// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 Invensense, Inc.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/jiffies.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/iio/common/inv_sensors_timestamp.h>
#include <linux/iio/iio.h>
#include "inv_mpu_iio.h"
#include "inv_mpu_magn.h"
/*
* this is the gyro scale translated from dynamic range plus/minus
* {250, 500, 1000, 2000} to rad/s
*/
static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724};
/*
* this is the accel scale translated from dynamic range plus/minus
* {2, 4, 8, 16} to m/s^2
*/
static const int accel_scale[] = {598, 1196, 2392, 4785};
static const struct inv_mpu6050_reg_map reg_set_icm20602 = {
.sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV,
.lpf = INV_MPU6050_REG_CONFIG,
.accel_lpf = INV_MPU6500_REG_ACCEL_CONFIG_2,
.user_ctrl = INV_MPU6050_REG_USER_CTRL,
.fifo_en = INV_MPU6050_REG_FIFO_EN,
.gyro_config = INV_MPU6050_REG_GYRO_CONFIG,
.accl_config = INV_MPU6050_REG_ACCEL_CONFIG,
.fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H,
.fifo_r_w = INV_MPU6050_REG_FIFO_R_W,
.raw_gyro = INV_MPU6050_REG_RAW_GYRO,
.raw_accl = INV_MPU6050_REG_RAW_ACCEL,
.temperature = INV_MPU6050_REG_TEMPERATURE,
.int_enable = INV_MPU6050_REG_INT_ENABLE,
.int_status = INV_MPU6050_REG_INT_STATUS,
.pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1,
.pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2,
.int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG,
.accl_offset = INV_MPU6500_REG_ACCEL_OFFSET,
.gyro_offset = INV_MPU6050_REG_GYRO_OFFSET,
.i2c_if = INV_ICM20602_REG_I2C_IF,
};
static const struct inv_mpu6050_reg_map reg_set_6500 = {
.sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV,
.lpf = INV_MPU6050_REG_CONFIG,
.accel_lpf = INV_MPU6500_REG_ACCEL_CONFIG_2,
.user_ctrl = INV_MPU6050_REG_USER_CTRL,
.fifo_en = INV_MPU6050_REG_FIFO_EN,
.gyro_config = INV_MPU6050_REG_GYRO_CONFIG,
.accl_config = INV_MPU6050_REG_ACCEL_CONFIG,
.fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H,
.fifo_r_w = INV_MPU6050_REG_FIFO_R_W,
.raw_gyro = INV_MPU6050_REG_RAW_GYRO,
.raw_accl = INV_MPU6050_REG_RAW_ACCEL,
.temperature = INV_MPU6050_REG_TEMPERATURE,
.int_enable = INV_MPU6050_REG_INT_ENABLE,
.int_status = INV_MPU6050_REG_INT_STATUS,
.pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1,
.pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2,
.int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG,
.accl_offset = INV_MPU6500_REG_ACCEL_OFFSET,
.gyro_offset = INV_MPU6050_REG_GYRO_OFFSET,
.i2c_if = 0,
};
static const struct inv_mpu6050_reg_map reg_set_6050 = {
.sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV,
.lpf = INV_MPU6050_REG_CONFIG,
.user_ctrl = INV_MPU6050_REG_USER_CTRL,
.fifo_en = INV_MPU6050_REG_FIFO_EN,
.gyro_config = INV_MPU6050_REG_GYRO_CONFIG,
.accl_config = INV_MPU6050_REG_ACCEL_CONFIG,
.fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H,
.fifo_r_w = INV_MPU6050_REG_FIFO_R_W,
.raw_gyro = INV_MPU6050_REG_RAW_GYRO,
.raw_accl = INV_MPU6050_REG_RAW_ACCEL,
.temperature = INV_MPU6050_REG_TEMPERATURE,
.int_enable = INV_MPU6050_REG_INT_ENABLE,
.pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1,
.pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2,
.int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG,
.accl_offset = INV_MPU6050_REG_ACCEL_OFFSET,
.gyro_offset = INV_MPU6050_REG_GYRO_OFFSET,
.i2c_if = 0,
};
static const struct inv_mpu6050_chip_config chip_config_6050 = {
.clk = INV_CLK_INTERNAL,
.fsr = INV_MPU6050_FSR_2000DPS,
.lpf = INV_MPU6050_FILTER_20HZ,
.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
.gyro_en = true,
.accl_en = true,
.temp_en = true,
.magn_en = false,
.gyro_fifo_enable = false,
.accl_fifo_enable = false,
.temp_fifo_enable = false,
.magn_fifo_enable = false,
.accl_fs = INV_MPU6050_FS_02G,
.user_ctrl = 0,
};
static const struct inv_mpu6050_chip_config chip_config_6500 = {
.clk = INV_CLK_PLL,
.fsr = INV_MPU6050_FSR_2000DPS,
.lpf = INV_MPU6050_FILTER_20HZ,
.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
.gyro_en = true,
.accl_en = true,
.temp_en = true,
.magn_en = false,
.gyro_fifo_enable = false,
.accl_fifo_enable = false,
.temp_fifo_enable = false,
.magn_fifo_enable = false,
.accl_fs = INV_MPU6050_FS_02G,
.user_ctrl = 0,
};
/* Indexed by enum inv_devices */
static const struct inv_mpu6050_hw hw_info[] = {
{
.whoami = INV_MPU6050_WHOAMI_VALUE,
.name = "MPU6050",
.reg = ®_set_6050,
.config = &chip_config_6050,
.fifo_size = 1024,
.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_MPU6500_WHOAMI_VALUE,
.name = "MPU6500",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 512,
.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_MPU6515_WHOAMI_VALUE,
.name = "MPU6515",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 512,
.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_MPU6880_WHOAMI_VALUE,
.name = "MPU6880",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 4096,
.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_MPU6000_WHOAMI_VALUE,
.name = "MPU6000",
.reg = ®_set_6050,
.config = &chip_config_6050,
.fifo_size = 1024,
.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_MPU9150_WHOAMI_VALUE,
.name = "MPU9150",
.reg = ®_set_6050,
.config = &chip_config_6050,
.fifo_size = 1024,
.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_MPU9250_WHOAMI_VALUE,
.name = "MPU9250",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 512,
.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_MPU9255_WHOAMI_VALUE,
.name = "MPU9255",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 512,
.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_ICM20608_WHOAMI_VALUE,
.name = "ICM20608",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 512,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_ICM20608D_WHOAMI_VALUE,
.name = "ICM20608D",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 512,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_ICM20609_WHOAMI_VALUE,
.name = "ICM20609",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 4 * 1024,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_ICM20689_WHOAMI_VALUE,
.name = "ICM20689",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 4 * 1024,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_ICM20600_WHOAMI_VALUE,
.name = "ICM20600",
.reg = ®_set_icm20602,
.config = &chip_config_6500,
.fifo_size = 1008,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_ICM20602_WHOAMI_VALUE,
.name = "ICM20602",
.reg = ®_set_icm20602,
.config = &chip_config_6500,
.fifo_size = 1008,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_ICM20690_WHOAMI_VALUE,
