// SPDX-License-Identifier: GPL-2.0
/*
* ad2s1210.c support for the ADI Resolver to Digital Converters: AD2S1210
*
* Copyright (c) 2010-2010 Analog Devices Inc.
* Copyright (c) 2023 BayLibre, SAS
*
* Device register to IIO ABI mapping:
*
* Register | Addr | IIO ABI (sysfs)
* ----------------------------|------|-------------------------------------------
* DOS Overrange Threshold | 0x89 | events/in_altvoltage0_thresh_rising_value
* DOS Mismatch Threshold | 0x8A | events/in_altvoltage0_mag_rising_value
* DOS Reset Maximum Threshold | 0x8B | events/in_altvoltage0_mag_rising_reset_max
* DOS Reset Minimum Threshold | 0x8C | events/in_altvoltage0_mag_rising_reset_min
* LOT High Threshold | 0x8D | events/in_angl1_thresh_rising_value
* LOT Low Threshold [1] | 0x8E | events/in_angl1_thresh_rising_hysteresis
* Excitation Frequency | 0x91 | out_altvoltage0_frequency
* Control | 0x92 | *as bit fields*
* Phase lock range | D5 | events/in_phase0_mag_rising_value
* Hysteresis | D4 | in_angl0_hysteresis
* Encoder resolution | D3:2 | *not implemented*
* Resolution | D1:0 | *device tree: assigned-resolution-bits*
* Soft Reset | 0xF0 | [2]
* Fault | 0xFF | *not implemented*
*
* [1]: The value written to the LOT low register is high value minus the
* hysteresis.
* [2]: Soft reset is performed when `out_altvoltage0_frequency` is written.
*
* Fault to event mapping:
*
* Fault | | Channel | Type | Direction
* ----------------------------------------|----|---------------------------------
* Sine/cosine inputs clipped [3] | D7 | altvoltage1 | mag | either
* Sine/cosine inputs below LOS | D6 | altvoltage0 | thresh | falling
* Sine/cosine inputs exceed DOS overrange | D5 | altvoltage0 | thresh | rising
* Sine/cosine inputs exceed DOS mismatch | D4 | altvoltage0 | mag | rising
* Tracking error exceeds LOT | D3 | angl1 | thresh | rising
* Velocity exceeds maximum tracking rate | D2 | anglvel0 | mag | rising
* Phase error exceeds phase lock range | D1 | phase0 | mag | rising
* Configuration parity error | D0 | *writes to kernel log*
*
* [3]: The chip does not differentiate between fault on sine vs. cosine so
* there will also be an event on the altvoltage2 channel.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/* control register flags */
#define AD2S1210_ADDRESS_DATA BIT(7)
#define AD2S1210_PHASE_LOCK_RANGE_44 BIT(5)
#define AD2S1210_ENABLE_HYSTERESIS BIT(4)
#define AD2S1210_SET_ENRES GENMASK(3, 2)
#define AD2S1210_SET_RES GENMASK(1, 0)
/* fault register flags */
#define AD2S1210_FAULT_CLIP BIT(7)
#define AD2S1210_FAULT_LOS BIT(6)
#define AD2S1210_FAULT_DOS_OVR BIT(5)
#define AD2S1210_FAULT_DOS_MIS BIT(4)
#define AD2S1210_FAULT_LOT BIT(3)
#define AD2S1210_FAULT_VELOCITY BIT(2)
#define AD2S1210_FAULT_PHASE BIT(1)
#define AD2S1210_FAULT_CONFIG_PARITY BIT(0)
#define AD2S1210_REG_POSITION_MSB 0x80
#define AD2S1210_REG_POSITION_LSB 0x81
#define AD2S1210_REG_VELOCITY_MSB 0x82
#define AD2S1210_REG_VELOCITY_LSB 0x83
#define AD2S1210_REG_LOS_THRD 0x88
#define AD2S1210_REG_DOS_OVR_THRD 0x89
#define AD2S1210_REG_DOS_MIS_THRD 0x8A
#define AD2S1210_REG_DOS_RST_MAX_THRD 0x8B
#define AD2S1210_REG_DOS_RST_MIN_THRD 0x8C
#define AD2S1210_REG_LOT_HIGH_THRD 0x8D
#define AD2S1210_REG_LOT_LOW_THRD 0x8E
#define AD2S1210_REG_EXCIT_FREQ 0x91
#define AD2S1210_REG_CONTROL 0x92
#define AD2S1210_REG_SOFT_RESET 0xF0
#define AD2S1210_REG_FAULT 0xFF
#define AD2S1210_MIN_CLKIN 6144000
#define AD2S1210_MAX_CLKIN 10240000
#define AD2S1210_MIN_EXCIT 2000
#define AD2S1210_DEF_EXCIT 10000
#define AD2S1210_MAX_EXCIT 20000
#define AD2S1210_MIN_FCW 0x4
#define AD2S1210_MAX_FCW 0x50
/* 44 degrees ~= 0.767945 radians */
#define PHASE_44_DEG_TO_RAD_INT 0
#define PHASE_44_DEG_TO_RAD_MICRO 767945
/* 360 degrees ~= 6.283185 radians */
#define PHASE_360_DEG_TO_RAD_INT 6
#define PHASE_360_DEG_TO_RAD_MICRO 283185
/* Threshold voltage registers have 1 LSB == 38 mV */
#define THRESHOLD_MILLIVOLT_PER_LSB 38
/* max voltage for threshold registers is 0x7F * 38 mV */
#define THRESHOLD_RANGE_STR "[0 38 4826]"
#define FAULT_ONESHOT(bit, new, old) (new & bit && !(old & bit))
enum ad2s1210_mode {
MOD_POS = 0b00,
MOD_VEL = 0b01,
MOD_RESERVED = 0b10,
MOD_CONFIG = 0b11,
};
enum ad2s1210_resolution {
AD2S1210_RES_10 = 0b00,
AD2S1210_RES_12 = 0b01,
AD2S1210_RES_14 = 0b10,
AD2S1210_RES_16 = 0b11,
};
struct ad2s1210_state {
struct mutex lock;
struct spi_device *sdev;
/** GPIO pin connected to SAMPLE line. */
struct gpio_desc *sample_gpio;
/** GPIO pins connected to A0 and A1 lines (optional). */
struct gpio_descs *mode_gpios;
/** Used to access config registers. */
struct regmap *regmap;
/** The external oscillator frequency in Hz. */
unsigned long clkin_hz;
/** Available raw hysteresis values based on resolution. */
int hysteresis_available[2];
/* adi,fixed-mode property - only valid when mode_gpios == NULL. */
enum ad2s1210_mode fixed_mode;
/** The selected resolution */
enum ad2s1210_resolution resolution;
/** Copy of fault register from the previous read. */
u8 prev_fault_flags;
/** For reading raw sample value via SPI. */
struct {
__be16 raw;
u8 fault;
} sample __aligned(IIO_DMA_MINALIGN);
/** Scan buffer */
struct {
__be16 chan[2];
/* Ensure timestamp is naturally aligned. */
s64 timestamp __aligned(8);
} scan;
/** SPI transmit buffer. */
u8 rx[2];
/** SPI receive buffer. */
u8 tx[2];
};
static int ad2s1210_set_mode(struct ad2s1210_state *st, enum ad2s1210_mode mode)
{
struct gpio_descs *gpios = st->mode_gpios;
DECLARE_BITMAP(bitmap, 2);
if (!gpios)
return mode == st->fixed_mode ? 0 : -EOPNOTSUPP;
bitmap[0] = mode;
return gpiod_set_array_value(gpios->ndescs, gpios->desc, gpios->info,
bitmap);
}
/*
* Writes the given data to the given register address.
