)
#define ADMV1014_DET_EN_MSK			BIT(6)
#define ADMV1014_BG_PD_MSK			BIT(5)

/* ADMV1014_REG_QUAD Map */
#define ADMV1014_QUAD_SE_MODE_MSK		GENMASK(9, 6)
#define ADMV1014_QUAD_FILTERS_MSK		GENMASK(3, 0)

/* ADMV1014_REG_LO_AMP_PHASE_ADJUST1 Map */
#define ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK	GENMASK(15, 9)
#define ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK	GENMASK(8, 2)

/* ADMV1014_REG_MIXER Map */
#define ADMV1014_MIXER_VGATE_MSK		GENMASK(15, 9)
#define ADMV1014_DET_PROG_MSK			GENMASK(6, 0)

/* ADMV1014_REG_IF_AMP Map */
#define ADMV1014_IF_AMP_COARSE_GAIN_I_MSK	GENMASK(11, 8)
#define ADMV1014_IF_AMP_FINE_GAIN_Q_MSK		GENMASK(7, 4)
#define ADMV1014_IF_AMP_FINE_GAIN_I_MSK		GENMASK(3, 0)

/* ADMV1014_REG_IF_AMP_BB_AMP Map */
#define ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK	GENMASK(15, 12)
#define ADMV1014_BB_AMP_OFFSET_Q_MSK		GENMASK(9, 5)
#define ADMV1014_BB_AMP_OFFSET_I_MSK		GENMASK(4, 0)

/* ADMV1014_REG_BB_AMP_AGC Map */
#define ADMV1014_BB_AMP_REF_GEN_MSK		GENMASK(6, 3)
#define ADMV1014_BB_AMP_GAIN_CTRL_MSK		GENMASK(2, 1)
#define ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK	BIT(0)

/* ADMV1014_REG_VVA_TEMP_COMP Map */
#define ADMV1014_VVA_TEMP_COMP_MSK		GENMASK(15, 0)

/* ADMV1014 Miscellaneous Defines */
#define ADMV1014_READ				BIT(7)
#define ADMV1014_REG_ADDR_READ_MSK		GENMASK(6, 1)
#define ADMV1014_REG_ADDR_WRITE_MSK		GENMASK(22, 17)
#define ADMV1014_REG_DATA_MSK			GENMASK(16, 1)
#define ADMV1014_NUM_REGULATORS			9

enum {
	ADMV1014_IQ_MODE,
	ADMV1014_IF_MODE,
};

enum {
	ADMV1014_SE_MODE_POS = 6,
	ADMV1014_SE_MODE_NEG = 9,
	ADMV1014_SE_MODE_DIFF = 12,
};

enum {
	ADMV1014_CALIBSCALE_COARSE,
	ADMV1014_CALIBSCALE_FINE,
};

static const int detector_table[] = {0, 1, 2, 4, 8, 16, 32, 64};

static const char * const input_mode_names[] = { "iq", "if" };

static const char * const quad_se_mode_names[] = { "se-pos", "se-neg", "diff" };

struct admv1014_state {
	struct spi_device		*spi;
	struct clk			*clkin;
	struct notifier_block		nb;
	/* Protect against concurrent accesses to the device and to data*/
	struct mutex			lock;
	struct regulator_bulk_data	regulators[ADMV1014_NUM_REGULATORS];
	unsigned int			input_mode;
	unsigned int			quad_se_mode;
	unsigned int			p1db_comp;
	bool				det_en;
	u8				data[3] __aligned(IIO_DMA_MINALIGN);
};

static const int mixer_vgate_table[] = {106, 107, 108, 110, 111, 112, 113, 114,
					117, 118, 119, 120, 122, 123, 44, 45};

static int __admv1014_spi_read(struct admv1014_state *st, unsigned int reg,
			       unsigned int *val)
{
	struct spi_transfer t = {};
	int ret;

	st->data[0] = ADMV1014_READ | FIELD_PREP(ADMV1014_REG_ADDR_READ_MSK, reg);
	st->data[1] = 0;
	st->data[2] = 0;

	t.rx_buf = &st->data[0];
	t.tx_buf = &st->data[0];
	t.len = sizeof(st->data);

	ret = spi_sync_transfer(st->spi, &t, 1);
	if (ret)
		return ret;

