// SPDX-License-Identifier: GPL-2.0
/*
* IIO driver for Bosch BNO055 IMU
*
* Copyright (C) 2021-2022 Istituto Italiano di Tecnologia
* Electronic Design Laboratory
* Written by Andrea Merello <[email protected]>
*
* Portions of this driver are taken from the BNO055 driver patch
* from Vlad Dogaru which is Copyright (c) 2016, Intel Corporation.
*
* This driver is also based on BMI160 driver, which is:
* Copyright (c) 2016, Intel Corporation.
* Copyright (c) 2019, Martin Kelly.
*/
#include <linux/bitfield.h>
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/util_macros.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "bno055.h"
#define BNO055_FW_UID_FMT "bno055-caldata-%*phN.dat"
#define BNO055_FW_GENERIC_NAME "bno055-caldata.dat"
/* common registers */
#define BNO055_PAGESEL_REG 0x7
/* page 0 registers */
#define BNO055_CHIP_ID_REG 0x0
#define BNO055_CHIP_ID_MAGIC 0xA0
#define BNO055_SW_REV_LSB_REG 0x4
#define BNO055_SW_REV_MSB_REG 0x5
#define BNO055_ACC_DATA_X_LSB_REG 0x8
#define BNO055_ACC_DATA_Y_LSB_REG 0xA
#define BNO055_ACC_DATA_Z_LSB_REG 0xC
#define BNO055_MAG_DATA_X_LSB_REG 0xE
#define BNO055_MAG_DATA_Y_LSB_REG 0x10
#define BNO055_MAG_DATA_Z_LSB_REG 0x12
#define BNO055_GYR_DATA_X_LSB_REG 0x14
#define BNO055_GYR_DATA_Y_LSB_REG 0x16
#define BNO055_GYR_DATA_Z_LSB_REG 0x18
#define BNO055_EUL_DATA_X_LSB_REG 0x1A
#define BNO055_EUL_DATA_Y_LSB_REG 0x1C
#define BNO055_EUL_DATA_Z_LSB_REG 0x1E
#define BNO055_QUAT_DATA_W_LSB_REG 0x20
#define BNO055_LIA_DATA_X_LSB_REG 0x28
#define BNO055_LIA_DATA_Y_LSB_REG 0x2A
#define BNO055_LIA_DATA_Z_LSB_REG 0x2C
#define BNO055_GRAVITY_DATA_X_LSB_REG 0x2E
#define BNO055_GRAVITY_DATA_Y_LSB_REG 0x30
#define BNO055_GRAVITY_DATA_Z_LSB_REG 0x32
#define BNO055_SCAN_CH_COUNT ((BNO055_GRAVITY_DATA_Z_LSB_REG - BNO055_ACC_DATA_X_LSB_REG) / 2)
#define BNO055_TEMP_REG 0x34
#define BNO055_CALIB_STAT_REG 0x35
#define BNO055_CALIB_STAT_MAGN_SHIFT 0
#define BNO055_CALIB_STAT_ACCEL_SHIFT 2
#define BNO055_CALIB_STAT_GYRO_SHIFT 4
#define BNO055_CALIB_STAT_SYS_SHIFT 6
#define BNO055_SYS_ERR_REG 0x3A
#define BNO055_POWER_MODE_REG 0x3E
#define BNO055_POWER_MODE_NORMAL 0
#define BNO055_SYS_TRIGGER_REG 0x3F
#define BNO055_SYS_TRIGGER_RST_SYS BIT(5)
#define BNO055_SYS_TRIGGER_CLK_SEL BIT(7)
#define BNO055_OPR_MODE_REG 0x3D
#define BNO055_OPR_MODE_CONFIG 0x0
#define BNO055_OPR_MODE_AMG 0x7
#define BNO055_OPR_MODE_FUSION_FMC_OFF 0xB
#define BNO055_OPR_MODE_FUSION 0xC
#define BNO055_UNIT_SEL_REG 0x3B
/* Android orientation mode means: pitch value decreases turning clockwise */
#define BNO055_UNIT_SEL_ANDROID BIT(7)
#define BNO055_UNIT_SEL_GYR_RPS BIT(1)
#define BNO055_CALDATA_START 0x55
#define BNO055_CALDATA_END 0x6A
#define BNO055_CALDATA_LEN 22
/*
* The difference in address between the register that contains the
* value and the register that contains the offset. This applies for
* accel, gyro and magn channels.
*/
#define BNO055_REG_OFFSET_ADDR 0x4D
/* page 1 registers */
#define BNO055_PG1(x) ((x) | 0x80)
#define BNO055_ACC_CONFIG_REG BNO055_PG1(0x8)
#define BNO055_ACC_CONFIG_LPF_MASK GENMASK(4, 2)
#define BNO055_ACC_CONFIG_RANGE_MASK GENMASK(1, 0)
#define BNO055_MAG_CONFIG_REG BNO055_PG1(0x9)
#define BNO055_MAG_CONFIG_HIGHACCURACY 0x18
#define BNO055_MAG_CONFIG_ODR_MASK GENMASK(2, 0)
#define BNO055_GYR_CONFIG_REG BNO055_PG1(0xA)
#define BNO055_GYR_CONFIG_RANGE_MASK GENMASK(2, 0)
#define BNO055_GYR_CONFIG_LPF_MASK GENMASK(5, 3)
#define BNO055_GYR_AM_SET_REG BNO055_PG1(0x1F)
#define BNO055_UID_LOWER_REG BNO055_PG1(0x50)
#define BNO055_UID_HIGHER_REG BNO055_PG1(0x5F)
#define BNO055_UID_LEN 16
struct bno055_sysfs_attr {
int *vals;
int len;
int *fusion_vals;
int *hw_xlate;
int type;
};
static int bno055_acc_lpf_vals[] = {
7, 810000, 15, 630000, 31, 250000, 62, 500000,
125, 0, 250, 0, 500, 0, 1000, 0,
};
static struct bno055_sysfs_attr bno055_acc_lpf = {
.vals = bno055_acc_lpf_vals,
.len = ARRAY_SIZE(bno055_acc_lpf_vals),
.fusion_vals = (int[]){62, 500000},
.type = IIO_VAL_INT_PLUS_MICRO,
};
static int bno055_acc_range_vals[] = {
/* G: 2, 4, 8, 16 */
1962, 3924, 7848, 15696
};
static struct bno055_sysfs_attr bno055_acc_range = {
.vals = bno055_acc_range_vals,
.len = ARRAY_SIZE(bno055_acc_range_vals),
.fusion_vals = (int[]){3924}, /* 4G */
.type = IIO_VAL_INT,
};
/*
* Theoretically the IMU should return data in a given (i.e. fixed) unit
* regardless of the range setting. This happens for the accelerometer, but not
* for the gyroscope; the gyroscope range setting affects the scale.