*
* If the mode is configurable, the device will first be placed in
* configuration mode.
*/
static int ad2s1210_regmap_reg_write(void *context, unsigned int reg,
unsigned int val)
{
struct ad2s1210_state *st = context;
struct spi_transfer xfers[] = {
{
.len = 1,
.rx_buf = &st->rx[0],
.tx_buf = &st->tx[0],
.cs_change = 1,
}, {
.len = 1,
.rx_buf = &st->rx[1],
.tx_buf = &st->tx[1],
},
};
int ret;
/* values can only be 7 bits, the MSB indicates an address */
if (val & ~0x7F)
return -EINVAL;
st->tx[0] = reg;
st->tx[1] = val;
ret = ad2s1210_set_mode(st, MOD_CONFIG);
if (ret < 0)
return ret;
ret = spi_sync_transfer(st->sdev, xfers, ARRAY_SIZE(xfers));
if (ret < 0)
return ret;
/* soft reset also clears the fault register */
if (reg == AD2S1210_REG_SOFT_RESET)
st->prev_fault_flags = 0;
return 0;
}
/*
* Reads value from one of the registers.
*
* If the mode is configurable, the device will first be placed in
* configuration mode.
*/
static int ad2s1210_regmap_reg_read(void *context, unsigned int reg,
unsigned int *val)
{
struct ad2s1210_state *st = context;
struct spi_transfer xfers[] = {
{
.len = 1,
.rx_buf = &st->rx[0],
.tx_buf = &st->tx[0],
.cs_change = 1,
}, {
.len = 1,
.rx_buf = &st->rx[1],
.tx_buf = &st->tx[1],
},
};
int ret;
ret = ad2s1210_set_mode(st, MOD_CONFIG);
if (ret < 0)
return ret;
st->tx[0] = reg;
/*
* Must be valid register address here otherwise this could write data.
* It doesn't matter which one as long as reading doesn't have side-
* effects.
*/
st->tx[1] = AD2S1210_REG_CONTROL;
ret = spi_sync_transfer(st->sdev, xfers, ARRAY_SIZE(xfers));
if (ret < 0)
return ret;
/* reading the fault register also clears it */
if (reg == AD2S1210_REG_FAULT)
st->prev_fault_flags = 0;
/*
* If the D7 bit is set on any read/write register, it indicates a
* parity error. The fault register is read-only and the D7 bit means
* something else there.
*/
if ((reg > AD2S1210_REG_VELOCITY_LSB && reg != AD2S1210_REG_FAULT)
&& st->rx[1] & AD2S1210_ADDRESS_DATA)
return -EBADMSG;
*val = st->rx[1];
return 0;
}
/*
* Toggles the SAMPLE line on the AD2S1210 to latch in the current position,
* velocity, and faults.
*
* Must be called with lock held.
*/
static void ad2s1210_toggle_sample_line(struct ad2s1210_state *st)
{
/*
* Datasheet specifies minimum hold time t16 = 2 * tck + 20 ns. So the
* longest time needed is when CLKIN is 6.144 MHz, in which case t16
* ~= 350 ns. The same delay is also needed before re-asserting the
* SAMPLE line.
*/
gpiod_set_value(st->sample_gpio, 1);
ndelay(350);
gpiod_set_value(st->sample_gpio, 0);
ndelay(350);
}
/*
* Sets the excitation frequency and performs software reset.
*
* Must be called with lock held.
*/
static int ad2s1210_reinit_excitation_frequency(struct ad2s1210_state *st,
u16 fexcit)
{
/* Map resolution to settle time in milliseconds. */
static const int track_time_ms[] = { 10, 20, 25, 60 };
unsigned int ignored;
int ret;
u8 fcw;
fcw = fexcit * (1 << 15) / st->clkin_hz;
if (fcw < AD2S1210_MIN_FCW || fcw > AD2S1210_MAX_FCW)
return -ERANGE;
ret = regmap_write(st->regmap, AD2S1210_REG_EXCIT_FREQ, fcw);
if (ret < 0)
return ret;
/*
* Software reset reinitializes the excitation frequency output.
* It does not reset any of the configuration registers.
*/
ret = regmap_write(st->regmap, AD2S1210_REG_SOFT_RESET, 0);
if (ret < 0)
return ret;
/*
* Soft reset always triggers some faults due the change in the output
* signal so clear the faults too. We need to delay for some time
* (what datasheet calls t[track]) to allow things to settle before
* clearing the faults.