	*val = FIELD_GET(ADMV1014_REG_DATA_MSK, get_unaligned_be24(&st->data[0]));

	return ret;
}

static int admv1014_spi_read(struct admv1014_state *st, unsigned int reg,
			     unsigned int *val)
{
	int ret;

	mutex_lock(&st->lock);
	ret = __admv1014_spi_read(st, reg, val);
	mutex_unlock(&st->lock);

	return ret;
}

static int __admv1014_spi_write(struct admv1014_state *st,
				unsigned int reg,
				unsigned int val)
{
	put_unaligned_be24(FIELD_PREP(ADMV1014_REG_DATA_MSK, val) |
			   FIELD_PREP(ADMV1014_REG_ADDR_WRITE_MSK, reg), &st->data[0]);

	return spi_write(st->spi, &st->data[0], 3);
}

static int admv1014_spi_write(struct admv1014_state *st, unsigned int reg,
			      unsigned int val)
{
	int ret;

	mutex_lock(&st->lock);
	ret = __admv1014_spi_write(st, reg, val);
	mutex_unlock(&st->lock);

	return ret;
}

static int __admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg,
				      unsigned int mask, unsigned int val)
{
	unsigned int data, temp;
	int ret;

	ret = __admv1014_spi_read(st, reg, &data);
	if (ret)
		return ret;

	temp = (data & ~mask) | (val & mask);

	return __admv1014_spi_write(st, reg, temp);
}

static int admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg,
				    unsigned int mask, unsigned int val)
{
	int ret;

	mutex_lock(&st->lock);
	ret = __admv1014_spi_update_bits(st, reg, mask, val);
	mutex_unlock(&st->lock);

	return ret;
}

static int admv1014_update_quad_filters(struct admv1014_state *st)
{
	unsigned int filt_raw;
	u64 rate = clk_get_rate(st->clkin);

	if (rate >= (5400 * HZ_PER_MHZ) && rate <= (7000 * HZ_PER_MHZ))
		filt_raw = 15;
	else if (rate > (7000 * HZ_PER_MHZ) && rate <= (8000 * HZ_PER_MHZ))
		filt_raw = 10;
	else if (rate > (8000 * HZ_PER_MHZ) && rate <= (9200 * HZ_PER_MHZ))
		filt_raw = 5;
	else
		filt_raw = 0;

	return __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD,
					ADMV1014_QUAD_FILTERS_MSK,
					FIELD_PREP(ADMV1014_QUAD_FILTERS_MSK, filt_raw));
}

static int admv1014_update_vcm_settings(struct admv1014_state *st)
{
	unsigned int i, vcm_mv, vcm_comp, bb_sw_hl_cm;
	int ret;

	vcm_mv = regulator_get_voltage(st->regulators[0].consumer) / 1000;
	for (i = 0; i < ARRAY_SIZE(mixer_vgate_table); i++) {
		vcm_comp = 1050 + mult_frac(i, 450, 8);
		if (vcm_mv != vcm_comp)
			continue;

		ret = __admv1014_spi_update_bits(st, ADMV1014_REG_MIXER,
						 ADMV1014_MIXER_VGATE_MSK,
						 FIELD_PREP(ADMV1014_MIXER_VGATE_MSK,
							    mixer_vgate_table[i]));
		if (ret)
			return ret;

		bb_sw_hl_cm = ~(i / 8);
		bb_sw_hl_cm = FIELD_PREP(ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK, bb_sw_hl_cm);

		return __admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC,
						  ADMV1014_BB_AMP_REF_GEN_MSK |
						  ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK,
						  FIELD_PREP(ADMV1014_BB_AMP_REF_GEN_MSK, i) |
						  bb_sw_hl_cm);
	}

	return -EINVAL;
}

static int admv1014_read_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int *val, int *val2, long info)
{
	struct admv1014_state *st = iio_priv(indio_dev);
	unsigned int data;
	int ret;

	switch (info) {
	case IIO_CHAN_INFO_OFFSET:
		ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data);
		if (ret)
			return ret;

		if (chan->channel2 == IIO_MOD_I)
			*val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_I_MSK, data);
		else
			*val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_Q_MSK, data);

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_PHASE:
		ret = admv1014_spi_read(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, &data);
		if (ret)
			return ret;

		if (chan->channel2 == IIO_MOD_I)
			*val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, data);
		else
			*val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, data);