* This is probably due to this[0] bug.
* For this reason we map the internal range setting onto the standard IIO scale
* attribute for gyro.
* Since the bug[0] may be fixed in future, we check for the IMU FW version and
* eventually warn the user.
* Currently we just don't care about "range" attributes for gyro.
*
* [0] https://community.bosch-sensortec.com/t5/MEMS-sensors-forum/BNO055-Wrong-sensitivity-resolution-in-datasheet/td-p/10266
*/
/*
* dps = hwval * (dps_range/2^15)
* rps = hwval * (rps_range/2^15)
* = hwval * (dps_range/(2^15 * k))
* where k is rad-to-deg factor
*/
static int bno055_gyr_scale_vals[] = {
125, 1877467, 250, 1877467, 500, 1877467,
1000, 1877467, 2000, 1877467,
};
static struct bno055_sysfs_attr bno055_gyr_scale = {
.vals = bno055_gyr_scale_vals,
.len = ARRAY_SIZE(bno055_gyr_scale_vals),
.fusion_vals = (int[]){1, 900},
.hw_xlate = (int[]){4, 3, 2, 1, 0},
.type = IIO_VAL_FRACTIONAL,
};
static int bno055_gyr_lpf_vals[] = {12, 23, 32, 47, 64, 116, 230, 523};
static struct bno055_sysfs_attr bno055_gyr_lpf = {
.vals = bno055_gyr_lpf_vals,
.len = ARRAY_SIZE(bno055_gyr_lpf_vals),
.fusion_vals = (int[]){32},
.hw_xlate = (int[]){5, 4, 7, 3, 6, 2, 1, 0},
.type = IIO_VAL_INT,
};
static int bno055_mag_odr_vals[] = {2, 6, 8, 10, 15, 20, 25, 30};
static struct bno055_sysfs_attr bno055_mag_odr = {
.vals = bno055_mag_odr_vals,
.len = ARRAY_SIZE(bno055_mag_odr_vals),
.fusion_vals = (int[]){20},
.type = IIO_VAL_INT,
};
struct bno055_priv {
struct regmap *regmap;
struct device *dev;
struct clk *clk;
int operation_mode;
int xfer_burst_break_thr;
struct mutex lock;
u8 uid[BNO055_UID_LEN];
struct gpio_desc *reset_gpio;
bool sw_reset;
struct {
__le16 chans[BNO055_SCAN_CH_COUNT];
s64 timestamp __aligned(8);
} buf;
struct dentry *debugfs;
};
static bool bno055_regmap_volatile(struct device *dev, unsigned int reg)
{
/* data and status registers */
if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
return true;
/* when in fusion mode, config is updated by chip */
if (reg == BNO055_MAG_CONFIG_REG ||
reg == BNO055_ACC_CONFIG_REG ||
reg == BNO055_GYR_CONFIG_REG)
return true;
/* calibration data may be updated by the IMU */
if (reg >= BNO055_CALDATA_START && reg <= BNO055_CALDATA_END)
return true;
return false;
}
static bool bno055_regmap_readable(struct device *dev, unsigned int reg)
{
/* unnamed PG0 reserved areas */
if ((reg < BNO055_PG1(0) && reg > BNO055_CALDATA_END) ||
reg == 0x3C)
return false;
/* unnamed PG1 reserved areas */
if (reg > BNO055_PG1(BNO055_UID_HIGHER_REG) ||
(reg < BNO055_PG1(BNO055_UID_LOWER_REG) && reg > BNO055_PG1(BNO055_GYR_AM_SET_REG)) ||
reg == BNO055_PG1(0xE) ||
(reg < BNO055_PG1(BNO055_PAGESEL_REG) && reg >= BNO055_PG1(0x0)))
return false;
return true;
}
static bool bno055_regmap_writeable(struct device *dev, unsigned int reg)
{
/*
* Unreadable registers are indeed reserved; there are no WO regs
* (except for a single bit in SYS_TRIGGER register)
*/
if (!bno055_regmap_readable(dev, reg))
return false;
/* data and status registers */
if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
return false;
/* ID areas */
if (reg < BNO055_PAGESEL_REG ||
(reg <= BNO055_UID_HIGHER_REG && reg >= BNO055_UID_LOWER_REG))
return false;
return true;
}
static const struct regmap_range_cfg bno055_regmap_ranges[] = {
{
.range_min = 0,
.range_max = 0x7f * 2,
.selector_reg = BNO055_PAGESEL_REG,
.selector_mask = GENMASK(7, 0),
.selector_shift = 0,
.window_start = 0,
.window_len = 0x80,
},
};
const struct regmap_config bno055_regmap_config = {
.name = "bno055",
.reg_bits = 8,
.val_bits = 8,
.ranges = bno055_regmap_ranges,
.num_ranges = 1,
.volatile_reg = bno055_regmap_volatile,
.max_register = 0x80 * 2,
.writeable_reg = bno055_regmap_writeable,
.readable_reg = bno055_regmap_readable,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS_GPL(bno055_regmap_config, IIO_BNO055);
/* must be called in configuration mode */
static int bno055_calibration_load(struct bno055_priv *priv, const u8 *data, int len)
{
if (len != BNO055_CALDATA_LEN) {
dev_dbg(priv->dev, "Invalid calibration file size %d (expected %d)",
len, BNO055_CALDATA_LEN);
return -EINVAL;
}
dev_dbg(priv->dev, "loading cal data: %*ph", BNO055_CALDATA_LEN, data);
return regmap_bulk_write(priv->regmap, BNO055_CALDATA_START,
data, BNO055_CALDATA_LEN);
}
static int bno055_operation_mode_do_set(struct bno055_priv *priv,
int operation_mode)
{
int ret;
ret = regmap_write(priv->regmap, BNO055_OPR_MODE_REG,
operation_mode);
if (ret)
return ret;
