// SPDX-License-Identifier: GPL-2.0-or-later
/*
* IIO driver for Lite-On LTR390 ALS and UV sensor
* (7-bit I2C slave address 0x53)
*
* Based on the work of:
* Shreeya Patel and Shi Zhigang (LTRF216 Driver)
*
* Copyright (C) 2023 Anshul Dalal <[email protected]>
*
* Datasheet:
* https://optoelectronics.liteon.com/upload/download/DS86-2015-0004/LTR-390UV_Final_%20DS_V1%201.pdf
*
* TODO:
* - Support for configurable gain and resolution
* - Sensor suspend/resume support
* - Add support for reading the ALS
* - Interrupt support
*/
#include <linux/i2c.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/bitfield.h>
#include <linux/iio/iio.h>
#include <linux/unaligned.h>
#define LTR390_MAIN_CTRL 0x00
#define LTR390_ALS_UVS_MEAS_RATE 0x04
#define LTR390_ALS_UVS_GAIN 0x05
#define LTR390_PART_ID 0x06
#define LTR390_ALS_DATA 0x0D
#define LTR390_UVS_DATA 0x10
#define LTR390_INT_CFG 0x19
#define LTR390_PART_NUMBER_ID 0xb
#define LTR390_ALS_UVS_GAIN_MASK 0x07
#define LTR390_ALS_UVS_INT_TIME_MASK 0x70
#define LTR390_ALS_UVS_INT_TIME(x) FIELD_PREP(LTR390_ALS_UVS_INT_TIME_MASK, (x))
#define LTR390_SW_RESET BIT(4)
#define LTR390_UVS_MODE BIT(3)
#define LTR390_SENSOR_ENABLE BIT(1)
#define LTR390_FRACTIONAL_PRECISION 100
/*
* At 20-bit resolution (integration time: 400ms) and 18x gain, 2300 counts of
* the sensor are equal to 1 UV Index [Datasheet Page#8].
*
* For the default resolution of 18-bit (integration time: 100ms) and default
* gain of 3x, the counts/uvi are calculated as follows:
* 2300 / ((3/18) * (100/400)) = 95.83
*/
#define LTR390_COUNTS_PER_UVI 96
/*
* Window Factor is needed when the device is under Window glass with coated
* tinted ink. This is to compensate for the light loss due to the lower
* transmission rate of the window glass and helps * in calculating lux.
*/
#define LTR390_WINDOW_FACTOR 1
enum ltr390_mode {
LTR390_SET_ALS_MODE,
LTR390_SET_UVS_MODE,
};
struct ltr390_data {
struct regmap *regmap;
struct i2c_client *client;
/* Protects device from simulataneous reads */
struct mutex lock;
enum ltr390_mode mode;
int gain;
int int_time_us;
};
static const struct regmap_config ltr390_regmap_config = {
.name = "ltr390",
.reg_bits = 8,
.reg_stride = 1,
.val_bits = 8,
};
static int ltr390_register_read(struct ltr390_data *data, u8 register_address)
{
struct device *dev = &data->client->dev;
int ret;
u8 recieve_buffer[3];
ret = regmap_bulk_read(data->regmap, register_address, recieve_buffer,
sizeof(recieve_buffer));
if (ret) {
dev_err(dev, "failed to read measurement data");
return ret;
}
return get_unaligned_le24(recieve_buffer);
}
static int ltr390_set_mode(struct ltr390_data *data, enum ltr390_mode mode)
{
int ret;
if (data->mode == mode)
return 0;
switch (mode) {
case LTR390_SET_ALS_MODE:
ret = regmap_clear_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_UVS_MODE);
break;
case LTR390_SET_UVS_MODE:
ret = regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_UVS_MODE);
break;
}
if (ret)
return ret;
data->mode = mode;
return 0;
}
static int ltr390_counts_per_uvi(struct ltr390_data *data)
{
const int orig_gain = 18;
const int orig_int_time = 400;
return DIV_ROUND_CLOSEST(23 * data->gain * data->int_time_us, 10 * orig_gain * orig_int_time);
}
static int ltr390_read_raw(struct iio_dev *iio_device,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int ret;
struct ltr390_data *data = iio_priv(iio_device);
guard(mutex)(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_UVINDEX:
ret = ltr390_set_mode(data, LTR390_SET_UVS_MODE);
if (ret < 0)
return ret;
ret = ltr390_register_read(data, LTR390_UVS_DATA);
if (ret < 0)
return ret;
break;
case IIO_LIGHT:
ret = ltr390_set_mode(data, LTR390_SET_ALS_MODE);
if (ret < 0)
return ret;
ret = ltr390_register_read(data, LTR390_ALS_DATA);
if (ret < 0)
return ret;
break;
default:
return -EINVAL;
}
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_UVINDEX:
*val = LTR390_WINDOW_FACTOR * LTR390_FRACTIONAL_PRECISION;
*val2 = ltr390_counts_per_uvi(data);
return IIO_VAL_FRACTIONAL;
case IIO_LIGHT:
*val = LTR390_WINDOW_FACTOR * 6 * 100;
*val2 = data->gain * data->int_time_us;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_INT_TIME:
*val = data->int_time_us;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
/* integration time in us */
static const int ltr390_int_time_map_us[] = { 400000, 200000, 100000, 50000, 25000, 12500 };