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		ret = admv1014_spi_read(st, ADMV1014_REG_MIXER, &data);
		if (ret)
			return ret;

		*val = FIELD_GET(ADMV1014_DET_PROG_MSK, data);
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_CALIBSCALE:
		ret = admv1014_spi_read(st, ADMV1014_REG_BB_AMP_AGC, &data);
		if (ret)
			return ret;

		*val = FIELD_GET(ADMV1014_BB_AMP_GAIN_CTRL_MSK, data);
		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int admv1014_write_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int val, int val2, long info)
{
	int data;
	unsigned int msk;
	struct admv1014_state *st = iio_priv(indio_dev);

	switch (info) {
	case IIO_CHAN_INFO_OFFSET:
		if (chan->channel2 == IIO_MOD_I) {
			msk = ADMV1014_BB_AMP_OFFSET_I_MSK;
			data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_I_MSK, val);
		} else {
			msk = ADMV1014_BB_AMP_OFFSET_Q_MSK;
			data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_Q_MSK, val);
		}

		return admv1014_spi_update_bits(st, ADMV1014_REG_IF_AMP_BB_AMP, msk, data);
	case IIO_CHAN_INFO_PHASE:
		if (chan->channel2 == IIO_MOD_I) {
			msk = ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK;
			data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, val);
		} else {
			msk = ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK;
			data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, val);
		}

		return admv1014_spi_update_bits(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, msk, data);
	case IIO_CHAN_INFO_SCALE:
		return admv1014_spi_update_bits(st, ADMV1014_REG_MIXER,
						ADMV1014_DET_PROG_MSK,
						FIELD_PREP(ADMV1014_DET_PROG_MSK, val));
	case IIO_CHAN_INFO_CALIBSCALE:
		return admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC,
						ADMV1014_BB_AMP_GAIN_CTRL_MSK,
						FIELD_PREP(ADMV1014_BB_AMP_GAIN_CTRL_MSK, val));
	default:
		return -EINVAL;
	}
}

static ssize_t admv1014_read(struct iio_dev *indio_dev,
			     uintptr_t private,
			     const struct iio_chan_spec *chan,
			     char *buf)
{
	struct admv1014_state *st = iio_priv(indio_dev);
	unsigned int data;
	int ret;

	switch (private) {
	case ADMV1014_CALIBSCALE_COARSE:
		if (chan->channel2 == IIO_MOD_I) {
			ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data);
			if (ret)
				return ret;

			data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data);
		} else {
			ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data);
			if (ret)
				return ret;

			data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data);
		}
		break;
	case ADMV1014_CALIBSCALE_FINE:
		ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data);
		if (ret)
			return ret;

		if (chan->channel2 == IIO_MOD_I)
			data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data);
		else
			data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data);
		break;
	default:
		return -EINVAL;
	}

	return sysfs_emit(buf, "%u\n", data);
}

static ssize_t admv1014_write(struct iio_dev *indio_dev,
			      uintptr_t private,
			      const struct iio_chan_spec *chan,
			      const char *buf, size_t len)
{
	struct admv1014_state *st = iio_priv(indio_dev);
	unsigned int data, addr, msk;
	int ret;

	ret = kstrtouint(buf, 10, &data);
	if (ret)
		return ret;

	switch (private) {
	case ADMV1014_CALIBSCALE_COARSE:
		if (chan->channel2 == IIO_MOD_I) {
			addr = ADMV1014_REG_IF_AMP;
			msk = ADMV1014_IF_AMP_COARSE_GAIN_I_MSK;
			data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data);
		} else {
			addr = ADMV1014_REG_IF_AMP_BB_AMP;
			msk = ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK;
			data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data);
		}
		break;
	case ADMV1014_CALIBSCALE_FINE:
		addr = ADMV1014_REG_IF_AMP;

		if (chan->channel2 == IIO_MOD_I) {
			msk = ADMV1014_IF_AMP_FINE_GAIN_I_MSK;
			data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data);
		} else {
			msk = ADMV1014_IF_AMP_FINE_GAIN_Q_MSK;
			data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data);
		}
		break;
	default:
		return -EINVAL;
	}

	ret = admv1014_spi_update_bits(st, addr, msk, data);