*/
msleep(track_time_ms[st->resolution] * 8192000 / st->clkin_hz);
/* Reading the fault register clears the faults. */
ret = regmap_read(st->regmap, AD2S1210_REG_FAULT, &ignored);
if (ret < 0)
return ret;
/* Have to toggle sample line to get fault output pins to reset. */
ad2s1210_toggle_sample_line(st);
return 0;
}
static void ad2s1210_push_events(struct iio_dev *indio_dev,
u8 flags, s64 timestamp)
{
struct ad2s1210_state *st = iio_priv(indio_dev);
/* Sine/cosine inputs clipped */
if (FAULT_ONESHOT(AD2S1210_FAULT_CLIP, flags, st->prev_fault_flags)) {
/*
* The chip does not differentiate between fault on sine vs.
* cosine channel so we just send an event on both channels.
*/
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 1,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_EITHER),
timestamp);
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 2,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_EITHER),
timestamp);
}
/* Sine/cosine inputs below LOS threshold */
if (FAULT_ONESHOT(AD2S1210_FAULT_LOS, flags, st->prev_fault_flags))
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
timestamp);
/* Sine/cosine inputs exceed DOS overrange threshold */
if (FAULT_ONESHOT(AD2S1210_FAULT_DOS_OVR, flags, st->prev_fault_flags))
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
timestamp);
/* Sine/cosine inputs exceed DOS mismatch threshold */
if (FAULT_ONESHOT(AD2S1210_FAULT_DOS_MIS, flags, st->prev_fault_flags))
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 0,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_RISING),
timestamp);
/* Tracking error exceeds LOT threshold */
if (FAULT_ONESHOT(AD2S1210_FAULT_LOT, flags, st->prev_fault_flags))
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_ANGL, 1,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
timestamp);
/* Velocity exceeds maximum tracking rate */
if (FAULT_ONESHOT(AD2S1210_FAULT_VELOCITY, flags, st->prev_fault_flags))
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_ANGL_VEL, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
timestamp);
/* Phase error exceeds phase lock range */
if (FAULT_ONESHOT(AD2S1210_FAULT_PHASE, flags, st->prev_fault_flags))
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PHASE, 0,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_RISING),
timestamp);
/* Configuration parity error */
if (FAULT_ONESHOT(AD2S1210_FAULT_CONFIG_PARITY, flags,
st->prev_fault_flags))
/*
* Userspace should also get notified of this via error return
* when trying to write to any attribute that writes a register.
*/
dev_err_ratelimited(&indio_dev->dev,
"Configuration parity error\n");
st->prev_fault_flags = flags;
}
static int ad2s1210_single_conversion(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val)
{
struct ad2s1210_state *st = iio_priv(indio_dev);
s64 timestamp;
int ret;
guard(mutex)(&st->lock);
ad2s1210_toggle_sample_line(st);
timestamp = iio_get_time_ns(indio_dev);
if (st->fixed_mode == MOD_CONFIG) {
unsigned int reg_val;
switch (chan->type) {
case IIO_ANGL:
ret = regmap_bulk_read(st->regmap,
AD2S1210_REG_POSITION_MSB,
&st->sample.raw, 2);
if (ret < 0)
return ret;
break;
case IIO_ANGL_VEL:
ret = regmap_bulk_read(st->regmap,
AD2S1210_REG_VELOCITY_MSB,
&st->sample.raw, 2);
if (ret < 0)
return ret;
break;
default:
return -EINVAL;
}
ret = regmap_read(st->regmap, AD2S1210_REG_FAULT, ®_val);
if (ret < 0)
return ret;
st->sample.fault = reg_val;
} else {
switch (chan->type) {
case IIO_ANGL:
ret = ad2s1210_set_mode(st, MOD_POS);
break;
case IIO_ANGL_VEL:
ret = ad2s1210_set_mode(st, MOD_VEL);
break;
default:
return -EINVAL;
}
if (ret < 0)
return ret;
ret = spi_read(st->sdev, &st->sample, 3);
if (ret < 0)
return ret;
}
switch (chan->type) {
case IIO_ANGL:
*val = be16_to_cpu(st->sample.raw);
ret = IIO_VAL_INT;
break;
case IIO_ANGL_VEL:
*val = (s16)be16_to_cpu(st->sample.raw);
ret = IIO_VAL_INT;
break;
default:
return -EINVAL;
}
ad2s1210_push_events(indio_dev, st->sample.fault, timestamp);
return ret;
}
static int ad2s1210_get_hysteresis(struct ad2s1210_state *st, int *val)
{
int ret;
guard(mutex)(&st->lock);
ret = regmap_test_bits(st->regmap, AD2S1210_REG_CONTROL,
AD2S1210_ENABLE_HYSTERESIS);
if (ret < 0)
return ret;
*val = ret << (2 * (AD2S1210_RES_16 - st->resolution));
return IIO_VAL_INT;
}
static int ad2s1210_set_hysteresis(struct ad2s1210_state *st, int val)
{
guard(mutex)(&st->lock);
return regmap_update_bits(st->regmap, AD2S1210_REG_CONTROL,
AD2S1210_ENABLE_HYSTERESIS,
val ? AD2S1210_ENABLE_HYSTERESIS : 0);
}
static int ad2s1210_get_phase_lock_range(struct ad2s1210_state *st,
int *val, int *val2)
{
int ret;
guard(mutex)(&st->lock);
ret = regmap_test_bits(st->regmap, AD2S1210_REG_CONTROL,
AD2S1210_PHASE_LOCK_RANGE_44);
if (ret < 0)
return ret;
if (ret) {
/* 44 degrees as radians */
*val = PHASE_44_DEG_TO_RAD_INT;
*val2 = PHASE_44_DEG_TO_RAD_MICRO;
} else {
/* 360 degrees as radians */
*val = PHASE_360_DEG_TO_RAD_INT;
*val2 = PHASE_360_DEG_TO_RAD_MICRO;
}
return IIO_VAL_INT_PLUS_MICRO;
}
static int ad2s1210_set_phase_lock_range(struct ad2s1210_state *st,
int val, int val2)
{
int deg;
/* convert radians to degrees - only two allowable values */
if (val == PHASE_44_DEG_TO_RAD_INT && val2 == PHASE_44_DEG_TO_RAD_MICRO)
deg = 44;
else if (val == PHASE_360_DEG_TO_RAD_INT &&