static const int ltr390_gain_map[] = { 1, 3, 6, 9, 18 };
static const struct iio_chan_spec ltr390_channels[] = {
/* UV sensor */
{
.type = IIO_UVINDEX,
.scan_index = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SCALE)
},
/* ALS sensor */
{
.type = IIO_LIGHT,
.scan_index = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SCALE)
},
};
static int ltr390_set_gain(struct ltr390_data *data, int val)
{
int ret, idx;
for (idx = 0; idx < ARRAY_SIZE(ltr390_gain_map); idx++) {
if (ltr390_gain_map[idx] != val)
continue;
guard(mutex)(&data->lock);
ret = regmap_update_bits(data->regmap,
LTR390_ALS_UVS_GAIN,
LTR390_ALS_UVS_GAIN_MASK, idx);
if (ret)
return ret;
data->gain = ltr390_gain_map[idx];
return 0;
}
return -EINVAL;
}
static int ltr390_set_int_time(struct ltr390_data *data, int val)
{
int ret, idx;
for (idx = 0; idx < ARRAY_SIZE(ltr390_int_time_map_us); idx++) {
if (ltr390_int_time_map_us[idx] != val)
continue;
guard(mutex)(&data->lock);
ret = regmap_update_bits(data->regmap,
LTR390_ALS_UVS_MEAS_RATE,
LTR390_ALS_UVS_INT_TIME_MASK,
LTR390_ALS_UVS_INT_TIME(idx));
if (ret)
return ret;
data->int_time_us = ltr390_int_time_map_us[idx];
return 0;
}
return -EINVAL;
}
static int ltr390_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
const int **vals, int *type, int *length, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*length = ARRAY_SIZE(ltr390_gain_map);
*type = IIO_VAL_INT;
*vals = ltr390_gain_map;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_INT_TIME:
*length = ARRAY_SIZE(ltr390_int_time_map_us);
*type = IIO_VAL_INT;
*vals = ltr390_int_time_map_us;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int ltr390_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct ltr390_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
if (val2 != 0)
return -EINVAL;
return ltr390_set_gain(data, val);
case IIO_CHAN_INFO_INT_TIME:
if (val2 != 0)
return -EINVAL;
return ltr390_set_int_time(data, val);
default:
return -EINVAL;
}
}
static const struct iio_info ltr390_info = {
.read_raw = ltr390_read_raw,
.write_raw = ltr390_write_raw,
.read_avail = ltr390_read_avail,
};
static int ltr390_probe(struct i2c_client *client)
{
struct ltr390_data *data;
struct iio_dev *indio_dev;
struct device *dev;
int ret, part_number;
dev = &client->dev;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->regmap = devm_regmap_init_i2c(client, <r390_regmap_config);
if (IS_ERR(data->regmap))
return dev_err_probe(dev, PTR_ERR(data->regmap),
"regmap initialization failed\n");
data->client = client;
/* default value of integration time from pg: 15 of the datasheet */
data->int_time_us = 100000;
/* default value of gain from pg: 16 of the datasheet */
data->gain = 3;
/* default mode for ltr390 is ALS mode */
data->mode = LTR390_SET_ALS_MODE;
mutex_init(&data->lock);
indio_dev->info = <r390_info;
indio_dev->channels = ltr390_channels;
indio_dev->num_channels = ARRAY_SIZE(ltr390_channels);
indio_dev->name = "ltr390";
ret = regmap_read(data->regmap, LTR390_PART_ID, &part_number);
if (ret)
return dev_err_probe(dev, ret,
"failed to get sensor's part id\n");
/* Lower 4 bits of `part_number` change with hardware revisions */
if (part_number >> 4 != LTR390_PART_NUMBER_ID)
dev_info(dev, "received invalid product id: 0x%x", part_number);
dev_dbg(dev, "LTR390, product id: 0x%x\n", part_number);
/* reset sensor, chip fails to respond to this, so ignore any errors */
regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_SW_RESET);
/* Wait for the registers to reset before proceeding */
usleep_range(1000, 2000);
ret = regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_SENSOR_ENABLE);
if (ret)
return dev_err_probe(dev, ret, "failed to enable the sensor\n");
return devm_iio_device_register(dev, indio_dev);
}
static const struct i2c_device_id ltr390_id[] = {
{ "ltr390" },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, ltr390_id);
static const struct of_device_id ltr390_of_table[] = {
{ .compatible = "liteon,ltr390" },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, ltr390_of_table);
static struct i2c_driver ltr390_driver = {
.driver = {
.name = "ltr390",
.of_match_table = ltr390_of_table,
},
.probe = ltr390_probe,
.id_table = ltr390_id,
};
module_i2c_driver(ltr390_driver);
MODULE_AUTHOR("Anshul Dalal <[email protected]>");
MODULE_DESCRIPTION("Lite-On LTR390 ALS and UV sensor Driver");
MODULE_LICENSE("GPL");