	return ret ? ret : len;
}

static int admv1014_read_avail(struct iio_dev *indio_dev,
			       struct iio_chan_spec const *chan,
			       const int **vals, int *type, int *length,
			       long info)
{
	switch (info) {
	case IIO_CHAN_INFO_SCALE:
		*vals = detector_table;
		*type = IIO_VAL_INT;
		*length = ARRAY_SIZE(detector_table);

		return IIO_AVAIL_LIST;
	default:
		return -EINVAL;
	}
}

static int admv1014_reg_access(struct iio_dev *indio_dev,
			       unsigned int reg,
			       unsigned int write_val,
			       unsigned int *read_val)
{
	struct admv1014_state *st = iio_priv(indio_dev);

	if (read_val)
		return admv1014_spi_read(st, reg, read_val);
	else
		return admv1014_spi_write(st, reg, write_val);
}

static const struct iio_info admv1014_info = {
	.read_raw = admv1014_read_raw,
	.write_raw = admv1014_write_raw,
	.read_avail = &admv1014_read_avail,
	.debugfs_reg_access = &admv1014_reg_access,
};

static const char * const admv1014_reg_name[] = {
	 "vcm", "vcc-if-bb", "vcc-vga", "vcc-vva", "vcc-lna-3p3",
	 "vcc-lna-1p5", "vcc-bg", "vcc-quad", "vcc-mixer"
};

static int admv1014_freq_change(struct notifier_block *nb, unsigned long action, void *data)
{
	struct admv1014_state *st = container_of(nb, struct admv1014_state, nb);
	int ret;

	if (action == POST_RATE_CHANGE) {
		mutex_lock(&st->lock);
		ret = notifier_from_errno(admv1014_update_quad_filters(st));
		mutex_unlock(&st->lock);
		return ret;
	}

	return NOTIFY_OK;
}

#define _ADMV1014_EXT_INFO(_name, _shared, _ident) { \
		.name = _name, \
		.read = admv1014_read, \
		.write = admv1014_write, \
		.private = _ident, \
		.shared = _shared, \
}

static const struct iio_chan_spec_ext_info admv1014_ext_info[] = {
	_ADMV1014_EXT_INFO("calibscale_coarse", IIO_SEPARATE, ADMV1014_CALIBSCALE_COARSE),
	_ADMV1014_EXT_INFO("calibscale_fine", IIO_SEPARATE, ADMV1014_CALIBSCALE_FINE),
	{ }
};

#define ADMV1014_CHAN_IQ(_channel, rf_comp) {				\
	.type = IIO_ALTVOLTAGE,						\
	.modified = 1,							\
	.output = 0,							\
	.indexed = 1,							\
	.channel2 = IIO_MOD_##rf_comp,					\
	.channel = _channel,						\
	.info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) |		\
		BIT(IIO_CHAN_INFO_OFFSET),				\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_CALIBSCALE),	\
	}

#define ADMV1014_CHAN_IF(_channel, rf_comp) {				\
	.type = IIO_ALTVOLTAGE,						\
	.modified = 1,							\
	.output = 0,							\
	.indexed = 1,							\
	.channel2 = IIO_MOD_##rf_comp,					\
	.channel = _channel,						\
	.info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) |		\
		BIT(IIO_CHAN_INFO_OFFSET),				\
	}

#define ADMV1014_CHAN_POWER(_channel) {					\
	.type = IIO_POWER,						\
	.output = 0,							\
	.indexed = 1,							\
	.channel = _channel,						\
	.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE),			\
	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE),	\
	}

#define ADMV1014_CHAN_CALIBSCALE(_channel, rf_comp, _admv1014_ext_info) {	\
	.type = IIO_ALTVOLTAGE,							\
	.modified = 1,								\
	.output = 0,								\
	.indexed = 1,								\
	.channel2 = IIO_MOD_##rf_comp,						\
	.channel = _channel,							\
	.ext_info = _admv1014_ext_info,						\
	}

static const struct iio_chan_spec admv1014_channels_iq[] = {
	ADMV1014_CHAN_IQ(0, I),
	ADMV1014_CHAN_IQ(0, Q),
	ADMV1014_CHAN_POWER(0),
};

static const struct iio_chan_spec admv1014_channels_if[] = {
	ADMV1014_CHAN_IF(0, I),
	ADMV1014_CHAN_IF(0, Q),
	ADMV1014_CHAN_CALIBSCALE(0, I, admv1014_ext_info),
	ADMV1014_CHAN_CALIBSCALE(0, Q, admv1014_ext_info),
	ADMV1014_CHAN_POWER(0),
};

static void admv1014_clk_disable(void *data)
{
	clk_disable_unprepare(data);
}

static void admv1014_reg_disable(void *data)
{
	regulator_bulk_disable(ADMV1014_NUM_REGULATORS, data);
}

static void admv1014_powerdown(void *data)
{
	unsigned int enable_reg, enable_reg_msk;