val2 == PHASE_360_DEG_TO_RAD_MICRO)
deg = 360;
else
return -EINVAL;
guard(mutex)(&st->lock);
return regmap_update_bits(st->regmap, AD2S1210_REG_CONTROL,
AD2S1210_PHASE_LOCK_RANGE_44,
deg == 44 ? AD2S1210_PHASE_LOCK_RANGE_44 : 0);
}
/* map resolution to microradians/LSB for LOT registers */
static const int ad2s1210_lot_threshold_urad_per_lsb[] = {
6184, /* 10-bit: ~0.35 deg/LSB, 45 deg max */
2473, /* 12-bit: ~0.14 deg/LSB, 18 deg max */
1237, /* 14-bit: ~0.07 deg/LSB, 9 deg max */
1237, /* 16-bit: same as 14-bit */
};
static int ad2s1210_get_voltage_threshold(struct ad2s1210_state *st,
unsigned int reg, int *val)
{
unsigned int reg_val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_read(st->regmap, reg, ®_val);
if (ret < 0)
return ret;
*val = reg_val * THRESHOLD_MILLIVOLT_PER_LSB;
return IIO_VAL_INT;
}
static int ad2s1210_set_voltage_threshold(struct ad2s1210_state *st,
unsigned int reg, int val)
{
unsigned int reg_val;
reg_val = val / THRESHOLD_MILLIVOLT_PER_LSB;
guard(mutex)(&st->lock);
return regmap_write(st->regmap, reg, reg_val);
}
static int ad2s1210_get_lot_high_threshold(struct ad2s1210_state *st,
int *val, int *val2)
{
unsigned int reg_val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, ®_val);
if (ret < 0)
return ret;
*val = 0;
*val2 = reg_val * ad2s1210_lot_threshold_urad_per_lsb[st->resolution];
return IIO_VAL_INT_PLUS_MICRO;
}
static int ad2s1210_set_lot_high_threshold(struct ad2s1210_state *st,
int val, int val2)
{
unsigned int high_reg_val, low_reg_val, hysteresis;
int ret;
/* all valid values are between 0 and pi/4 radians */
if (val != 0)
return -EINVAL;
guard(mutex)(&st->lock);
/*
* We need to read both high and low registers first so we can preserve
* the hysteresis.
*/
ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, &high_reg_val);
if (ret < 0)
return ret;
ret = regmap_read(st->regmap, AD2S1210_REG_LOT_LOW_THRD, &low_reg_val);
if (ret < 0)
return ret;
hysteresis = high_reg_val - low_reg_val;
high_reg_val = val2 / ad2s1210_lot_threshold_urad_per_lsb[st->resolution];
low_reg_val = high_reg_val - hysteresis;
ret = regmap_write(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, high_reg_val);
if (ret < 0)
return ret;
return regmap_write(st->regmap, AD2S1210_REG_LOT_LOW_THRD, low_reg_val);
}
static int ad2s1210_get_lot_low_threshold(struct ad2s1210_state *st,
int *val, int *val2)
{
unsigned int high_reg_val, low_reg_val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, &high_reg_val);
if (ret < 0)
return ret;
ret = regmap_read(st->regmap, AD2S1210_REG_LOT_LOW_THRD, &low_reg_val);
if (ret < 0)
return ret;
/* sysfs value is hysteresis rather than actual low value */
*val = 0;
*val2 = (high_reg_val - low_reg_val) *
ad2s1210_lot_threshold_urad_per_lsb[st->resolution];
return IIO_VAL_INT_PLUS_MICRO;
}
static int ad2s1210_set_lot_low_threshold(struct ad2s1210_state *st,
int val, int val2)
{
unsigned int reg_val, hysteresis;
int ret;
/* all valid values are between 0 and pi/4 radians */
if (val != 0)
return -EINVAL;
hysteresis = val2 / ad2s1210_lot_threshold_urad_per_lsb[st->resolution];
guard(mutex)(&st->lock);
ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, ®_val);
if (ret < 0)
return ret;
return regmap_write(st->regmap, AD2S1210_REG_LOT_LOW_THRD,
reg_val - hysteresis);
}
static int ad2s1210_get_excitation_frequency(struct ad2s1210_state *st, int *val)
{
unsigned int reg_val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_read(st->regmap, AD2S1210_REG_EXCIT_FREQ, ®_val);
if (ret < 0)
return ret;
*val = reg_val * st->clkin_hz / (1 << 15);
return IIO_VAL_INT;
}
static int ad2s1210_set_excitation_frequency(struct ad2s1210_state *st, int val)
{
if (val < AD2S1210_MIN_EXCIT || val > AD2S1210_MAX_EXCIT)
return -EINVAL;
guard(mutex)(&st->lock);
return ad2s1210_reinit_excitation_frequency(st, val);
}
static const int ad2s1210_velocity_scale[] = {
17089132, /* 8.192MHz / (2*pi * 2500 / 2^15) */
42722830, /* 8.192MHz / (2*pi * 1000 / 2^15) */
85445659, /* 8.192MHz / (2*pi * 500 / 2^15) */
341782638, /* 8.192MHz / (2*pi * 125 / 2^15) */
};
static int ad2s1210_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct ad2s1210_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return ad2s1210_single_conversion(indio_dev, chan, val);
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL:
/* approx 0.3 arc min converted to radians */
*val = 0;
*val2 = 95874;
return IIO_VAL_INT_PLUS_NANO;
case IIO_ANGL_VEL:
*val = st->clkin_hz;
*val2 = ad2s1210_velocity_scale[st->resolution];
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_FREQUENCY:
switch (chan->type) {
case IIO_ALTVOLTAGE:
return ad2s1210_get_excitation_frequency(st, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HYSTERESIS:
switch (chan->type) {
case IIO_ANGL:
return ad2s1210_get_hysteresis(st, val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int ad2s1210_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type,
int *length, long mask)
{
static const int excitation_frequency_available[] = {
AD2S1210_MIN_EXCIT,
250, /* step */
AD2S1210_MAX_EXCIT,
};
struct ad2s1210_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_FREQUENCY:
switch (chan->type) {
case IIO_ALTVOLTAGE:
*type = IIO_VAL_INT;
*vals = excitation_frequency_available;
return IIO_AVAIL_RANGE;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HYSTERESIS:
switch (chan->type) {
case IIO_ANGL:
*vals = st->hysteresis_available;
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(st->hysteresis_available);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int ad2s1210_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct ad2s1210_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_FREQUENCY:
switch (chan->type) {
case IIO_ALTVOLTAGE:
return ad2s1210_set_excitation_frequency(st, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HYSTERESIS:
switch (chan->type) {
case IIO_ANGL:
return ad2s1210_set_hysteresis(st, val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static const struct iio_event_spec ad2s1210_position_event_spec[] = {
{
/* Tracking error exceeds LOT threshold fault. */
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate =
/* Loss of tracking high threshold. */
BIT(IIO_EV_INFO_VALUE) |
/* Loss of tracking low threshold. */
BIT(IIO_EV_INFO_HYSTERESIS),
},
};
static const struct iio_event_spec ad2s1210_velocity_event_spec[] = {
{
/* Velocity exceeds maximum tracking rate fault. */
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_RISING,
},
};
static const struct iio_event_spec ad2s1210_phase_event_spec[] = {
{
/* Phase error fault. */
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_RISING,
/* Phase lock range. */
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
};
static const struct iio_event_spec ad2s1210_monitor_signal_event_spec[] = {
{
/* Sine/cosine below LOS threshold fault. */
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
/* Loss of signal threshold. */
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
/* Sine/cosine DOS overrange fault.*/
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
/* Degredation of signal overrange threshold. */
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
/* Sine/cosine DOS mismatch fault.*/
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
};
static const struct iio_event_spec ad2s1210_sin_cos_event_spec[] = {
{
/* Sine/cosine clipping fault. */
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_EITHER,
},
};
static const struct iio_chan_spec ad2s1210_channels[] = {
{
.type = IIO_ANGL,
.indexed = 1,
.channel = 0,
.scan_index = 0,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_BE,
},
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
.info_mask_separate_available =
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ANGL_VEL,
.indexed = 1,
.channel = 0,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_BE,
},
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.event_spec = ad2s1210_velocity_event_spec,
.num_event_specs = ARRAY_SIZE(ad2s1210_velocity_event_spec),
},
IIO_CHAN_SOFT_TIMESTAMP(2),
{
/* used to configure LOT thresholds and get tracking error */
.type = IIO_ANGL,
.indexed = 1,
.channel = 1,
.scan_index = -1,
.event_spec = ad2s1210_position_event_spec,
.num_event_specs = ARRAY_SIZE(ad2s1210_position_event_spec),
},
{
/* used to configure phase lock range and get phase lock error */
.type = IIO_PHASE,
.indexed = 1,
.channel = 0,
.scan_index = -1,
.event_spec = ad2s1210_phase_event_spec,
.num_event_specs = ARRAY_SIZE(ad2s1210_phase_event_spec),
}, {
/* excitation frequency output */
.type = IIO_ALTVOLTAGE,
.indexed = 1,
.channel = 0,
.output = 1,
.scan_index = -1,
.info_mask_separate = BIT(IIO_CHAN_INFO_FREQUENCY),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_FREQUENCY),
}, {
/* monitor signal */
.type = IIO_ALTVOLTAGE,
.indexed = 1,
.channel = 0,
.scan_index = -1,
.event_spec = ad2s1210_monitor_signal_event_spec,
.num_event_specs = ARRAY_SIZE(ad2s1210_monitor_signal_event_spec),
}, {
/* sine input */
.type = IIO_ALTVOLTAGE,
.indexed = 1,
.channel = 1,
.scan_index = -1,
.event_spec = ad2s1210_sin_cos_event_spec,
.num_event_specs = ARRAY_SIZE(ad2s1210_sin_cos_event_spec),
}, {
/* cosine input */
.type = IIO_ALTVOLTAGE,
.indexed = 1,
.channel = 2,
.scan_index = -1,
.event_spec = ad2s1210_sin_cos_event_spec,
.num_event_specs = ARRAY_SIZE(ad2s1210_sin_cos_event_spec),
},
};
static ssize_t event_attr_voltage_reg_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev));
struct iio_dev_attr *iattr = to_iio_dev_attr(attr);
unsigned int value;
int ret;
guard(mutex)(&st->lock);
ret = regmap_read(st->regmap, iattr->address, &value);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", value * THRESHOLD_MILLIVOLT_PER_LSB);
}
static ssize_t event_attr_voltage_reg_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev));
struct iio_dev_attr *iattr = to_iio_dev_attr(attr);
u16 data;
int ret;
ret = kstrtou16(buf, 10, &data);
if (ret)
return -EINVAL;
guard(mutex)(&st->lock);
ret = regmap_write(st->regmap, iattr->address,
data / THRESHOLD_MILLIVOLT_PER_LSB);
if (ret < 0)
return ret;
return len;
}
static ssize_t
in_angl1_thresh_rising_value_available_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev));
int step = ad2s1210_lot_threshold_urad_per_lsb[st->resolution];
return sysfs_emit(buf, "[0 0.%06d 0.%06d]\n", step, step * 0x7F);
}
static ssize_t
in_angl1_thresh_rising_hysteresis_available_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev));
int step = ad2s1210_lot_threshold_urad_per_lsb[st->resolution];
return sysfs_emit(buf, "[0 0.%06d 0.%06d]\n", step, step * 0x7F);