/* Following datasheet specifications: sensor takes 7mS up to 19 mS to switch mode */
msleep(20);
return 0;
}
static int bno055_system_reset(struct bno055_priv *priv)
{
int ret;
if (priv->reset_gpio) {
gpiod_set_value_cansleep(priv->reset_gpio, 0);
usleep_range(5000, 10000);
gpiod_set_value_cansleep(priv->reset_gpio, 1);
} else if (priv->sw_reset) {
ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
BNO055_SYS_TRIGGER_RST_SYS);
if (ret)
return ret;
} else {
return 0;
}
regcache_drop_region(priv->regmap, 0x0, 0xff);
usleep_range(650000, 700000);
return 0;
}
static int bno055_init(struct bno055_priv *priv, const u8 *caldata, int len)
{
int ret;
ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
if (ret)
return ret;
ret = regmap_write(priv->regmap, BNO055_POWER_MODE_REG,
BNO055_POWER_MODE_NORMAL);
if (ret)
return ret;
ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
priv->clk ? BNO055_SYS_TRIGGER_CLK_SEL : 0);
if (ret)
return ret;
/* use standard SI units */
ret = regmap_write(priv->regmap, BNO055_UNIT_SEL_REG,
BNO055_UNIT_SEL_ANDROID | BNO055_UNIT_SEL_GYR_RPS);
if (ret)
return ret;
if (caldata) {
ret = bno055_calibration_load(priv, caldata, len);
if (ret)
dev_warn(priv->dev, "failed to load calibration data with error %d\n",
ret);
}
return 0;
}
static ssize_t bno055_operation_mode_set(struct bno055_priv *priv,
int operation_mode)
{
u8 caldata[BNO055_CALDATA_LEN];
int ret;
mutex_lock(&priv->lock);
ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
if (ret)
goto exit_unlock;
if (operation_mode == BNO055_OPR_MODE_FUSION ||
operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF) {
/* for entering fusion mode, reset the chip to clear the algo state */
ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, caldata,
BNO055_CALDATA_LEN);
if (ret)
goto exit_unlock;
ret = bno055_system_reset(priv);
if (ret)
goto exit_unlock;
ret = bno055_init(priv, caldata, BNO055_CALDATA_LEN);
if (ret)
goto exit_unlock;
}
ret = bno055_operation_mode_do_set(priv, operation_mode);
if (ret)
goto exit_unlock;
priv->operation_mode = operation_mode;
exit_unlock:
mutex_unlock(&priv->lock);
return ret;
}
static void bno055_uninit(void *arg)
{
struct bno055_priv *priv = arg;
/* stop the IMU */
bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
}
#define BNO055_CHANNEL(_type, _axis, _index, _address, _sep, _sh, _avail) { \
.address = _address, \
.type = _type, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | (_sep), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | (_sh), \
.info_mask_shared_by_type_available = _avail, \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
.repeat = IIO_MOD_##_axis == IIO_MOD_QUATERNION ? 4 : 0, \
}, \
}
/* scan indexes follow DATA register order */
enum bno055_scan_axis {
BNO055_SCAN_ACCEL_X,
BNO055_SCAN_ACCEL_Y,
BNO055_SCAN_ACCEL_Z,
BNO055_SCAN_MAGN_X,
BNO055_SCAN_MAGN_Y,
BNO055_SCAN_MAGN_Z,
BNO055_SCAN_GYRO_X,
BNO055_SCAN_GYRO_Y,
BNO055_SCAN_GYRO_Z,
BNO055_SCAN_YAW,
BNO055_SCAN_ROLL,
BNO055_SCAN_PITCH,
BNO055_SCAN_QUATERNION,
BNO055_SCAN_LIA_X,
BNO055_SCAN_LIA_Y,
BNO055_SCAN_LIA_Z,
BNO055_SCAN_GRAVITY_X,
BNO055_SCAN_GRAVITY_Y,
BNO055_SCAN_GRAVITY_Z,
BNO055_SCAN_TIMESTAMP,
_BNO055_SCAN_MAX
};
static const struct iio_chan_spec bno055_channels[] = {
/* accelerometer */
BNO055_CHANNEL(IIO_ACCEL, X, BNO055_SCAN_ACCEL_X,
BNO055_ACC_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
BNO055_CHANNEL(IIO_ACCEL, Y, BNO055_SCAN_ACCEL_Y,
BNO055_ACC_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
BNO055_CHANNEL(IIO_ACCEL, Z, BNO055_SCAN_ACCEL_Z,
BNO055_ACC_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
/* gyroscope */
BNO055_CHANNEL(IIO_ANGL_VEL, X, BNO055_SCAN_GYRO_X,
BNO055_GYR_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
BIT(IIO_CHAN_INFO_SCALE)),
BNO055_CHANNEL(IIO_ANGL_VEL, Y, BNO055_SCAN_GYRO_Y,
BNO055_GYR_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
BIT(IIO_CHAN_INFO_SCALE)),
BNO055_CHANNEL(IIO_ANGL_VEL, Z, BNO055_SCAN_GYRO_Z,
BNO055_GYR_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
BIT(IIO_CHAN_INFO_SCALE)),
/* magnetometer */
BNO055_CHANNEL(IIO_MAGN, X, BNO055_SCAN_MAGN_X,
BNO055_MAG_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
BNO055_CHANNEL(IIO_MAGN, Y, BNO055_SCAN_MAGN_Y,
BNO055_MAG_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
BNO055_CHANNEL(IIO_MAGN, Z, BNO055_SCAN_MAGN_Z,
BNO055_MAG_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
/* euler angle */
BNO055_CHANNEL(IIO_ROT, YAW, BNO055_SCAN_YAW,
BNO055_EUL_DATA_X_LSB_REG, 0, 0, 0),