.name = "ICM20690",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 1024,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_ICM20690_GYRO_STARTUP_TIME, INV_ICM20690_ACCEL_STARTUP_TIME},
},
{
.whoami = INV_IAM20680_WHOAMI_VALUE,
.name = "IAM20680",
.reg = ®_set_6500,
.config = &chip_config_6500,
.fifo_size = 512,
.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
},
};
static int inv_mpu6050_pwr_mgmt_1_write(struct inv_mpu6050_state *st, bool sleep,
bool cycle, int clock, int temp_dis)
{
u8 val;
if (clock < 0)
clock = st->chip_config.clk;
if (temp_dis < 0)
temp_dis = !st->chip_config.temp_en;
val = clock & INV_MPU6050_BIT_CLK_MASK;
if (temp_dis)
val |= INV_MPU6050_BIT_TEMP_DIS;
if (sleep)
val |= INV_MPU6050_BIT_SLEEP;
if (cycle)
val |= INV_MPU6050_BIT_CYCLE;
dev_dbg(regmap_get_device(st->map), "pwr_mgmt_1: 0x%x\n", val);
return regmap_write(st->map, st->reg->pwr_mgmt_1, val);
}
static int inv_mpu6050_clock_switch(struct inv_mpu6050_state *st,
unsigned int clock)
{
int ret;
switch (st->chip_type) {
case INV_MPU6050:
case INV_MPU6000:
case INV_MPU9150:
/* old chips: switch clock manually */
ret = inv_mpu6050_pwr_mgmt_1_write(st, false, false, clock, -1);
if (ret)
return ret;
st->chip_config.clk = clock;
break;
default:
/* automatic clock switching, nothing to do */
break;
}
return 0;
}
int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en,
unsigned int mask)
{
unsigned int sleep, val;
u8 pwr_mgmt2, user_ctrl;
int ret;
/* delete useless requests */
if (mask & INV_MPU6050_SENSOR_ACCL && en == st->chip_config.accl_en)
mask &= ~INV_MPU6050_SENSOR_ACCL;
if (mask & INV_MPU6050_SENSOR_GYRO && en == st->chip_config.gyro_en)
mask &= ~INV_MPU6050_SENSOR_GYRO;
if (mask & INV_MPU6050_SENSOR_TEMP && en == st->chip_config.temp_en)
mask &= ~INV_MPU6050_SENSOR_TEMP;
if (mask & INV_MPU6050_SENSOR_MAGN && en == st->chip_config.magn_en)
mask &= ~INV_MPU6050_SENSOR_MAGN;
if (mask & INV_MPU6050_SENSOR_WOM && en == st->chip_config.wom_en)
mask &= ~INV_MPU6050_SENSOR_WOM;
/* force accel on if WoM is on and not going off */
if (!en && (mask & INV_MPU6050_SENSOR_ACCL) && st->chip_config.wom_en &&
!(mask & INV_MPU6050_SENSOR_WOM))
mask &= ~INV_MPU6050_SENSOR_ACCL;
if (mask == 0)
return 0;
/* turn on/off temperature sensor */
if (mask & INV_MPU6050_SENSOR_TEMP) {
ret = inv_mpu6050_pwr_mgmt_1_write(st, false, false, -1, !en);
if (ret)
return ret;
st->chip_config.temp_en = en;
}
/* update user_crtl for driving magnetometer */
if (mask & INV_MPU6050_SENSOR_MAGN) {
user_ctrl = st->chip_config.user_ctrl;
if (en)
user_ctrl |= INV_MPU6050_BIT_I2C_MST_EN;
else
user_ctrl &= ~INV_MPU6050_BIT_I2C_MST_EN;
ret = regmap_write(st->map, st->reg->user_ctrl, user_ctrl);
if (ret)
return ret;
st->chip_config.user_ctrl = user_ctrl;
st->chip_config.magn_en = en;
}
/* manage accel & gyro engines */
if (mask & (INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO)) {
/* compute power management 2 current value */
pwr_mgmt2 = 0;
if (!st->chip_config.accl_en)
pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
if (!st->chip_config.gyro_en)
pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
/* update to new requested value */
if (mask & INV_MPU6050_SENSOR_ACCL) {
if (en)
pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_ACCL_STBY;
else
pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
}
if (mask & INV_MPU6050_SENSOR_GYRO) {
if (en)
pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_GYRO_STBY;
else
pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
}
/* switch clock to internal when turning gyro off */
if (mask & INV_MPU6050_SENSOR_GYRO && !en) {
ret = inv_mpu6050_clock_switch(st, INV_CLK_INTERNAL);
if (ret)
return ret;
}
/* update sensors engine */
dev_dbg(regmap_get_device(st->map), "pwr_mgmt_2: 0x%x\n",
pwr_mgmt2);
ret = regmap_write(st->map, st->reg->pwr_mgmt_2, pwr_mgmt2);
if (ret)
return ret;
if (mask & INV_MPU6050_SENSOR_ACCL)
st->chip_config.accl_en = en;
if (mask & INV_MPU6050_SENSOR_GYRO)
st->chip_config.gyro_en = en;
/* compute required time to have sensors stabilized */
sleep = 0;
if (en) {
if (mask & INV_MPU6050_SENSOR_ACCL) {
if (sleep < st->hw->startup_time.accel)
sleep = st->hw->startup_time.accel;
}
if (mask & INV_MPU6050_SENSOR_GYRO) {
if (sleep < st->hw->startup_time.gyro)
sleep = st->hw->startup_time.gyro;
}
} else {
if (mask & INV_MPU6050_SENSOR_GYRO) {
if (sleep < INV_MPU6050_GYRO_DOWN_TIME)
sleep = INV_MPU6050_GYRO_DOWN_TIME;
}
}
if (sleep)
msleep(sleep);
/* switch clock to PLL when turning gyro on */
if (mask & INV_MPU6050_SENSOR_GYRO && en) {
ret = inv_mpu6050_clock_switch(st, INV_CLK_PLL);
if (ret)
return ret;
}
}
/* enable/disable accel intelligence control */
if (mask & INV_MPU6050_SENSOR_WOM) {
val = en ? INV_MPU6500_BIT_ACCEL_INTEL_EN |
INV_MPU6500_BIT_ACCEL_INTEL_MODE : 0;
ret = regmap_write(st->map, INV_MPU6500_REG_ACCEL_INTEL_CTRL, val);
if (ret)
return ret;
st->chip_config.wom_en = en;
}
return 0;
}
static int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st,
bool power_on)
{
int result;
result = inv_mpu6050_pwr_mgmt_1_write(st, !power_on, false, -1, -1);
if (result)
return result;
if (power_on)
usleep_range(INV_MPU6050_REG_UP_TIME_MIN,
INV_MPU6050_REG_UP_TIME_MAX);
return 0;
}
static int inv_mpu6050_set_gyro_fsr(struct inv_mpu6050_state *st,
enum inv_mpu6050_fsr_e val)
{
unsigned int gyro_shift;
u8 data;
switch (st->chip_type) {
case INV_ICM20690:
gyro_shift = INV_ICM20690_GYRO_CONFIG_FSR_SHIFT;
break;
default:
gyro_shift = INV_MPU6050_GYRO_CONFIG_FSR_SHIFT;
break;
}
data = val << gyro_shift;
return regmap_write(st->map, st->reg->gyro_config, data);
}
static int inv_mpu6050_set_accel_lpf_regs(struct inv_mpu6050_state *st,
enum inv_mpu6050_filter_e val)
{
switch (st->chip_type) {
case INV_MPU6050:
case INV_MPU6000:
case INV_MPU9150:
/* old chips, nothing to do */
return 0;
case INV_ICM20689:
case INV_ICM20690:
/* set FIFO size to maximum value */
val |= INV_ICM20689_BITS_FIFO_SIZE_MAX;
break;
default:
break;
}
return regmap_write(st->map, st->reg->accel_lpf, val);
}
/*
* inv_mpu6050_set_lpf_regs() - set low pass filter registers, chip dependent
*
* MPU60xx/MPU9150 use only 1 register for accelerometer + gyroscope
* MPU6500 and above have a dedicated register for accelerometer
*/
static int inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state *st,
enum inv_mpu6050_filter_e val)
{
int result;
result = regmap_write(st->map, st->reg->lpf, val);
if (result)
return result;
/* set accel lpf */
return inv_mpu6050_set_accel_lpf_regs(st, val);
}
/*
* inv_mpu6050_init_config() - Initialize hardware, disable FIFO.