	/* Disable all components in the Enable Register */
	enable_reg_msk = ADMV1014_IBIAS_PD_MSK |
			ADMV1014_IF_AMP_PD_MSK |
			ADMV1014_QUAD_BG_PD_MSK |
			ADMV1014_BB_AMP_PD_MSK |
			ADMV1014_QUAD_IBIAS_PD_MSK |
			ADMV1014_BG_PD_MSK;

	enable_reg = FIELD_PREP(ADMV1014_IBIAS_PD_MSK, 1) |
			FIELD_PREP(ADMV1014_IF_AMP_PD_MSK, 1) |
			FIELD_PREP(ADMV1014_QUAD_BG_PD_MSK, 1) |
			FIELD_PREP(ADMV1014_BB_AMP_PD_MSK, 1) |
			FIELD_PREP(ADMV1014_QUAD_IBIAS_PD_MSK, 1) |
			FIELD_PREP(ADMV1014_BG_PD_MSK, 1);

	admv1014_spi_update_bits(data, ADMV1014_REG_ENABLE,
				 enable_reg_msk, enable_reg);
}

static int admv1014_init(struct admv1014_state *st)
{
	unsigned int chip_id, enable_reg, enable_reg_msk;
	struct spi_device *spi = st->spi;
	int ret;

	ret = regulator_bulk_enable(ADMV1014_NUM_REGULATORS, st->regulators);
	if (ret) {
		dev_err(&spi->dev, "Failed to enable regulators");
		return ret;
	}

	ret = devm_add_action_or_reset(&spi->dev, admv1014_reg_disable, st->regulators);
	if (ret)
		return ret;

	ret = clk_prepare_enable(st->clkin);
	if (ret)
		return ret;

	ret = devm_add_action_or_reset(&spi->dev, admv1014_clk_disable, st->clkin);
	if (ret)
		return ret;

	st->nb.notifier_call = admv1014_freq_change;
	ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb);
	if (ret)
		return ret;

	ret = devm_add_action_or_reset(&spi->dev, admv1014_powerdown, st);
	if (ret)
		return ret;

	/* Perform a software reset */
	ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL,
					 ADMV1014_SPI_SOFT_RESET_MSK,
					 FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 1));
	if (ret) {
		dev_err(&spi->dev, "ADMV1014 SPI software reset failed.\n");
		return ret;
	}

	ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL,
					 ADMV1014_SPI_SOFT_RESET_MSK,
					 FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 0));
	if (ret) {
		dev_err(&spi->dev, "ADMV1014 SPI software reset disable failed.\n");
		return ret;
	}

	ret = __admv1014_spi_write(st, ADMV1014_REG_VVA_TEMP_COMP, 0x727C);
	if (ret) {
		dev_err(&spi->dev, "Writing default Temperature Compensation value failed.\n");
		return ret;
	}

	ret = __admv1014_spi_read(st, ADMV1014_REG_SPI_CONTROL, &chip_id);
	if (ret)
		return ret;

	chip_id = FIELD_GET(ADMV1014_CHIP_ID_MSK, chip_id);
	if (chip_id != ADMV1014_CHIP_ID) {
		dev_err(&spi->dev, "Invalid Chip ID.\n");
		return -EINVAL;
	}

	ret = __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD,
					 ADMV1014_QUAD_SE_MODE_MSK,
					 FIELD_PREP(ADMV1014_QUAD_SE_MODE_MSK,
						    st->quad_se_mode));
	if (ret) {
		dev_err(&spi->dev, "Writing Quad SE Mode failed.\n");
		return ret;
	}

	ret = admv1014_update_quad_filters(st);
	if (ret) {
		dev_err(&spi->dev, "Update Quad Filters failed.\n");
		return ret;
	}