BNO055_CHANNEL(IIO_ROT, ROLL, BNO055_SCAN_ROLL,
BNO055_EUL_DATA_Y_LSB_REG, 0, 0, 0),
BNO055_CHANNEL(IIO_ROT, PITCH, BNO055_SCAN_PITCH,
BNO055_EUL_DATA_Z_LSB_REG, 0, 0, 0),
/* quaternion */
BNO055_CHANNEL(IIO_ROT, QUATERNION, BNO055_SCAN_QUATERNION,
BNO055_QUAT_DATA_W_LSB_REG, 0, 0, 0),
/* linear acceleration */
BNO055_CHANNEL(IIO_ACCEL, LINEAR_X, BNO055_SCAN_LIA_X,
BNO055_LIA_DATA_X_LSB_REG, 0, 0, 0),
BNO055_CHANNEL(IIO_ACCEL, LINEAR_Y, BNO055_SCAN_LIA_Y,
BNO055_LIA_DATA_Y_LSB_REG, 0, 0, 0),
BNO055_CHANNEL(IIO_ACCEL, LINEAR_Z, BNO055_SCAN_LIA_Z,
BNO055_LIA_DATA_Z_LSB_REG, 0, 0, 0),
/* gravity vector */
BNO055_CHANNEL(IIO_GRAVITY, X, BNO055_SCAN_GRAVITY_X,
BNO055_GRAVITY_DATA_X_LSB_REG, 0, 0, 0),
BNO055_CHANNEL(IIO_GRAVITY, Y, BNO055_SCAN_GRAVITY_Y,
BNO055_GRAVITY_DATA_Y_LSB_REG, 0, 0, 0),
BNO055_CHANNEL(IIO_GRAVITY, Z, BNO055_SCAN_GRAVITY_Z,
BNO055_GRAVITY_DATA_Z_LSB_REG, 0, 0, 0),
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.scan_index = -1,
},
IIO_CHAN_SOFT_TIMESTAMP(BNO055_SCAN_TIMESTAMP),
};
static int bno055_get_regmask(struct bno055_priv *priv, int *val, int *val2,
int reg, int mask, struct bno055_sysfs_attr *attr)
{
const int shift = __ffs(mask);
int hwval, idx;
int ret;
int i;
ret = regmap_read(priv->regmap, reg, &hwval);
if (ret)
return ret;
idx = (hwval & mask) >> shift;
if (attr->hw_xlate)
for (i = 0; i < attr->len; i++)
if (attr->hw_xlate[i] == idx) {
idx = i;
break;
}
if (attr->type == IIO_VAL_INT) {
*val = attr->vals[idx];
} else { /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL */
*val = attr->vals[idx * 2];
*val2 = attr->vals[idx * 2 + 1];
}
return attr->type;
}
static int bno055_set_regmask(struct bno055_priv *priv, int val, int val2,
int reg, int mask, struct bno055_sysfs_attr *attr)
{
const int shift = __ffs(mask);
int best_delta;
int req_val;
int tbl_val;
bool first;
int delta;
int hwval;
int ret;
int len;
int i;
/*
* The closest value the HW supports is only one in fusion mode,
* and it is autoselected, so don't do anything, just return OK,
* as the closest possible value has been (virtually) selected
*/
if (priv->operation_mode != BNO055_OPR_MODE_AMG)
return 0;
len = attr->len;
/*
* We always get a request in INT_PLUS_MICRO, but we
* take care of the micro part only when we really have
* non-integer tables. This prevents 32-bit overflow with
* larger integers contained in integer tables.
*/
req_val = val;
if (attr->type != IIO_VAL_INT) {
len /= 2;
req_val = min(val, 2147) * 1000000 + val2;
}
first = true;
for (i = 0; i < len; i++) {
switch (attr->type) {
case IIO_VAL_INT:
tbl_val = attr->vals[i];
break;
case IIO_VAL_INT_PLUS_MICRO:
WARN_ON(attr->vals[i * 2] > 2147);
tbl_val = attr->vals[i * 2] * 1000000 +
attr->vals[i * 2 + 1];
break;
case IIO_VAL_FRACTIONAL:
WARN_ON(attr->vals[i * 2] > 4294);
tbl_val = attr->vals[i * 2] * 1000000 /
attr->vals[i * 2 + 1];
break;
default:
return -EINVAL;
}
delta = abs(tbl_val - req_val);
if (first || delta < best_delta) {
best_delta = delta;
hwval = i;
first = false;
}
}
if (attr->hw_xlate)
hwval = attr->hw_xlate[hwval];
ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
if (ret)
return ret;
ret = regmap_update_bits(priv->regmap, reg, mask, hwval << shift);
if (ret)
return ret;
return bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_AMG);
}
static int bno055_read_simple_chan(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bno055_priv *priv = iio_priv(indio_dev);
__le16 raw_val;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = regmap_bulk_read(priv->regmap, chan->address,
&raw_val, sizeof(raw_val));
if (ret < 0)
return ret;
*val = sign_extend32(le16_to_cpu(raw_val), 15);
return IIO_VAL_INT;
case IIO_CHAN_INFO_OFFSET:
if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
*val = 0;
} else {
ret = regmap_bulk_read(priv->regmap,
chan->address +
BNO055_REG_OFFSET_ADDR,
&raw_val, sizeof(raw_val));
if (ret < 0)
return ret;
/*
* IMU reports sensor offsets; IIO wants correction
* offsets, thus we need the 'minus' here.
*/
*val = -sign_extend32(le16_to_cpu(raw_val), 15);
}
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 1;
switch (chan->type) {
case IIO_GRAVITY:
/* Table 3-35: 1 m/s^2 = 100 LSB */
case IIO_ACCEL:
/* Table 3-17: 1 m/s^2 = 100 LSB */
*val2 = 100;
break;
case IIO_MAGN:
/*
* Table 3-19: 1 uT = 16 LSB. But we need
* Gauss: 1G = 0.1 uT.
*/
*val2 = 160;
break;
case IIO_ANGL_VEL:
/*
* Table 3-22: 1 Rps = 900 LSB
* .. but this is not exactly true. See comment at the
* beginning of this file.