*
* Initial configuration:
* FSR: ± 2000DPS
* DLPF: 20Hz
* FIFO rate: 50Hz
* Clock source: Gyro PLL
*/
static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
{
int result;
u8 d;
struct inv_mpu6050_state *st = iio_priv(indio_dev);
struct inv_sensors_timestamp_chip timestamp;
result = inv_mpu6050_set_gyro_fsr(st, st->chip_config.fsr);
if (result)
return result;
result = inv_mpu6050_set_lpf_regs(st, st->chip_config.lpf);
if (result)
return result;
d = st->chip_config.divider;
result = regmap_write(st->map, st->reg->sample_rate_div, d);
if (result)
return result;
d = (st->chip_config.accl_fs << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
result = regmap_write(st->map, st->reg->accl_config, d);
if (result)
return result;
result = regmap_write(st->map, st->reg->int_pin_cfg, st->irq_mask);
if (result)
return result;
/* clock jitter is +/- 2% */
timestamp.clock_period = NSEC_PER_SEC / INV_MPU6050_INTERNAL_FREQ_HZ;
timestamp.jitter = 20;
timestamp.init_period =
NSEC_PER_SEC / INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
inv_sensors_timestamp_init(&st->timestamp, ×tamp);
/* magn chip init, noop if not present in the chip */
result = inv_mpu_magn_probe(st);
if (result)
return result;
return 0;
}
static int inv_mpu6050_sensor_set(struct inv_mpu6050_state *st, int reg,
int axis, int val)
{
int ind;
__be16 d = cpu_to_be16(val);
ind = (axis - IIO_MOD_X) * 2;
return regmap_bulk_write(st->map, reg + ind, &d, sizeof(d));
}
static int inv_mpu6050_sensor_show(struct inv_mpu6050_state *st, int reg,
int axis, int *val)
{
int ind, result;
__be16 d;
ind = (axis - IIO_MOD_X) * 2;
result = regmap_bulk_read(st->map, reg + ind, &d, sizeof(d));
if (result)
return result;
*val = (short)be16_to_cpup(&d);
return IIO_VAL_INT;
}
static int inv_mpu6050_read_channel_data(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
struct device *pdev = regmap_get_device(st->map);
unsigned int freq_hz, period_us, min_sleep_us, max_sleep_us;
int result;
int ret;
/* compute sample period */
freq_hz = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
period_us = 1000000 / freq_hz;
result = pm_runtime_resume_and_get(pdev);
if (result)
return result;
switch (chan->type) {
case IIO_ANGL_VEL:
if (!st->chip_config.gyro_en) {
result = inv_mpu6050_switch_engine(st, true,
INV_MPU6050_SENSOR_GYRO);
if (result)
goto error_power_off;
/* need to wait 2 periods to have first valid sample */
min_sleep_us = 2 * period_us;
max_sleep_us = 2 * (period_us + period_us / 2);
usleep_range(min_sleep_us, max_sleep_us);
}
ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro,
chan->channel2, val);
break;
case IIO_ACCEL:
if (!st->chip_config.accl_en) {
result = inv_mpu6050_switch_engine(st, true,
INV_MPU6050_SENSOR_ACCL);
if (result)
goto error_power_off;
/* wait 1 period for first sample availability */
min_sleep_us = period_us;
max_sleep_us = period_us + period_us / 2;
usleep_range(min_sleep_us, max_sleep_us);
}
ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl,
chan->channel2, val);
break;
case IIO_TEMP:
/* temperature sensor work only with accel and/or gyro */
if (!st->chip_config.accl_en && !st->chip_config.gyro_en) {
result = -EBUSY;
goto error_power_off;
}
if (!st->chip_config.temp_en) {
result = inv_mpu6050_switch_engine(st, true,
INV_MPU6050_SENSOR_TEMP);
if (result)
goto error_power_off;
/* wait 1 period for first sample availability */
min_sleep_us = period_us;
max_sleep_us = period_us + period_us / 2;
usleep_range(min_sleep_us, max_sleep_us);
}
ret = inv_mpu6050_sensor_show(st, st->reg->temperature,
IIO_MOD_X, val);
break;
case IIO_MAGN:
if (!st->chip_config.magn_en) {
result = inv_mpu6050_switch_engine(st, true,
INV_MPU6050_SENSOR_MAGN);
if (result)
goto error_power_off;
/* frequency is limited for magnetometer */
if (freq_hz > INV_MPU_MAGN_FREQ_HZ_MAX) {
freq_hz = INV_MPU_MAGN_FREQ_HZ_MAX;
period_us = 1000000 / freq_hz;
}
/* need to wait 2 periods to have first valid sample */
min_sleep_us = 2 * period_us;
max_sleep_us = 2 * (period_us + period_us / 2);
usleep_range(min_sleep_us, max_sleep_us);
}
ret = inv_mpu_magn_read(st, chan->channel2, val);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_mark_last_busy(pdev);
pm_runtime_put_autosuspend(pdev);
return ret;
error_power_off:
pm_runtime_put_autosuspend(pdev);
return result;
}
static int
inv_mpu6050_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
int ret = 0;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
ret = inv_mpu6050_read_channel_data(indio_dev, chan, val);
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
mutex_lock(&st->lock);
*val = 0;
*val2 = gyro_scale_6050[st->chip_config.fsr];
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_NANO;
case IIO_ACCEL:
mutex_lock(&st->lock);
*val = 0;
*val2 = accel_scale[st->chip_config.accl_fs];
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_MICRO;
case IIO_TEMP:
*val = st->hw->temp.scale / 1000000;
*val2 = st->hw->temp.scale % 1000000;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_MAGN:
return inv_mpu_magn_get_scale(st, chan, val, val2);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
*val = st->hw->temp.offset;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
switch (chan->type) {
case IIO_ANGL_VEL:
mutex_lock(&st->lock);
ret = inv_mpu6050_sensor_show(st, st->reg->gyro_offset,
chan->channel2, val);
mutex_unlock(&st->lock);
return ret;
case IIO_ACCEL:
mutex_lock(&st->lock);
ret = inv_mpu6050_sensor_show(st, st->reg->accl_offset,
chan->channel2, val);
mutex_unlock(&st->lock);
return ret;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val,
int val2)
{
int result, i;
if (val != 0)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) {
if (gyro_scale_6050[i] == val2) {
result = inv_mpu6050_set_gyro_fsr(st, i);
if (result)
return result;
st->chip_config.fsr = i;
return 0;
}
}
return -EINVAL;
}
static int inv_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
return IIO_VAL_INT_PLUS_NANO;
default:
return IIO_VAL_INT_PLUS_MICRO;
}
default:
return IIO_VAL_INT_PLUS_MICRO;
}
return -EINVAL;
}
static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val,
int val2)
{
int result, i;
u8 d;
if (val != 0)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) {
if (accel_scale[i] == val2) {
d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
result = regmap_write(st->map, st->reg->accl_config, d);
if (result)
return result;
st->chip_config.accl_fs = i;
return 0;
}
}
return -EINVAL;
}
static int inv_mpu6050_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
struct device *pdev = regmap_get_device(st->map);
int result;
/*
* we should only update scale when the chip is disabled, i.e.