}
static IIO_CONST_ATTR(in_phase0_mag_rising_value_available,
__stringify(PHASE_44_DEG_TO_RAD_INT) "."
__stringify(PHASE_44_DEG_TO_RAD_MICRO) " "
__stringify(PHASE_360_DEG_TO_RAD_INT) "."
__stringify(PHASE_360_DEG_TO_RAD_MICRO));
static IIO_CONST_ATTR(in_altvoltage0_thresh_falling_value_available,
THRESHOLD_RANGE_STR);
static IIO_CONST_ATTR(in_altvoltage0_thresh_rising_value_available,
THRESHOLD_RANGE_STR);
static IIO_CONST_ATTR(in_altvoltage0_mag_rising_value_available,
THRESHOLD_RANGE_STR);
static IIO_DEVICE_ATTR(in_altvoltage0_mag_rising_reset_max, 0644,
event_attr_voltage_reg_show, event_attr_voltage_reg_store,
AD2S1210_REG_DOS_RST_MAX_THRD);
static IIO_CONST_ATTR(in_altvoltage0_mag_rising_reset_max_available, THRESHOLD_RANGE_STR);
static IIO_DEVICE_ATTR(in_altvoltage0_mag_rising_reset_min, 0644,
event_attr_voltage_reg_show, event_attr_voltage_reg_store,
AD2S1210_REG_DOS_RST_MIN_THRD);
static IIO_CONST_ATTR(in_altvoltage0_mag_rising_reset_min_available, THRESHOLD_RANGE_STR);
static IIO_DEVICE_ATTR_RO(in_angl1_thresh_rising_value_available, 0);
static IIO_DEVICE_ATTR_RO(in_angl1_thresh_rising_hysteresis_available, 0);
static struct attribute *ad2s1210_event_attributes[] = {
&iio_const_attr_in_phase0_mag_rising_value_available.dev_attr.attr,
&iio_const_attr_in_altvoltage0_thresh_falling_value_available.dev_attr.attr,
&iio_const_attr_in_altvoltage0_thresh_rising_value_available.dev_attr.attr,
&iio_const_attr_in_altvoltage0_mag_rising_value_available.dev_attr.attr,
&iio_dev_attr_in_altvoltage0_mag_rising_reset_max.dev_attr.attr,
&iio_const_attr_in_altvoltage0_mag_rising_reset_max_available.dev_attr.attr,
&iio_dev_attr_in_altvoltage0_mag_rising_reset_min.dev_attr.attr,
&iio_const_attr_in_altvoltage0_mag_rising_reset_min_available.dev_attr.attr,
&iio_dev_attr_in_angl1_thresh_rising_value_available.dev_attr.attr,
&iio_dev_attr_in_angl1_thresh_rising_hysteresis_available.dev_attr.attr,
NULL,
};
static const struct attribute_group ad2s1210_event_attribute_group = {
.attrs = ad2s1210_event_attributes,
};
static int ad2s1210_initial(struct ad2s1210_state *st)
{
unsigned int data;
int ret;
guard(mutex)(&st->lock);
/* Use default config register value plus resolution from devicetree. */
data = FIELD_PREP(AD2S1210_PHASE_LOCK_RANGE_44, 1);
data |= FIELD_PREP(AD2S1210_ENABLE_HYSTERESIS, 1);
data |= FIELD_PREP(AD2S1210_SET_ENRES, 0x3);
data |= FIELD_PREP(AD2S1210_SET_RES, st->resolution);
ret = regmap_write(st->regmap, AD2S1210_REG_CONTROL, data);
if (ret < 0)
return ret;
return ad2s1210_reinit_excitation_frequency(st, AD2S1210_DEF_EXCIT);
}
static int ad2s1210_read_label(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
char *label)
{
if (chan->type == IIO_ANGL) {
if (chan->channel == 0)
return sprintf(label, "position\n");
if (chan->channel == 1)
return sprintf(label, "tracking error\n");
}
if (chan->type == IIO_ANGL_VEL)
return sprintf(label, "velocity\n");
if (chan->type == IIO_PHASE)
return sprintf(label, "synthetic reference\n");
if (chan->type == IIO_ALTVOLTAGE) {
if (chan->output)
return sprintf(label, "excitation\n");
if (chan->channel == 0)
return sprintf(label, "monitor signal\n");
if (chan->channel == 1)
return sprintf(label, "cosine\n");
if (chan->channel == 2)
return sprintf(label, "sine\n");
}
return -EINVAL;
}
static int ad2s1210_read_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct ad2s1210_state *st = iio_priv(indio_dev);
switch (chan->type) {
case IIO_ANGL:
switch (info) {
case IIO_EV_INFO_VALUE:
return ad2s1210_get_lot_high_threshold(st, val, val2);
case IIO_EV_INFO_HYSTERESIS:
return ad2s1210_get_lot_low_threshold(st, val, val2);
default:
return -EINVAL;
}
case IIO_ALTVOLTAGE:
if (chan->output)
return -EINVAL;
if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_FALLING)
return ad2s1210_get_voltage_threshold(st,
AD2S1210_REG_LOS_THRD, val);
if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_RISING)
return ad2s1210_get_voltage_threshold(st,
AD2S1210_REG_DOS_OVR_THRD, val);
if (type == IIO_EV_TYPE_MAG)
return ad2s1210_get_voltage_threshold(st,
AD2S1210_REG_DOS_MIS_THRD, val);
return -EINVAL;
case IIO_PHASE:
return ad2s1210_get_phase_lock_range(st, val, val2);
default:
return -EINVAL;
}
}
static int ad2s1210_write_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct ad2s1210_state *st = iio_priv(indio_dev);
switch (chan->type) {
case IIO_ANGL:
switch (info) {
case IIO_EV_INFO_VALUE:
return ad2s1210_set_lot_high_threshold(st, val, val2);
case IIO_EV_INFO_HYSTERESIS:
return ad2s1210_set_lot_low_threshold(st, val, val2);
default:
return -EINVAL;
}
case IIO_ALTVOLTAGE:
if (chan->output)
return -EINVAL;
if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_FALLING)
return ad2s1210_set_voltage_threshold(st,
AD2S1210_REG_LOS_THRD, val);
if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_RISING)
return ad2s1210_set_voltage_threshold(st,
AD2S1210_REG_DOS_OVR_THRD, val);
if (type == IIO_EV_TYPE_MAG)
return ad2s1210_set_voltage_threshold(st,
AD2S1210_REG_DOS_MIS_THRD, val);
return -EINVAL;
case IIO_PHASE:
return ad2s1210_set_phase_lock_range(st, val, val2);
default:
return -EINVAL;
}
}
static int ad2s1210_read_event_label(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
enum iio_event_type type,
enum iio_event_direction dir,
char *label)
{
if (chan->type == IIO_ANGL)
return sprintf(label, "LOT\n");
if (chan->type == IIO_ANGL_VEL)
return sprintf(label, "max tracking rate\n");
if (chan->type == IIO_PHASE)