*/
if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
*val = bno055_gyr_scale.fusion_vals[0];
*val2 = bno055_gyr_scale.fusion_vals[1];
return IIO_VAL_FRACTIONAL;
}
return bno055_get_regmask(priv, val, val2,
BNO055_GYR_CONFIG_REG,
BNO055_GYR_CONFIG_RANGE_MASK,
&bno055_gyr_scale);
break;
case IIO_ROT:
/* Table 3-28: 1 degree = 16 LSB */
*val2 = 16;
break;
default:
return -EINVAL;
}
return IIO_VAL_FRACTIONAL;
case IIO_CHAN_INFO_SAMP_FREQ:
if (chan->type != IIO_MAGN)
return -EINVAL;
return bno055_get_regmask(priv, val, val2,
BNO055_MAG_CONFIG_REG,
BNO055_MAG_CONFIG_ODR_MASK,
&bno055_mag_odr);
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
switch (chan->type) {
case IIO_ANGL_VEL:
return bno055_get_regmask(priv, val, val2,
BNO055_GYR_CONFIG_REG,
BNO055_GYR_CONFIG_LPF_MASK,
&bno055_gyr_lpf);
case IIO_ACCEL:
return bno055_get_regmask(priv, val, val2,
BNO055_ACC_CONFIG_REG,
BNO055_ACC_CONFIG_LPF_MASK,
&bno055_acc_lpf);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int bno055_sysfs_attr_avail(struct bno055_priv *priv, struct bno055_sysfs_attr *attr,
const int **vals, int *length)
{
if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
/* locked when fusion enabled */
*vals = attr->fusion_vals;
if (attr->type == IIO_VAL_INT)
*length = 1;
else
*length = 2; /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL*/
} else {
*vals = attr->vals;
*length = attr->len;
}
return attr->type;
}
static int bno055_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct bno055_priv *priv = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
*type = bno055_sysfs_attr_avail(priv, &bno055_gyr_scale,
vals, length);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
switch (chan->type) {
case IIO_ANGL_VEL:
*type = bno055_sysfs_attr_avail(priv, &bno055_gyr_lpf,
vals, length);
return IIO_AVAIL_LIST;
case IIO_ACCEL:
*type = bno055_sysfs_attr_avail(priv, &bno055_acc_lpf,
vals, length);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
break;
case IIO_CHAN_INFO_SAMP_FREQ:
switch (chan->type) {
case IIO_MAGN:
*type = bno055_sysfs_attr_avail(priv, &bno055_mag_odr,
vals, length);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int bno055_read_temp_chan(struct iio_dev *indio_dev, int *val)
{
struct bno055_priv *priv = iio_priv(indio_dev);
unsigned int raw_val;
int ret;
ret = regmap_read(priv->regmap, BNO055_TEMP_REG, &raw_val);
if (ret < 0)
return ret;
/*
* Tables 3-36 and 3-37: one byte of priv, signed, 1 LSB = 1C.
* ABI wants milliC.
*/
*val = raw_val * 1000;
return IIO_VAL_INT;
}
static int bno055_read_quaternion(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int size, int *vals, int *val_len,
long mask)
{
struct bno055_priv *priv = iio_priv(indio_dev);
__le16 raw_vals[4];
int i, ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (size < 4)
return -EINVAL;
ret = regmap_bulk_read(priv->regmap,
BNO055_QUAT_DATA_W_LSB_REG,
raw_vals, sizeof(raw_vals));
if (ret < 0)
return ret;
for (i = 0; i < 4; i++)
vals[i] = sign_extend32(le16_to_cpu(raw_vals[i]), 15);
*val_len = 4;
return IIO_VAL_INT_MULTIPLE;
case IIO_CHAN_INFO_SCALE:
/* Table 3-31: 1 quaternion = 2^14 LSB */
if (size < 2)
return -EINVAL;
vals[0] = 1;
vals[1] = 14;
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
}
static bool bno055_is_chan_readable(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan)
{
struct bno055_priv *priv = iio_priv(indio_dev);
if (priv->operation_mode != BNO055_OPR_MODE_AMG)
return true;
switch (chan->type) {
case IIO_GRAVITY:
case IIO_ROT:
return false;
case IIO_ACCEL:
if (chan->channel2 == IIO_MOD_LINEAR_X ||
chan->channel2 == IIO_MOD_LINEAR_Y ||
chan->channel2 == IIO_MOD_LINEAR_Z)
return false;
return true;
default:
return true;
}
}
static int _bno055_read_raw_multi(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int size, int *vals, int *val_len,
long mask)
{
if (!bno055_is_chan_readable(indio_dev, chan))
return -EBUSY;
switch (chan->type) {
case IIO_MAGN:
case IIO_ACCEL:
case IIO_ANGL_VEL:
case IIO_GRAVITY:
if (size < 2)
return -EINVAL;
*val_len = 2;
return bno055_read_simple_chan(indio_dev, chan,
&vals[0], &vals[1],
mask);
case IIO_TEMP:
*val_len = 1;
return bno055_read_temp_chan(indio_dev, &vals[0]);
case IIO_ROT:
/*
* Rotation is exposed as either a quaternion or three
* Euler angles.
*/
if (chan->channel2 == IIO_MOD_QUATERNION)
return bno055_read_quaternion(indio_dev, chan,
size, vals,
val_len, mask);
if (size < 2)
return -EINVAL;
*val_len = 2;
return bno055_read_simple_chan(indio_dev, chan,
&vals[0], &vals[1],
mask);
default:
return -EINVAL;
}
}
static int bno055_read_raw_multi(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int size, int *vals, int *val_len,
long mask)
{
struct bno055_priv *priv = iio_priv(indio_dev);
int ret;
mutex_lock(&priv->lock);
ret = _bno055_read_raw_multi(indio_dev, chan, size,
vals, val_len, mask);
mutex_unlock(&priv->lock);
return ret;
}
static int _bno055_write_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bno055_priv *priv = iio_priv(iio_dev);
switch (chan->type) {
case IIO_MAGN:
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return bno055_set_regmask(priv, val, val2,
BNO055_MAG_CONFIG_REG,
BNO055_MAG_CONFIG_ODR_MASK,
&bno055_mag_odr);
default:
return -EINVAL;
}
case IIO_ACCEL:
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return bno055_set_regmask(priv, val, val2,
BNO055_ACC_CONFIG_REG,
BNO055_ACC_CONFIG_LPF_MASK,
&bno055_acc_lpf);
default:
return -EINVAL;
}
case IIO_ANGL_VEL:
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return bno055_set_regmask(priv, val, val2,
BNO055_GYR_CONFIG_REG,
BNO055_GYR_CONFIG_LPF_MASK,
&bno055_gyr_lpf);
case IIO_CHAN_INFO_SCALE:
return bno055_set_regmask(priv, val, val2,
BNO055_GYR_CONFIG_REG,
BNO055_GYR_CONFIG_RANGE_MASK,
&bno055_gyr_scale);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int bno055_write_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bno055_priv *priv = iio_priv(iio_dev);
int ret;
mutex_lock(&priv->lock);
ret = _bno055_write_raw(iio_dev, chan, val, val2, mask);
mutex_unlock(&priv->lock);
return ret;
}
static ssize_t in_accel_range_raw_available_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
int len = 0;
int i;
if (priv->operation_mode != BNO055_OPR_MODE_AMG)
return sysfs_emit(buf, "%d\n", bno055_acc_range.fusion_vals[0]);
for (i = 0; i < bno055_acc_range.len; i++)
len += sysfs_emit_at(buf, len, "%d ", bno055_acc_range.vals[i]);
buf[len - 1] = '\n';
return len;
}
static ssize_t fusion_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
return sysfs_emit(buf, "%d\n",
priv->operation_mode != BNO055_OPR_MODE_AMG);
}
static ssize_t fusion_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bno055_priv *priv = iio_priv(indio_dev);
bool en;
int ret;
if (indio_dev->active_scan_mask &&
!bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
return -EBUSY;
ret = kstrtobool(buf, &en);
if (ret)
return -EINVAL;
if (!en)
return bno055_operation_mode_set(priv, BNO055_OPR_MODE_AMG) ?: len;
/*
* Coming from AMG means the FMC was off, just switch to fusion but
* don't change anything that doesn't belong to us (i.e let FMC stay off).