* not running
*/
result = iio_device_claim_direct_mode(indio_dev);
if (result)
return result;
mutex_lock(&st->lock);
result = pm_runtime_resume_and_get(pdev);
if (result)
goto error_write_raw_unlock;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
result = inv_mpu6050_write_gyro_scale(st, val, val2);
break;
case IIO_ACCEL:
result = inv_mpu6050_write_accel_scale(st, val, val2);
break;
default:
result = -EINVAL;
break;
}
break;
case IIO_CHAN_INFO_CALIBBIAS:
switch (chan->type) {
case IIO_ANGL_VEL:
result = inv_mpu6050_sensor_set(st,
st->reg->gyro_offset,
chan->channel2, val);
break;
case IIO_ACCEL:
result = inv_mpu6050_sensor_set(st,
st->reg->accl_offset,
chan->channel2, val);
break;
default:
result = -EINVAL;
break;
}
break;
default:
result = -EINVAL;
break;
}
pm_runtime_mark_last_busy(pdev);
pm_runtime_put_autosuspend(pdev);
error_write_raw_unlock:
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return result;
}
static u64 inv_mpu6050_convert_wom_to_roc(unsigned int threshold, unsigned int freq_div)
{
/* 4mg per LSB converted in m/s² in micro (1000000) */
const unsigned int convert = 4U * 9807U;
u64 value;
value = threshold * convert;
/* compute the differential by multiplying by the frequency */
return div_u64(value * INV_MPU6050_INTERNAL_FREQ_HZ, freq_div);
}
static unsigned int inv_mpu6050_convert_roc_to_wom(u64 roc, unsigned int freq_div)
{
/* 4mg per LSB converted in m/s² in micro (1000000) */
const unsigned int convert = 4U * 9807U;
u64 value;
/* return 0 only if roc is 0 */
if (roc == 0)
return 0;
value = div_u64(roc * freq_div, convert * INV_MPU6050_INTERNAL_FREQ_HZ);
/* limit value to 8 bits and prevent 0 */
return min(255, max(1, value));
}
static int inv_mpu6050_set_wom_int(struct inv_mpu6050_state *st, bool on)
{
unsigned int reg_val, val;
switch (st->chip_type) {
case INV_MPU6050:
case INV_MPU6500:
case INV_MPU6515:
case INV_MPU6880:
case INV_MPU6000:
case INV_MPU9150:
case INV_MPU9250:
case INV_MPU9255:
reg_val = INV_MPU6500_BIT_WOM_INT_EN;
break;
default:
reg_val = INV_ICM20608_BIT_WOM_INT_EN;
break;
}
val = on ? reg_val : 0;
return regmap_update_bits(st->map, st->reg->int_enable, reg_val, val);
}
static int inv_mpu6050_set_wom_threshold(struct inv_mpu6050_state *st, u64 value,
unsigned int freq_div)
{
unsigned int threshold;
int result;
/* convert roc to wom threshold and convert back to handle clipping */
threshold = inv_mpu6050_convert_roc_to_wom(value, freq_div);
value = inv_mpu6050_convert_wom_to_roc(threshold, freq_div);
dev_dbg(regmap_get_device(st->map), "wom_threshold: 0x%x\n", threshold);
switch (st->chip_type) {
case INV_ICM20609:
case INV_ICM20689:
case INV_ICM20600:
case INV_ICM20602:
case INV_ICM20690:
st->data[0] = threshold;
st->data[1] = threshold;
st->data[2] = threshold;
result = regmap_bulk_write(st->map, INV_ICM20609_REG_ACCEL_WOM_X_THR,
st->data, 3);
break;
default:
result = regmap_write(st->map, INV_MPU6500_REG_WOM_THRESHOLD, threshold);
break;
}
if (result)
return result;
st->chip_config.roc_threshold = value;
return 0;
}
static int inv_mpu6050_set_lp_odr(struct inv_mpu6050_state *st, unsigned int freq_div,
unsigned int *lp_div)
{
static const unsigned int freq_dividers[] = {2, 4, 8, 16, 32, 64, 128, 256};
static const unsigned int reg_values[] = {
INV_MPU6050_LPOSC_500HZ, INV_MPU6050_LPOSC_250HZ,
INV_MPU6050_LPOSC_125HZ, INV_MPU6050_LPOSC_62HZ,
INV_MPU6050_LPOSC_31HZ, INV_MPU6050_LPOSC_16HZ,
INV_MPU6050_LPOSC_8HZ, INV_MPU6050_LPOSC_4HZ,
};
unsigned int val, i;
switch (st->chip_type) {
case INV_ICM20609:
case INV_ICM20689:
case INV_ICM20600:
case INV_ICM20602:
case INV_ICM20690:
/* nothing to do */
*lp_div = INV_MPU6050_FREQ_DIVIDER(st);
return 0;
default:
break;
}
/* found the nearest superior frequency divider */
i = ARRAY_SIZE(reg_values) - 1;
val = reg_values[i];
*lp_div = freq_dividers[i];
for (i = 0; i < ARRAY_SIZE(freq_dividers); ++i) {
if (freq_div <= freq_dividers[i]) {
val = reg_values[i];
*lp_div = freq_dividers[i];
break;
}
}
dev_dbg(regmap_get_device(st->map), "lp_odr: 0x%x\n", val);
return regmap_write(st->map, INV_MPU6500_REG_LP_ODR, val);
}
static int inv_mpu6050_set_wom_lp(struct inv_mpu6050_state *st, bool on)
{
unsigned int lp_div;
int result;
if (on) {
/* set low power ODR */
result = inv_mpu6050_set_lp_odr(st, INV_MPU6050_FREQ_DIVIDER(st), &lp_div);
if (result)
return result;
/* disable accel low pass filter */
result = inv_mpu6050_set_accel_lpf_regs(st, INV_MPU6050_FILTER_NOLPF);
if (result)
return result;
/* update wom threshold with new low-power frequency divider */
result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold, lp_div);
if (result)
return result;
/* set cycle mode */
result = inv_mpu6050_pwr_mgmt_1_write(st, false, true, -1, -1);
} else {
/* disable cycle mode */
result = inv_mpu6050_pwr_mgmt_1_write(st, false, false, -1, -1);
if (result)
return result;
/* restore wom threshold */
result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold,
INV_MPU6050_FREQ_DIVIDER(st));
if (result)
return result;
/* restore accel low pass filter */
result = inv_mpu6050_set_accel_lpf_regs(st, st->chip_config.lpf);
}
return result;
}
static int inv_mpu6050_enable_wom(struct inv_mpu6050_state *st, bool en)
{
struct device *pdev = regmap_get_device(st->map);
unsigned int mask;
int result;
if (en) {
result = pm_runtime_resume_and_get(pdev);
if (result)
return result;
mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_WOM;
result = inv_mpu6050_switch_engine(st, true, mask);
if (result)
goto error_suspend;
result = inv_mpu6050_set_wom_int(st, true);
if (result)
goto error_suspend;
} else {
result = inv_mpu6050_set_wom_int(st, false);
if (result)
dev_err(pdev, "error %d disabling WoM interrupt bit", result);
/* disable only WoM and let accel be disabled by autosuspend */
result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_SENSOR_WOM);
if (result) {
dev_err(pdev, "error %d disabling WoM force off", result);
/* force WoM off */