return sprintf(label, "phase lock\n");
if (chan->type == IIO_ALTVOLTAGE) {
if (chan->channel == 0) {
if (type == IIO_EV_TYPE_THRESH &&
dir == IIO_EV_DIR_FALLING)
return sprintf(label, "LOS\n");
if (type == IIO_EV_TYPE_THRESH &&
dir == IIO_EV_DIR_RISING)
return sprintf(label, "DOS overrange\n");
if (type == IIO_EV_TYPE_MAG)
return sprintf(label, "DOS mismatch\n");
}
if (chan->channel == 1 || chan->channel == 2)
return sprintf(label, "clipped\n");
}
return -EINVAL;
}
static int ad2s1210_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned int reg, unsigned int writeval,
unsigned int *readval)
{
struct ad2s1210_state *st = iio_priv(indio_dev);
guard(mutex)(&st->lock);
if (readval)
return regmap_read(st->regmap, reg, readval);
return regmap_write(st->regmap, reg, writeval);
}
static irqreturn_t ad2s1210_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad2s1210_state *st = iio_priv(indio_dev);
size_t chan = 0;
int ret;
guard(mutex)(&st->lock);
memset(&st->scan, 0, sizeof(st->scan));
ad2s1210_toggle_sample_line(st);
if (test_bit(0, indio_dev->active_scan_mask)) {
if (st->fixed_mode == MOD_CONFIG) {
ret = regmap_bulk_read(st->regmap,
AD2S1210_REG_POSITION_MSB,
&st->sample.raw, 2);
if (ret < 0)
goto error_ret;
} else {
ret = ad2s1210_set_mode(st, MOD_POS);
if (ret < 0)
goto error_ret;
ret = spi_read(st->sdev, &st->sample, 3);
if (ret < 0)
goto error_ret;
}
memcpy(&st->scan.chan[chan++], &st->sample.raw, 2);
}
if (test_bit(1, indio_dev->active_scan_mask)) {
if (st->fixed_mode == MOD_CONFIG) {
ret = regmap_bulk_read(st->regmap,
AD2S1210_REG_VELOCITY_MSB,
&st->sample.raw, 2);
if (ret < 0)
goto error_ret;
} else {
ret = ad2s1210_set_mode(st, MOD_VEL);
if (ret < 0)
goto error_ret;
ret = spi_read(st->sdev, &st->sample, 3);
if (ret < 0)
goto error_ret;
}
memcpy(&st->scan.chan[chan++], &st->sample.raw, 2);
}
if (st->fixed_mode == MOD_CONFIG) {
unsigned int reg_val;
ret = regmap_read(st->regmap, AD2S1210_REG_FAULT, ®_val);
if (ret < 0)
return ret;
st->sample.fault = reg_val;
}
ad2s1210_push_events(indio_dev, st->sample.fault, pf->timestamp);
iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, pf->timestamp);
error_ret:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct iio_info ad2s1210_info = {
.event_attrs = &ad2s1210_event_attribute_group,
.read_raw = ad2s1210_read_raw,
.read_avail = ad2s1210_read_avail,
.write_raw = ad2s1210_write_raw,
.read_label = ad2s1210_read_label,
.read_event_value = ad2s1210_read_event_value,
.write_event_value = ad2s1210_write_event_value,
.read_event_label = ad2s1210_read_event_label,
.debugfs_reg_access = &ad2s1210_debugfs_reg_access,
};
static int ad2s1210_setup_properties(struct ad2s1210_state *st)
{
struct device *dev = &st->sdev->dev;
const char *str_val;
u32 val;
int ret;
ret = device_property_read_string(dev, "adi,fixed-mode", &str_val);
if (ret == -EINVAL)
st->fixed_mode = -1;
else if (ret < 0)
return dev_err_probe(dev, ret,
"failed to read adi,fixed-mode property\n");
else {
if (strcmp(str_val, "config"))
return dev_err_probe(dev, -EINVAL,
"only adi,fixed-mode=\"config\" is supported\n");
st->fixed_mode = MOD_CONFIG;
}
ret = device_property_read_u32(dev, "assigned-resolution-bits", &val);
if (ret < 0)
return dev_err_probe(dev, ret,
"failed to read assigned-resolution-bits property\n");
if (val < 10 || val > 16)
return dev_err_probe(dev, -EINVAL,
"resolution out of range: %u\n", val);
st->resolution = (val - 10) >> 1;
/*
* These are values that correlate to the hysteresis bit in the Control
* register. 0 = disabled, 1 = enabled. When enabled, the actual
* hysteresis is +/- 1 LSB of the raw position value. Which bit is the
* LSB depends on the specified resolution.
*/
st->hysteresis_available[0] = 0;
st->hysteresis_available[1] = 1 << (2 * (AD2S1210_RES_16 -
st->resolution));
return 0;
}
static int ad2s1210_setup_clocks(struct ad2s1210_state *st)
{
struct device *dev = &st->sdev->dev;
struct clk *clk;
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "failed to get clock\n");
st->clkin_hz = clk_get_rate(clk);
if (st->clkin_hz < AD2S1210_MIN_CLKIN || st->clkin_hz > AD2S1210_MAX_CLKIN)
return dev_err_probe(dev, -EINVAL,
"clock frequency out of range: %lu\n",
st->clkin_hz);
return 0;
}
static int ad2s1210_setup_gpios(struct ad2s1210_state *st)
{
struct device *dev = &st->sdev->dev;
struct gpio_descs *resolution_gpios;
struct gpio_desc *reset_gpio;
DECLARE_BITMAP(bitmap, 2);
int ret;
/* should not be sampling on startup */
st->sample_gpio = devm_gpiod_get(dev, "sample", GPIOD_OUT_LOW);
if (IS_ERR(st->sample_gpio))
return dev_err_probe(dev, PTR_ERR(st->sample_gpio),
"failed to request sample GPIO\n");
/* both pins high means that we start in config mode */
st->mode_gpios = devm_gpiod_get_array_optional(dev, "mode",
GPIOD_OUT_HIGH);
if (IS_ERR(st->mode_gpios))
return dev_err_probe(dev, PTR_ERR(st->mode_gpios),
"failed to request mode GPIOs\n");
if (!st->mode_gpios && st->fixed_mode == -1)
return dev_err_probe(dev, -EINVAL,
"must specify either adi,fixed-mode or mode-gpios\n");
if (st->mode_gpios && st->fixed_mode != -1)
return dev_err_probe(dev, -EINVAL,
"must specify only one of adi,fixed-mode or mode-gpios\n");
if (st->mode_gpios && st->mode_gpios->ndescs != 2)
return dev_err_probe(dev, -EINVAL,
"requires exactly 2 mode-gpios\n");
/*
* If resolution gpios are provided, they get set to the required
* resolution, otherwise it is assumed the RES0 and RES1 pins are
* hard-wired to match the resolution indicated in the devicetree.