* Coming from any other fusion mode means we don't need to do anything.
*/
if (priv->operation_mode == BNO055_OPR_MODE_AMG)
return bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF) ?: len;
return len;
}
static ssize_t in_magn_calibration_fast_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
return sysfs_emit(buf, "%d\n",
priv->operation_mode == BNO055_OPR_MODE_FUSION);
}
static ssize_t in_magn_calibration_fast_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bno055_priv *priv = iio_priv(indio_dev);
int ret;
if (indio_dev->active_scan_mask &&
!bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
return -EBUSY;
if (sysfs_streq(buf, "0")) {
if (priv->operation_mode == BNO055_OPR_MODE_FUSION) {
ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF);
if (ret)
return ret;
}
} else {
if (priv->operation_mode == BNO055_OPR_MODE_AMG)
return -EINVAL;
if (priv->operation_mode != BNO055_OPR_MODE_FUSION) {
ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION);
if (ret)
return ret;
}
}
return len;
}
static ssize_t in_accel_range_raw_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
int val;
int ret;
ret = bno055_get_regmask(priv, &val, NULL,
BNO055_ACC_CONFIG_REG,
BNO055_ACC_CONFIG_RANGE_MASK,
&bno055_acc_range);
if (ret < 0)
return ret;
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t in_accel_range_raw_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
unsigned long val;
int ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&priv->lock);
ret = bno055_set_regmask(priv, val, 0,
BNO055_ACC_CONFIG_REG,
BNO055_ACC_CONFIG_RANGE_MASK,
&bno055_acc_range);
mutex_unlock(&priv->lock);
return ret ?: len;
}
static ssize_t bno055_get_calib_status(struct device *dev, char *buf, int which)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
int calib;
int ret;
int val;
if (priv->operation_mode == BNO055_OPR_MODE_AMG ||
(priv->operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF &&
which == BNO055_CALIB_STAT_MAGN_SHIFT)) {
calib = 0;
} else {
mutex_lock(&priv->lock);
ret = regmap_read(priv->regmap, BNO055_CALIB_STAT_REG, &val);
mutex_unlock(&priv->lock);
if (ret)
return -EIO;
calib = ((val >> which) & GENMASK(1, 0)) + 1;
}
return sysfs_emit(buf, "%d\n", calib);
}
static ssize_t serialnumber_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
return sysfs_emit(buf, "%*ph\n", BNO055_UID_LEN, priv->uid);
}
static ssize_t calibration_data_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t pos, size_t count)
{
struct bno055_priv *priv = iio_priv(dev_to_iio_dev(kobj_to_dev(kobj)));
u8 data[BNO055_CALDATA_LEN];
int ret;
/*
* Calibration data is volatile; reading it in chunks will possibly
* results in inconsistent data. We require the user to read the whole
* blob in a single chunk
*/
if (count < BNO055_CALDATA_LEN || pos)
return -EINVAL;
mutex_lock(&priv->lock);
ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
if (ret)
goto exit_unlock;
ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, data,
BNO055_CALDATA_LEN);
if (ret)
goto exit_unlock;
ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
if (ret)
goto exit_unlock;
memcpy(buf, data, BNO055_CALDATA_LEN);
ret = BNO055_CALDATA_LEN;
exit_unlock:
mutex_unlock(&priv->lock);
return ret;
}
static ssize_t sys_calibration_auto_status_show(struct device *dev,
struct device_attribute *a,
char *buf)
{
return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_SYS_SHIFT);
}
static ssize_t in_accel_calibration_auto_status_show(struct device *dev,
struct device_attribute *a,
char *buf)
{
return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_ACCEL_SHIFT);
}
static ssize_t in_gyro_calibration_auto_status_show(struct device *dev,
struct device_attribute *a,
char *buf)
{
return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_GYRO_SHIFT);
}
static ssize_t in_magn_calibration_auto_status_show(struct device *dev,
struct device_attribute *a,
char *buf)
{
return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_MAGN_SHIFT);
}
static int bno055_debugfs_reg_access(struct iio_dev *iio_dev, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct bno055_priv *priv = iio_priv(iio_dev);
if (readval)
return regmap_read(priv->regmap, reg, readval);
else
return regmap_write(priv->regmap, reg, writeval);
}
static ssize_t bno055_show_fw_version(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct bno055_priv *priv = file->private_data;
int rev, ver;
char *buf;
int ret;
ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
if (ret)
return ret;
ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
if (ret)
return ret;
buf = kasprintf(GFP_KERNEL, "ver: 0x%x, rev: 0x%x\n", ver, rev);
if (!buf)
return -ENOMEM;
ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
kfree(buf);
return ret;
}
static const struct file_operations bno055_fw_version_ops = {
.open = simple_open,
.read = bno055_show_fw_version,
.llseek = default_llseek,
.owner = THIS_MODULE,
};
static void bno055_debugfs_remove(void *_priv)
{
struct bno055_priv *priv = _priv;
debugfs_remove(priv->debugfs);
priv->debugfs = NULL;
}
static void bno055_debugfs_init(struct iio_dev *iio_dev)
{
struct bno055_priv *priv = iio_priv(iio_dev);
priv->debugfs = debugfs_create_file("firmware_version", 0400,