st->chip_config.wom_en = false;
}
pm_runtime_mark_last_busy(pdev);
pm_runtime_put_autosuspend(pdev);
}
return result;
error_suspend:
pm_runtime_mark_last_busy(pdev);
pm_runtime_put_autosuspend(pdev);
return result;
}
static int inv_mpu6050_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
/* support only WoM (accel roc rising) event */
if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
dir != IIO_EV_DIR_RISING)
return -EINVAL;
guard(mutex)(&st->lock);
return st->chip_config.wom_en ? 1 : 0;
}
static int inv_mpu6050_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
int enable;
/* support only WoM (accel roc rising) event */
if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
dir != IIO_EV_DIR_RISING)
return -EINVAL;
enable = !!state;
guard(mutex)(&st->lock);
if (st->chip_config.wom_en == enable)
return 0;
return inv_mpu6050_enable_wom(st, enable);
}
static int inv_mpu6050_read_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
u32 rem;
/* support only WoM (accel roc rising) event value */
if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
dir != IIO_EV_DIR_RISING || info != IIO_EV_INFO_VALUE)
return -EINVAL;
guard(mutex)(&st->lock);
/* return value in micro */
*val = div_u64_rem(st->chip_config.roc_threshold, 1000000U, &rem);
*val2 = rem;
return IIO_VAL_INT_PLUS_MICRO;
}
static int inv_mpu6050_write_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
struct device *pdev = regmap_get_device(st->map);
u64 value;
int result;
/* support only WoM (accel roc rising) event value */
if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC ||
dir != IIO_EV_DIR_RISING || info != IIO_EV_INFO_VALUE)
return -EINVAL;
if (val < 0 || val2 < 0)
return -EINVAL;
guard(mutex)(&st->lock);
result = pm_runtime_resume_and_get(pdev);
if (result)
return result;
value = (u64)val * 1000000ULL + (u64)val2;
result = inv_mpu6050_set_wom_threshold(st, value, INV_MPU6050_FREQ_DIVIDER(st));
pm_runtime_mark_last_busy(pdev);
pm_runtime_put_autosuspend(pdev);
return result;
}
/*
* inv_mpu6050_set_lpf() - set low pass filer based on fifo rate.
*
* Based on the Nyquist principle, the bandwidth of the low
* pass filter must not exceed the signal sampling rate divided
* by 2, or there would be aliasing.
* This function basically search for the correct low pass
* parameters based on the fifo rate, e.g, sampling frequency.
*
* lpf is set automatically when setting sampling rate to avoid any aliases.
*/
static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate)
{
static const int hz[] = {400, 200, 90, 40, 20, 10};
static const int d[] = {
INV_MPU6050_FILTER_200HZ, INV_MPU6050_FILTER_100HZ,
INV_MPU6050_FILTER_45HZ, INV_MPU6050_FILTER_20HZ,
INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ
};
int i, result;
u8 data;
data = INV_MPU6050_FILTER_5HZ;
for (i = 0; i < ARRAY_SIZE(hz); ++i) {
if (rate >= hz[i]) {
data = d[i];
break;
}
}
result = inv_mpu6050_set_lpf_regs(st, data);
if (result)
return result;
st->chip_config.lpf = data;
return 0;
}
/*
* inv_mpu6050_fifo_rate_store() - Set fifo rate.
*/
static ssize_t
inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int fifo_rate;
u32 fifo_period;
bool fifo_on;
u8 d;
int result;
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct inv_mpu6050_state *st = iio_priv(indio_dev);
struct device *pdev = regmap_get_device(st->map);
if (kstrtoint(buf, 10, &fifo_rate))
return -EINVAL;
if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE ||
fifo_rate > INV_MPU6050_MAX_FIFO_RATE)
return -EINVAL;
/* compute the chip sample rate divider */
d = INV_MPU6050_FIFO_RATE_TO_DIVIDER(fifo_rate);
/* compute back the fifo rate to handle truncation cases */
fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(d);
fifo_period = NSEC_PER_SEC / fifo_rate;
mutex_lock(&st->lock);
if (d == st->chip_config.divider) {
result = 0;
goto fifo_rate_fail_unlock;
}
fifo_on = st->chip_config.accl_fifo_enable ||
st->chip_config.gyro_fifo_enable ||
st->chip_config.magn_fifo_enable;
result = inv_sensors_timestamp_update_odr(&st->timestamp, fifo_period, fifo_on);
if (result)
goto fifo_rate_fail_unlock;
result = pm_runtime_resume_and_get(pdev);
if (result)
goto fifo_rate_fail_unlock;
result = regmap_write(st->map, st->reg->sample_rate_div, d);
if (result)
goto fifo_rate_fail_power_off;
st->chip_config.divider = d;
result = inv_mpu6050_set_lpf(st, fifo_rate);
if (result)
goto fifo_rate_fail_power_off;
/* update rate for magn, noop if not present in chip */
result = inv_mpu_magn_set_rate(st, fifo_rate);
if (result)
goto fifo_rate_fail_power_off;
/* update wom threshold since roc is dependent on sampling frequency */
result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold,
INV_MPU6050_FREQ_DIVIDER(st));
if (result)
goto fifo_rate_fail_power_off;
pm_runtime_mark_last_busy(pdev);
fifo_rate_fail_power_off:
pm_runtime_put_autosuspend(pdev);
fifo_rate_fail_unlock:
mutex_unlock(&st->lock);
if (result)
return result;
return count;
}
/*
* inv_fifo_rate_show() - Get the current sampling rate.
*/
static ssize_t
inv_fifo_rate_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
unsigned fifo_rate;
mutex_lock(&st->lock);
fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
mutex_unlock(&st->lock);
return scnprintf(buf, PAGE_SIZE, "%u\n", fifo_rate);
}
/*
* inv_attr_show() - calling this function will show current
* parameters.
*
* Deprecated in favor of IIO mounting matrix API.
*
* See inv_get_mount_matrix()
*/
static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
s8 *m;
switch (this_attr->address) {
/*
* In MPU6050, the two matrix are the same because gyro and accel
* are integrated in one chip
*/
case ATTR_GYRO_MATRIX:
case ATTR_ACCL_MATRIX:
m = st->plat_data.orientation;
return scnprintf(buf, PAGE_SIZE,
"%d, %d, %d; %d, %d, %d; %d, %d, %d\n",
m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]);
default:
return -EINVAL;
}
}
/**
* inv_mpu6050_validate_trigger() - validate_trigger callback for invensense
* MPU6050 device.