*/
resolution_gpios = devm_gpiod_get_array_optional(dev, "resolution",
GPIOD_ASIS);
if (IS_ERR(resolution_gpios))
return dev_err_probe(dev, PTR_ERR(resolution_gpios),
"failed to request resolution GPIOs\n");
if (resolution_gpios) {
if (resolution_gpios->ndescs != 2)
return dev_err_probe(dev, -EINVAL,
"requires exactly 2 resolution-gpios\n");
bitmap[0] = st->resolution;
ret = gpiod_set_array_value(resolution_gpios->ndescs,
resolution_gpios->desc,
resolution_gpios->info,
bitmap);
if (ret < 0)
return dev_err_probe(dev, ret,
"failed to set resolution gpios\n");
}
/* If the optional reset GPIO is present, toggle it to do a hard reset. */
reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(reset_gpio))
return dev_err_probe(dev, PTR_ERR(reset_gpio),
"failed to request reset GPIO\n");
if (reset_gpio) {
udelay(10);
gpiod_set_value(reset_gpio, 0);
}
return 0;
}
static const struct regmap_range ad2s1210_regmap_readable_ranges[] = {
regmap_reg_range(AD2S1210_REG_POSITION_MSB, AD2S1210_REG_VELOCITY_LSB),
regmap_reg_range(AD2S1210_REG_LOS_THRD, AD2S1210_REG_LOT_LOW_THRD),
regmap_reg_range(AD2S1210_REG_EXCIT_FREQ, AD2S1210_REG_CONTROL),
regmap_reg_range(AD2S1210_REG_FAULT, AD2S1210_REG_FAULT),
};
static const struct regmap_access_table ad2s1210_regmap_rd_table = {
.yes_ranges = ad2s1210_regmap_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(ad2s1210_regmap_readable_ranges),
};
static const struct regmap_range ad2s1210_regmap_writeable_ranges[] = {
regmap_reg_range(AD2S1210_REG_LOS_THRD, AD2S1210_REG_LOT_LOW_THRD),
regmap_reg_range(AD2S1210_REG_EXCIT_FREQ, AD2S1210_REG_CONTROL),
regmap_reg_range(AD2S1210_REG_SOFT_RESET, AD2S1210_REG_SOFT_RESET),
regmap_reg_range(AD2S1210_REG_FAULT, AD2S1210_REG_FAULT),
};
static const struct regmap_access_table ad2s1210_regmap_wr_table = {
.yes_ranges = ad2s1210_regmap_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(ad2s1210_regmap_writeable_ranges),
};
static int ad2s1210_setup_regmap(struct ad2s1210_state *st)
{
struct device *dev = &st->sdev->dev;
const struct regmap_config config = {
.reg_bits = 8,
.val_bits = 8,
.disable_locking = true,
.reg_read = ad2s1210_regmap_reg_read,
.reg_write = ad2s1210_regmap_reg_write,
.rd_table = &ad2s1210_regmap_rd_table,
.wr_table = &ad2s1210_regmap_wr_table,
.can_sleep = true,
};
st->regmap = devm_regmap_init(dev, NULL, st, &config);
if (IS_ERR(st->regmap))
return dev_err_probe(dev, PTR_ERR(st->regmap),
"failed to allocate register map\n");
return 0;
}
static int ad2s1210_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct ad2s1210_state *st;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
mutex_init(&st->lock);
st->sdev = spi;
ret = ad2s1210_setup_properties(st);
if (ret < 0)
return ret;
ret = ad2s1210_setup_clocks(st);
if (ret < 0)
return ret;
ret = ad2s1210_setup_gpios(st);
if (ret < 0)
return ret;
ret = ad2s1210_setup_regmap(st);
if (ret < 0)
return ret;
ret = ad2s1210_initial(st);
if (ret < 0)
return ret;
indio_dev->info = &ad2s1210_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = ad2s1210_channels;
indio_dev->num_channels = ARRAY_SIZE(ad2s1210_channels);
indio_dev->name = spi_get_device_id(spi)->name;
ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
&iio_pollfunc_store_time,
&ad2s1210_trigger_handler, NULL);
if (ret < 0)
return dev_err_probe(&spi->dev, ret,
"iio triggered buffer setup failed\n");
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct of_device_id ad2s1210_of_match[] = {
{ .compatible = "adi,ad2s1210", },
{ }
};
MODULE_DEVICE_TABLE(of, ad2s1210_of_match);
static const struct spi_device_id ad2s1210_id[] = {
{ "ad2s1210" },
{}
};
MODULE_DEVICE_TABLE(spi, ad2s1210_id);
static struct spi_driver ad2s1210_driver = {
.driver = {
.name = "ad2s1210",
.of_match_table = ad2s1210_of_match,
},
.probe = ad2s1210_probe,
.id_table = ad2s1210_id,
};
module_spi_driver(ad2s1210_driver);
MODULE_AUTHOR("Graff Yang <[email protected]>");
MODULE_DESCRIPTION("Analog Devices AD2S1210 Resolver to Digital SPI driver");
MODULE_LICENSE("GPL v2");