iio_get_debugfs_dentry(iio_dev),
priv, &bno055_fw_version_ops);
if (!IS_ERR(priv->debugfs))
devm_add_action_or_reset(priv->dev, bno055_debugfs_remove,
priv);
if (IS_ERR_OR_NULL(priv->debugfs))
dev_warn(priv->dev, "failed to setup debugfs");
}
static IIO_DEVICE_ATTR_RW(fusion_enable, 0);
static IIO_DEVICE_ATTR_RW(in_magn_calibration_fast_enable, 0);
static IIO_DEVICE_ATTR_RW(in_accel_range_raw, 0);
static IIO_DEVICE_ATTR_RO(in_accel_range_raw_available, 0);
static IIO_DEVICE_ATTR_RO(sys_calibration_auto_status, 0);
static IIO_DEVICE_ATTR_RO(in_accel_calibration_auto_status, 0);
static IIO_DEVICE_ATTR_RO(in_gyro_calibration_auto_status, 0);
static IIO_DEVICE_ATTR_RO(in_magn_calibration_auto_status, 0);
static IIO_DEVICE_ATTR_RO(serialnumber, 0);
static struct attribute *bno055_attrs[] = {
&iio_dev_attr_in_accel_range_raw_available.dev_attr.attr,
&iio_dev_attr_in_accel_range_raw.dev_attr.attr,
&iio_dev_attr_fusion_enable.dev_attr.attr,
&iio_dev_attr_in_magn_calibration_fast_enable.dev_attr.attr,
&iio_dev_attr_sys_calibration_auto_status.dev_attr.attr,
&iio_dev_attr_in_accel_calibration_auto_status.dev_attr.attr,
&iio_dev_attr_in_gyro_calibration_auto_status.dev_attr.attr,
&iio_dev_attr_in_magn_calibration_auto_status.dev_attr.attr,
&iio_dev_attr_serialnumber.dev_attr.attr,
NULL
};
static BIN_ATTR_RO(calibration_data, BNO055_CALDATA_LEN);
static struct bin_attribute *bno055_bin_attrs[] = {
&bin_attr_calibration_data,
NULL
};
static const struct attribute_group bno055_attrs_group = {
.attrs = bno055_attrs,
.bin_attrs = bno055_bin_attrs,
};
static const struct iio_info bno055_info = {
.read_raw_multi = bno055_read_raw_multi,
.read_avail = bno055_read_avail,
.write_raw = bno055_write_raw,
.attrs = &bno055_attrs_group,
.debugfs_reg_access = bno055_debugfs_reg_access,
};
/*
* Reads len samples from the HW, stores them in buf starting from buf_idx,
* and applies mask to cull (skip) unneeded samples.
* Updates buf_idx incrementing with the number of stored samples.
* Samples from HW are transferred into buf, then in-place copy on buf is
* performed in order to cull samples that need to be skipped.
* This avoids copies of the first samples until we hit the 1st sample to skip,
* and also avoids having an extra bounce buffer.
* buf must be able to contain len elements in spite of how many samples we are
* going to cull.
*/
static int bno055_scan_xfer(struct bno055_priv *priv,
int start_ch, int len, unsigned long mask,
__le16 *buf, int *buf_idx)
{
const int base = BNO055_ACC_DATA_X_LSB_REG;
bool quat_in_read = false;
int buf_base = *buf_idx;
__le16 *dst, *src;
int offs_fixup = 0;
int xfer_len = len;
int ret;
int i, n;
if (!mask)
return 0;
/*
* All channels are made up 1 16-bit sample, except for quaternion that
* is made up 4 16-bit values.
* For us the quaternion CH is just like 4 regular CHs.
* If our read starts past the quaternion make sure to adjust the
* starting offset; if the quaternion is contained in our scan then make
* sure to adjust the read len.
*/
if (start_ch > BNO055_SCAN_QUATERNION) {
start_ch += 3;
} else if ((start_ch <= BNO055_SCAN_QUATERNION) &&
((start_ch + len) > BNO055_SCAN_QUATERNION)) {
quat_in_read = true;
xfer_len += 3;
}
ret = regmap_bulk_read(priv->regmap,
base + start_ch * sizeof(__le16),
buf + buf_base,
xfer_len * sizeof(__le16));
if (ret)
return ret;
for_each_set_bit(i, &mask, len) {
if (quat_in_read && ((start_ch + i) > BNO055_SCAN_QUATERNION))
offs_fixup = 3;
dst = buf + *buf_idx;
src = buf + buf_base + offs_fixup + i;
n = (start_ch + i == BNO055_SCAN_QUATERNION) ? 4 : 1;
if (dst != src)
memcpy(dst, src, n * sizeof(__le16));
*buf_idx += n;
}
return 0;
}
static irqreturn_t bno055_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *iio_dev = pf->indio_dev;
struct bno055_priv *priv = iio_priv(iio_dev);
int xfer_start, start, end, prev_end;
unsigned long mask;
int quat_extra_len;
bool first = true;
int buf_idx = 0;
bool thr_hit;
int ret;
mutex_lock(&priv->lock);
/*
* Walk the bitmap and eventually perform several transfers.
* Bitmap ones-fields that are separated by gaps <= xfer_burst_break_thr
* will be included in same transfer.
* Every time the bitmap contains a gap wider than xfer_burst_break_thr
* then we split the transfer, skipping the gap.
*/
for_each_set_bitrange(start, end, iio_dev->active_scan_mask,
iio_get_masklength(iio_dev)) {
/*
* First transfer will start from the beginning of the first
* ones-field in the bitmap
*/
if (first) {
xfer_start = start;
} else {
/*
* We found the next ones-field; check whether to
* include it in * the current transfer or not (i.e.
* let's perform the current * transfer and prepare for
* another one).
*/
/*
* In case the zeros-gap contains the quaternion bit,
* then its length is actually 4 words instead of 1
* (i.e. +3 wrt other channels).
*/
quat_extra_len = ((start > BNO055_SCAN_QUATERNION) &&
(prev_end <= BNO055_SCAN_QUATERNION)) ? 3 : 0;
/* If the gap is wider than xfer_burst_break_thr then.. */
thr_hit = (start - prev_end + quat_extra_len) >
priv->xfer_burst_break_thr;
/*
* .. transfer all the data up to the gap. Then set the
* next transfer start index at right after the gap
* (i.e. at the start of this ones-field).