* @indio_dev: The IIO device
* @trig: The new trigger
*
* Returns: 0 if the 'trig' matches the trigger registered by the MPU6050
* device, -EINVAL otherwise.
*/
static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
if (st->trig != trig)
return -EINVAL;
return 0;
}
static const struct iio_mount_matrix *
inv_get_mount_matrix(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct inv_mpu6050_state *data = iio_priv(indio_dev);
const struct iio_mount_matrix *matrix;
if (chan->type == IIO_MAGN)
matrix = &data->magn_orient;
else
matrix = &data->orientation;
return matrix;
}
static const struct iio_chan_spec_ext_info inv_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, inv_get_mount_matrix),
{ }
};
static const struct iio_event_spec inv_wom_events[] = {
{
.type = IIO_EV_TYPE_ROC,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_VALUE),
},
};
#define INV_MPU6050_CHAN(_type, _channel2, _index) \
{ \
.type = _type, \
.modified = 1, \
.channel2 = _channel2, \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.shift = 0, \
.endianness = IIO_BE, \
}, \
.ext_info = inv_ext_info, \
}
#define INV_MPU6050_TEMP_CHAN(_index) \
{ \
.type = IIO_TEMP, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
| BIT(IIO_CHAN_INFO_OFFSET) \
| BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.shift = 0, \
.endianness = IIO_BE, \
}, \
}
#define INV_MPU6050_EVENT_CHAN(_type, _channel2, _events, _events_nb) \
{ \
.type = _type, \
.modified = 1, \
.channel2 = _channel2, \
.event_spec = _events, \
.num_event_specs = _events_nb, \
.scan_index = -1, \
}
static const struct iio_chan_spec inv_mpu6050_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
};
static const struct iio_chan_spec inv_mpu6500_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
INV_MPU6050_EVENT_CHAN(IIO_ACCEL, IIO_MOD_X_OR_Y_OR_Z,
inv_wom_events, ARRAY_SIZE(inv_wom_events)),
};
#define INV_MPU6050_SCAN_MASK_3AXIS_ACCEL \
(BIT(INV_MPU6050_SCAN_ACCL_X) \
| BIT(INV_MPU6050_SCAN_ACCL_Y) \
| BIT(INV_MPU6050_SCAN_ACCL_Z))
#define INV_MPU6050_SCAN_MASK_3AXIS_GYRO \
(BIT(INV_MPU6050_SCAN_GYRO_X) \
| BIT(INV_MPU6050_SCAN_GYRO_Y) \
| BIT(INV_MPU6050_SCAN_GYRO_Z))
#define INV_MPU6050_SCAN_MASK_TEMP (BIT(INV_MPU6050_SCAN_TEMP))
static const unsigned long inv_mpu_scan_masks[] = {
/* 3-axis accel */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
/* 3-axis gyro */
INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
/* 6-axis accel + gyro */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
| INV_MPU6050_SCAN_MASK_TEMP,
0,
};
#define INV_MPU9X50_MAGN_CHAN(_chan2, _bits, _index) \
{ \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = _chan2, \
.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_RAW), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = _bits, \
.storagebits = 16, \
.shift = 0, \
.endianness = IIO_BE, \
}, \
.ext_info = inv_ext_info, \
}
static const struct iio_chan_spec inv_mpu9150_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
/* Magnetometer resolution is 13 bits */
INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 13, INV_MPU9X50_SCAN_MAGN_X),
INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 13, INV_MPU9X50_SCAN_MAGN_Y),
INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 13, INV_MPU9X50_SCAN_MAGN_Z),
};
static const struct iio_chan_spec inv_mpu9250_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
/* Magnetometer resolution is 16 bits */
INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 16, INV_MPU9X50_SCAN_MAGN_X),
INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 16, INV_MPU9X50_SCAN_MAGN_Y),
INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 16, INV_MPU9X50_SCAN_MAGN_Z),
};
#define INV_MPU9X50_SCAN_MASK_3AXIS_MAGN \
(BIT(INV_MPU9X50_SCAN_MAGN_X) \
| BIT(INV_MPU9X50_SCAN_MAGN_Y) \
| BIT(INV_MPU9X50_SCAN_MAGN_Z))
static const unsigned long inv_mpu9x50_scan_masks[] = {
/* 3-axis accel */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
/* 3-axis gyro */
INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
/* 3-axis magn */
INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP,
/* 6-axis accel + gyro */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
| INV_MPU6050_SCAN_MASK_TEMP,
/* 6-axis accel + magn */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
| INV_MPU6050_SCAN_MASK_TEMP,
/* 6-axis gyro + magn */
INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
| INV_MPU6050_SCAN_MASK_TEMP,
/* 9-axis accel + gyro + magn */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
| INV_MPU6050_SCAN_MASK_TEMP,
0,
};
static const unsigned long inv_icm20602_scan_masks[] = {
/* 3-axis accel + temp (mandatory) */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
/* 3-axis gyro + temp (mandatory) */
INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
/* 6-axis accel + gyro + temp (mandatory) */
INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
| INV_MPU6050_SCAN_MASK_TEMP,
0,
};
/*
* The user can choose any frequency between INV_MPU6050_MIN_FIFO_RATE and
* INV_MPU6050_MAX_FIFO_RATE, but only these frequencies are matched by the
* low-pass filter. Specifically, each of these sampling rates are about twice
* the bandwidth of a corresponding low-pass filter, which should eliminate
* aliasing following the Nyquist principle. By picking a frequency different
* from these, the user risks aliasing effects.
*/
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500");
static IIO_CONST_ATTR(in_anglvel_scale_available,
"0.000133090 0.000266181 0.000532362 0.001064724");
static IIO_CONST_ATTR(in_accel_scale_available,
"0.000598 0.001196 0.002392 0.004785");
static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show,
inv_mpu6050_fifo_rate_store);
/* Deprecated: kept for userspace backward compatibility. */
static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL,
ATTR_GYRO_MATRIX);
static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL,
ATTR_ACCL_MATRIX);
static struct attribute *inv_attributes[] = {
&iio_dev_attr_in_gyro_matrix.dev_attr.attr, /* deprecated */
&iio_dev_attr_in_accel_matrix.dev_attr.attr, /* deprecated */
&iio_dev_attr_sampling_frequency.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
&iio_const_attr_in_accel_scale_available.dev_attr.attr,
&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group inv_attribute_group = {
.attrs = inv_attributes
};
static int inv_mpu6050_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct inv_mpu6050_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
if (readval)
ret = regmap_read(st->map, reg, readval);
else
ret = regmap_write(st->map, reg, writeval);
mutex_unlock(&st->lock);
return ret;
}
static const struct iio_info mpu_info = {
.read_raw = &inv_mpu6050_read_raw,
.write_raw = &inv_mpu6050_write_raw,
.write_raw_get_fmt = &inv_write_raw_get_fmt,
.attrs = &inv_attribute_group,
.read_event_config = inv_mpu6050_read_event_config,
.write_event_config = inv_mpu6050_write_event_config,
.read_event_value = inv_mpu6050_read_event_value,
.write_event_value = inv_mpu6050_write_event_value,
.validate_trigger = inv_mpu6050_validate_trigger,
.debugfs_reg_access = &inv_mpu6050_reg_access,
};
/*
* inv_check_and_setup_chip() - check and setup chip.