	ret = admv1014_update_vcm_settings(st);
	if (ret) {
		dev_err(&spi->dev, "Update VCM Settings failed.\n");
		return ret;
	}

	enable_reg_msk = ADMV1014_P1DB_COMPENSATION_MSK |
			 ADMV1014_IF_AMP_PD_MSK |
			 ADMV1014_BB_AMP_PD_MSK |
			 ADMV1014_DET_EN_MSK;

	enable_reg = FIELD_PREP(ADMV1014_P1DB_COMPENSATION_MSK, st->p1db_comp ? 3 : 0) |
		     FIELD_PREP(ADMV1014_IF_AMP_PD_MSK,
				(st->input_mode == ADMV1014_IF_MODE) ? 0 : 1) |
		     FIELD_PREP(ADMV1014_BB_AMP_PD_MSK,
				(st->input_mode == ADMV1014_IF_MODE) ? 1 : 0) |
		     FIELD_PREP(ADMV1014_DET_EN_MSK, st->det_en);

	return __admv1014_spi_update_bits(st, ADMV1014_REG_ENABLE, enable_reg_msk, enable_reg);
}

static int admv1014_properties_parse(struct admv1014_state *st)
{
	unsigned int i;
	struct spi_device *spi = st->spi;
	int ret;

	st->det_en = device_property_read_bool(&spi->dev, "adi,detector-enable");

	st->p1db_comp = device_property_read_bool(&spi->dev, "adi,p1db-compensation-enable");

	ret = device_property_match_property_string(&spi->dev, "adi,input-mode",
						    input_mode_names,
						    ARRAY_SIZE(input_mode_names));
	if (ret >= 0)
		st->input_mode = ret;
	else
		st->input_mode = ADMV1014_IQ_MODE;

	ret = device_property_match_property_string(&spi->dev, "adi,quad-se-mode",
						    quad_se_mode_names,
						    ARRAY_SIZE(quad_se_mode_names));
	if (ret >= 0)
		st->quad_se_mode = ADMV1014_SE_MODE_POS + (ret * 3);
	else
		st->quad_se_mode = ADMV1014_SE_MODE_POS;

	for (i = 0; i < ADMV1014_NUM_REGULATORS; ++i)
		st->regulators[i].supply = admv1014_reg_name[i];

	ret = devm_regulator_bulk_get(&st->spi->dev, ADMV1014_NUM_REGULATORS,
				      st->regulators);
	if (ret) {
		dev_err(&spi->dev, "Failed to request regulators");
		return ret;
	}

	st->clkin = devm_clk_get(&spi->dev, "lo_in");
	if (IS_ERR(st->clkin))
		return dev_err_probe(&spi->dev, PTR_ERR(st->clkin),
				     "failed to get the LO input clock\n");

	return 0;
}

static int admv1014_probe(struct spi_device *spi)
{
	struct iio_dev *indio_dev;
	struct admv1014_state *st;
	int ret;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);

	ret = admv1014_properties_parse(st);
	if (ret)
		return ret;

	indio_dev->info = &admv1014_info;
	indio_dev->name = "admv1014";

	if (st->input_mode == ADMV1014_IQ_MODE) {
		indio_dev->channels = admv1014_channels_iq;
		indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_iq);
	} else {
		indio_dev->channels = admv1014_channels_if;
		indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_if);
	}

	st->spi = spi;

	mutex_init(&st->lock);

	ret = admv1014_init(st);
	if (ret)
		return ret;

	return devm_iio_device_register(&spi->dev, indio_dev);
}

static const struct spi_device_id admv1014_id[] = {
	{ "admv1014", 0 },
	{}
};
MODULE_DEVICE_TABLE(spi, admv1014_id);

static const struct of_device_id admv1014_of_match[] = {
	{ .compatible = "adi,admv1014" },
	{}
};
MODULE_DEVICE_TABLE(of, admv1014_of_match);

static struct spi_driver admv1014_driver = {
	.driver = {
		.name = "admv1014",
		.of_match_table = admv1014_of_match,
	},
	.probe = admv1014_probe,
	.id_table = admv1014_id,
};
module_spi_driver(admv1014_driver);

MODULE_AUTHOR("Antoniu Miclaus <[email protected]");
MODULE_DESCRIPTION("Analog Devices ADMV1014");
MODULE_LICENSE("GPL v2");