*/
if (thr_hit) {
mask = *iio_dev->active_scan_mask >> xfer_start;
ret = bno055_scan_xfer(priv, xfer_start,
prev_end - xfer_start,
mask, priv->buf.chans, &buf_idx);
if (ret)
goto done;
xfer_start = start;
}
}
first = false;
prev_end = end;
}
/*
* We finished walking the bitmap; no more gaps to check for. Just
* perform the current transfer.
*/
mask = *iio_dev->active_scan_mask >> xfer_start;
ret = bno055_scan_xfer(priv, xfer_start,
prev_end - xfer_start,
mask, priv->buf.chans, &buf_idx);
if (!ret)
iio_push_to_buffers_with_timestamp(iio_dev,
&priv->buf, pf->timestamp);
done:
mutex_unlock(&priv->lock);
iio_trigger_notify_done(iio_dev->trig);
return IRQ_HANDLED;
}
static int bno055_buffer_preenable(struct iio_dev *indio_dev)
{
struct bno055_priv *priv = iio_priv(indio_dev);
const unsigned long fusion_mask =
BIT(BNO055_SCAN_YAW) |
BIT(BNO055_SCAN_ROLL) |
BIT(BNO055_SCAN_PITCH) |
BIT(BNO055_SCAN_QUATERNION) |
BIT(BNO055_SCAN_LIA_X) |
BIT(BNO055_SCAN_LIA_Y) |
BIT(BNO055_SCAN_LIA_Z) |
BIT(BNO055_SCAN_GRAVITY_X) |
BIT(BNO055_SCAN_GRAVITY_Y) |
BIT(BNO055_SCAN_GRAVITY_Z);
if (priv->operation_mode == BNO055_OPR_MODE_AMG &&
bitmap_intersects(indio_dev->active_scan_mask, &fusion_mask,
_BNO055_SCAN_MAX))
return -EBUSY;
return 0;
}
static const struct iio_buffer_setup_ops bno055_buffer_setup_ops = {
.preenable = bno055_buffer_preenable,
};
int bno055_probe(struct device *dev, struct regmap *regmap,
int xfer_burst_break_thr, bool sw_reset)
{
const struct firmware *caldata = NULL;
struct bno055_priv *priv;
struct iio_dev *iio_dev;
char *fw_name_buf;
unsigned int val;
int rev, ver;
int ret;
iio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
if (!iio_dev)
return -ENOMEM;
iio_dev->name = "bno055";
priv = iio_priv(iio_dev);
mutex_init(&priv->lock);
priv->regmap = regmap;
priv->dev = dev;
priv->xfer_burst_break_thr = xfer_burst_break_thr;
priv->sw_reset = sw_reset;
priv->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(priv->reset_gpio))
return dev_err_probe(dev, PTR_ERR(priv->reset_gpio), "Failed to get reset GPIO\n");
priv->clk = devm_clk_get_optional_enabled(dev, "clk");
if (IS_ERR(priv->clk))
return dev_err_probe(dev, PTR_ERR(priv->clk), "Failed to get CLK\n");
if (priv->reset_gpio) {
usleep_range(5000, 10000);
gpiod_set_value_cansleep(priv->reset_gpio, 1);
usleep_range(650000, 750000);
} else if (!sw_reset) {
dev_warn(dev, "No usable reset method; IMU may be unreliable\n");
}
ret = regmap_read(priv->regmap, BNO055_CHIP_ID_REG, &val);
if (ret)
return ret;
if (val != BNO055_CHIP_ID_MAGIC)
dev_warn(dev, "Unrecognized chip ID 0x%x\n", val);
/*
* In case we haven't a HW reset pin, we can still reset the chip via
* register write. This is probably nonsense in case we can't even
* communicate with the chip or the chip isn't the one we expect (i.e.
* we don't write to unknown chips), so we perform SW reset only after
* chip magic ID check
*/
if (!priv->reset_gpio) {
ret = bno055_system_reset(priv);
if (ret)
return ret;
}
ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
if (ret)
return ret;
ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
if (ret)
return ret;
/*
* The stock FW version contains a bug (see comment at the beginning of
* this file) that causes the anglvel scale to be changed depending on
* the chip range setting. We workaround this, but we don't know what
* other FW versions might do.
*/
if (ver != 0x3 || rev != 0x11)
dev_warn(dev, "Untested firmware version. Anglvel scale may not work as expected\n");
ret = regmap_bulk_read(priv->regmap, BNO055_UID_LOWER_REG,
priv->uid, BNO055_UID_LEN);
if (ret)
return ret;
/* Sensor calibration data */
fw_name_buf = kasprintf(GFP_KERNEL, BNO055_FW_UID_FMT,
BNO055_UID_LEN, priv->uid);
if (!fw_name_buf)
return -ENOMEM;
ret = request_firmware(&caldata, fw_name_buf, dev);
kfree(fw_name_buf);
if (ret)
ret = request_firmware(&caldata, BNO055_FW_GENERIC_NAME, dev);
if (ret) {
dev_notice(dev, "Calibration file load failed. See instruction in kernel Documentation/iio/bno055.rst\n");
ret = bno055_init(priv, NULL, 0);
} else {
ret = bno055_init(priv, caldata->data, caldata->size);
release_firmware(caldata);
}
if (ret)
return ret;
priv->operation_mode = BNO055_OPR_MODE_FUSION;
ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, bno055_uninit, priv);
if (ret)
return ret;
iio_dev->channels = bno055_channels;
iio_dev->num_channels = ARRAY_SIZE(bno055_channels);
iio_dev->info = &bno055_info;
iio_dev->modes = INDIO_DIRECT_MODE;
ret = devm_iio_triggered_buffer_setup(dev, iio_dev,
iio_pollfunc_store_time,
bno055_trigger_handler,
&bno055_buffer_setup_ops);
if (ret)
return ret;
ret = devm_iio_device_register(dev, iio_dev);
if (ret)
return ret;
bno055_debugfs_init(iio_dev);
return 0;
}
EXPORT_SYMBOL_NS_GPL(bno055_probe, IIO_BNO055);
MODULE_AUTHOR("Andrea Merello <[email protected]>");
MODULE_DESCRIPTION("Bosch BNO055 driver");
MODULE_LICENSE("GPL");