*/
static int inv_check_and_setup_chip(struct inv_mpu6050_state *st)
{
int result;
unsigned int regval, mask;
int i;
st->hw = &hw_info[st->chip_type];
st->reg = hw_info[st->chip_type].reg;
memcpy(&st->chip_config, hw_info[st->chip_type].config,
sizeof(st->chip_config));
st->data = devm_kzalloc(regmap_get_device(st->map), st->hw->fifo_size, GFP_KERNEL);
if (st->data == NULL)
return -ENOMEM;
/* check chip self-identification */
result = regmap_read(st->map, INV_MPU6050_REG_WHOAMI, ®val);
if (result)
return result;
if (regval != st->hw->whoami) {
/* check whoami against all possible values */
for (i = 0; i < INV_NUM_PARTS; ++i) {
if (regval == hw_info[i].whoami) {
dev_warn(regmap_get_device(st->map),
"whoami mismatch got 0x%02x (%s) expected 0x%02x (%s)\n",
regval, hw_info[i].name,
st->hw->whoami, st->hw->name);
break;
}
}
if (i >= INV_NUM_PARTS) {
dev_err(regmap_get_device(st->map),
"invalid whoami 0x%02x expected 0x%02x (%s)\n",
regval, st->hw->whoami, st->hw->name);
return -ENODEV;
}
}
/* reset to make sure previous state are not there */
result = regmap_write(st->map, st->reg->pwr_mgmt_1,
INV_MPU6050_BIT_H_RESET);
if (result)
return result;
msleep(INV_MPU6050_POWER_UP_TIME);
switch (st->chip_type) {
case INV_MPU6000:
case INV_MPU6500:
case INV_MPU6515:
case INV_MPU6880:
case INV_MPU9250:
case INV_MPU9255:
/* reset signal path (required for spi connection) */
regval = INV_MPU6050_BIT_TEMP_RST | INV_MPU6050_BIT_ACCEL_RST |
INV_MPU6050_BIT_GYRO_RST;
result = regmap_write(st->map, INV_MPU6050_REG_SIGNAL_PATH_RESET,
regval);
if (result)
return result;
msleep(INV_MPU6050_POWER_UP_TIME);
break;
default:
break;
}
/*
* Turn power on. After reset, the sleep bit could be on
* or off depending on the OTP settings. Turning power on
* make it in a definite state as well as making the hardware
* state align with the software state
*/
result = inv_mpu6050_set_power_itg(st, true);
if (result)
return result;
mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN;
result = inv_mpu6050_switch_engine(st, false, mask);
if (result)
goto error_power_off;
return 0;
error_power_off:
inv_mpu6050_set_power_itg(st, false);
return result;
}
static int inv_mpu_core_enable_regulator_vddio(struct inv_mpu6050_state *st)
{
int result;
result = regulator_enable(st->vddio_supply);
if (result) {
dev_err(regmap_get_device(st->map),
"Failed to enable vddio regulator: %d\n", result);
} else {
/* Give the device a little bit of time to start up. */
usleep_range(3000, 5000);
}
return result;
}
static int inv_mpu_core_disable_regulator_vddio(struct inv_mpu6050_state *st)
{
int result;
result = regulator_disable(st->vddio_supply);
if (result)
dev_err(regmap_get_device(st->map),
"Failed to disable vddio regulator: %d\n", result);
return result;
}
static void inv_mpu_core_disable_regulator_action(void *_data)
{
struct inv_mpu6050_state *st = _data;
int result;
result = regulator_disable(st->vdd_supply);
if (result)
dev_err(regmap_get_device(st->map),
"Failed to disable vdd regulator: %d\n", result);
inv_mpu_core_disable_regulator_vddio(st);
}
static void inv_mpu_pm_disable(void *data)
{
struct device *dev = data;
pm_runtime_disable(dev);
}
int inv_mpu_core_probe(struct regmap *regmap, int irq, const char *name,
int (*inv_mpu_bus_setup)(struct iio_dev *), int chip_type)
{
struct inv_mpu6050_state *st;
struct iio_dev *indio_dev;
struct inv_mpu6050_platform_data *pdata;
struct device *dev = regmap_get_device(regmap);
int result;
struct irq_data *desc;
int irq_type;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
BUILD_BUG_ON(ARRAY_SIZE(hw_info) != INV_NUM_PARTS);
if (chip_type < 0 || chip_type >= INV_NUM_PARTS) {
dev_err(dev, "Bad invensense chip_type=%d name=%s\n",
chip_type, name);
return -ENODEV;
}
st = iio_priv(indio_dev);
mutex_init(&st->lock);
st->chip_type = chip_type;
st->irq = irq;
st->map = regmap;
st->level_shifter = device_property_read_bool(dev,
"invensense,level-shifter");
pdata = dev_get_platdata(dev);
if (!pdata) {
result = iio_read_mount_matrix(dev, &st->orientation);
if (result) {
dev_err(dev, "Failed to retrieve mounting matrix %d\n",
result);
return result;
}
} else {
st->plat_data = *pdata;
}
if (irq > 0) {
desc = irq_get_irq_data(irq);
if (!desc) {
dev_err(dev, "Could not find IRQ %d\n", irq);
return -EINVAL;
}
irq_type = irqd_get_trigger_type(desc);
if (!irq_type)
irq_type = IRQF_TRIGGER_RISING;
} else {
/* Doesn't really matter, use the default */
irq_type = IRQF_TRIGGER_RISING;
}
if (irq_type & IRQF_TRIGGER_RISING) // rising or both-edge
st->irq_mask = INV_MPU6050_ACTIVE_HIGH;
else if (irq_type == IRQF_TRIGGER_FALLING)
st->irq_mask = INV_MPU6050_ACTIVE_LOW;
else if (irq_type == IRQF_TRIGGER_HIGH)
st->irq_mask = INV_MPU6050_ACTIVE_HIGH |
INV_MPU6050_LATCH_INT_EN;
else if (irq_type == IRQF_TRIGGER_LOW)
st->irq_mask = INV_MPU6050_ACTIVE_LOW |
INV_MPU6050_LATCH_INT_EN;
else {
dev_err(dev, "Invalid interrupt type 0x%x specified\n",
irq_type);
return -EINVAL;
}
device_set_wakeup_capable(dev, true);
st->vdd_supply = devm_regulator_get(dev, "vdd");
if (IS_ERR(st->vdd_supply))
return dev_err_probe(dev, PTR_ERR(st->vdd_supply),
"Failed to get vdd regulator\n");
st->vddio_supply = devm_regulator_get(dev, "vddio");
if (IS_ERR(st->vddio_supply))
return dev_err_probe(dev, PTR_ERR(st->vddio_supply),
"Failed to get vddio regulator\n");
result = regulator_enable(st->vdd_supply);
if (result) {
dev_err(dev, "Failed to enable vdd regulator: %d\n", result);
return result;
}
msleep(INV_MPU6050_POWER_UP_TIME);
result = inv_mpu_core_enable_regulator_vddio(st);
if (result) {
regulator_disable(st->vdd_supply);
return result;
}
result = devm_add_action_or_reset(dev, inv_mpu_core_disable_regulator_action,
st);
if (result) {
dev_err(dev, "Failed to setup regulator cleanup action %d\n",
result);
return result;
}
/* fill magnetometer orientation */
result = inv_mpu_magn_set_orient(st);
if (result)
return result;
/* power is turned on inside check chip type*/
result = inv_check_and_setup_chip(st);
if (result)
return result;
result = inv_mpu6050_init_config(indio_dev);
if (result) {
dev_err(dev, "Could not initialize device.\n");
goto error_power_off;
}
dev_set_drvdata(dev, indio_dev);
/* name will be NULL when enumerated via ACPI */
if (name)
indio_dev->name = name;
else
indio_dev->name = dev_name(dev);
/* requires parent device set in indio_dev */
if (inv_mpu_bus_setup) {
result = inv_mpu_bus_setup(indio_dev);
if (result)
goto error_power_off;
}
/* chip init is done, turning on runtime power management */
result = pm_runtime_set_active(dev);
if (result)
goto error_power_off;
pm_runtime_get_noresume(dev);
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, INV_MPU6050_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(dev);
pm_runtime_put(dev);
result = devm_add_action_or_reset(dev, inv_mpu_pm_disable, dev);
if (result)
return result;
switch (chip_type) {
case INV_MPU6000:
case INV_MPU6050:
indio_dev->channels = inv_mpu6050_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu6050_channels);
indio_dev->available_scan_masks = inv_mpu_scan_masks;
break;
case INV_MPU9150:
indio_dev->channels = inv_mpu9150_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu9150_channels);
indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
break;
case INV_MPU9250:
case INV_MPU9255:
indio_dev->channels = inv_mpu9250_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu9250_channels);
indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
break;
case INV_ICM20600:
case INV_ICM20602:
indio_dev->channels = inv_mpu6500_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels);
indio_dev->available_scan_masks = inv_icm20602_scan_masks;
break;
default:
indio_dev->channels = inv_mpu6500_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels);
indio_dev->available_scan_masks = inv_mpu_scan_masks;
break;
}
/*
* Use magnetometer inside the chip only if there is no i2c
* auxiliary device in use. Otherwise Going back to 6-axis only.
*/
if (st->magn_disabled) {
switch (chip_type) {
case INV_MPU9150:
indio_dev->channels = inv_mpu6050_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu6050_channels);
indio_dev->available_scan_masks = inv_mpu_scan_masks;
break;
default:
indio_dev->channels = inv_mpu6500_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels);
indio_dev->available_scan_masks = inv_mpu_scan_masks;
break;
}
}
indio_dev->info = &mpu_info;
if (irq > 0) {
/*
* The driver currently only supports buffered capture with its
* own trigger. So no IRQ, no trigger, no buffer
*/
result = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
inv_mpu6050_read_fifo,
NULL);
if (result) {
dev_err(dev, "configure buffer fail %d\n", result);
return result;
}
result = inv_mpu6050_probe_trigger(indio_dev, irq_type);
if (result) {
dev_err(dev, "trigger probe fail %d\n", result);
return result;
}
}
result = devm_iio_device_register(dev, indio_dev);
if (result) {
dev_err(dev, "IIO register fail %d\n", result);
return result;
}
return 0;
error_power_off:
inv_mpu6050_set_power_itg(st, false);
return result;
}
EXPORT_SYMBOL_NS_GPL(inv_mpu_core_probe, IIO_MPU6050);
static int inv_mpu_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct inv_mpu6050_state *st = iio_priv(indio_dev);
bool wakeup;
int result;
guard(mutex)(&st->lock);
wakeup = device_may_wakeup(dev) && st->chip_config.wom_en;
if (wakeup) {
enable_irq(st->irq);
disable_irq_wake(st->irq);
result = inv_mpu6050_set_wom_lp(st, false);
if (result)
return result;
} else {
result = inv_mpu_core_enable_regulator_vddio(st);
if (result)
return result;
result = inv_mpu6050_set_power_itg(st, true);
if (result)
return result;
}
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
result = inv_mpu6050_switch_engine(st, true, st->suspended_sensors);
if (result)
return result;
if (st->chip_config.wom_en && !wakeup) {
result = inv_mpu6050_set_wom_int(st, true);
if (result)
return result;
}
if (iio_buffer_enabled(indio_dev))
result = inv_mpu6050_prepare_fifo(st, true);
return result;
}
static int inv_mpu_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct inv_mpu6050_state *st = iio_priv(indio_dev);
bool wakeup;
int result;
guard(mutex)(&st->lock);
st->suspended_sensors = 0;
if (pm_runtime_suspended(dev))
return 0;
if (iio_buffer_enabled(indio_dev)) {
result = inv_mpu6050_prepare_fifo(st, false);
if (result)
return result;
}
wakeup = device_may_wakeup(dev) && st->chip_config.wom_en;
if (st->chip_config.wom_en && !wakeup) {
result = inv_mpu6050_set_wom_int(st, false);
if (result)
return result;
}
if (st->chip_config.accl_en && !wakeup)
st->suspended_sensors |= INV_MPU6050_SENSOR_ACCL;
if (st->chip_config.gyro_en)
st->suspended_sensors |= INV_MPU6050_SENSOR_GYRO;
if (st->chip_config.temp_en)
st->suspended_sensors |= INV_MPU6050_SENSOR_TEMP;
if (st->chip_config.magn_en)
st->suspended_sensors |= INV_MPU6050_SENSOR_MAGN;
if (st->chip_config.wom_en && !wakeup)
st->suspended_sensors |= INV_MPU6050_SENSOR_WOM;
result = inv_mpu6050_switch_engine(st, false, st->suspended_sensors);
if (result)
return result;
if (wakeup) {
result = inv_mpu6050_set_wom_lp(st, true);
if (result)
return result;
enable_irq_wake(st->irq);
disable_irq(st->irq);
} else {
result = inv_mpu6050_set_power_itg(st, false);
if (result)
return result;
inv_mpu_core_disable_regulator_vddio(st);
}
return 0;
}
static int inv_mpu_runtime_suspend(struct device *dev)
{
struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
unsigned int sensors;
int ret;
mutex_lock(&st->lock);
sensors = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN |
INV_MPU6050_SENSOR_WOM;
ret = inv_mpu6050_switch_engine(st, false, sensors);
if (ret)
goto out_unlock;
ret = inv_mpu6050_set_power_itg(st, false);
if (ret)
goto out_unlock;
inv_mpu_core_disable_regulator_vddio(st);
out_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int inv_mpu_runtime_resume(struct device *dev)
{
struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
int ret;
ret = inv_mpu_core_enable_regulator_vddio(st);
if (ret)
return ret;
return inv_mpu6050_set_power_itg(st, true);
}
EXPORT_NS_GPL_DEV_PM_OPS(inv_mpu_pmops, IIO_MPU6050) = {
SYSTEM_SLEEP_PM_OPS(inv_mpu_suspend, inv_mpu_resume)
RUNTIME_PM_OPS(inv_mpu_runtime_suspend, inv_mpu_runtime_resume, NULL)
};
MODULE_AUTHOR("Invensense Corporation");
MODULE_DESCRIPTION("Invensense device MPU6050 driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_INV_SENSORS_TIMESTAMP);