// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2012-2017 ASPEED Technology Inc.
// Copyright (c) 2018-2021 Intel Corporation
#include <linux/unaligned.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/peci.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
/* ASPEED PECI Registers */
/* Control Register */
#define ASPEED_PECI_CTRL 0x00
#define ASPEED_PECI_CTRL_SAMPLING_MASK GENMASK(19, 16)
#define ASPEED_PECI_CTRL_RD_MODE_MASK GENMASK(13, 12)
#define ASPEED_PECI_CTRL_RD_MODE_DBG BIT(13)
#define ASPEED_PECI_CTRL_RD_MODE_COUNT BIT(12)
#define ASPEED_PECI_CTRL_CLK_SRC_HCLK BIT(11)
#define ASPEED_PECI_CTRL_CLK_DIV_MASK GENMASK(10, 8)
#define ASPEED_PECI_CTRL_INVERT_OUT BIT(7)
#define ASPEED_PECI_CTRL_INVERT_IN BIT(6)
#define ASPEED_PECI_CTRL_BUS_CONTENTION_EN BIT(5)
#define ASPEED_PECI_CTRL_PECI_EN BIT(4)
#define ASPEED_PECI_CTRL_PECI_CLK_EN BIT(0)
/* Timing Negotiation Register */
#define ASPEED_PECI_TIMING_NEGOTIATION 0x04
#define ASPEED_PECI_T_NEGO_MSG_MASK GENMASK(15, 8)
#define ASPEED_PECI_T_NEGO_ADDR_MASK GENMASK(7, 0)
/* Command Register */
#define ASPEED_PECI_CMD 0x08
#define ASPEED_PECI_CMD_PIN_MONITORING BIT(31)
#define ASPEED_PECI_CMD_STS_MASK GENMASK(27, 24)
#define ASPEED_PECI_CMD_STS_ADDR_T_NEGO 0x3
#define ASPEED_PECI_CMD_IDLE_MASK \
(ASPEED_PECI_CMD_STS_MASK | ASPEED_PECI_CMD_PIN_MONITORING)
#define ASPEED_PECI_CMD_FIRE BIT(0)
/* Read/Write Length Register */
#define ASPEED_PECI_RW_LENGTH 0x0c
#define ASPEED_PECI_AW_FCS_EN BIT(31)
#define ASPEED_PECI_RD_LEN_MASK GENMASK(23, 16)
#define ASPEED_PECI_WR_LEN_MASK GENMASK(15, 8)
#define ASPEED_PECI_TARGET_ADDR_MASK GENMASK(7, 0)
/* Expected FCS Data Register */
#define ASPEED_PECI_EXPECTED_FCS 0x10
#define ASPEED_PECI_EXPECTED_RD_FCS_MASK GENMASK(23, 16)
#define ASPEED_PECI_EXPECTED_AW_FCS_AUTO_MASK GENMASK(15, 8)
#define ASPEED_PECI_EXPECTED_WR_FCS_MASK GENMASK(7, 0)
/* Captured FCS Data Register */
#define ASPEED_PECI_CAPTURED_FCS 0x14
#define ASPEED_PECI_CAPTURED_RD_FCS_MASK GENMASK(23, 16)
#define ASPEED_PECI_CAPTURED_WR_FCS_MASK GENMASK(7, 0)
/* Interrupt Register */
#define ASPEED_PECI_INT_CTRL 0x18
#define ASPEED_PECI_TIMING_NEGO_SEL_MASK GENMASK(31, 30)
#define ASPEED_PECI_1ST_BIT_OF_ADDR_NEGO 0
#define ASPEED_PECI_2ND_BIT_OF_ADDR_NEGO 1
#define ASPEED_PECI_MESSAGE_NEGO 2
#define ASPEED_PECI_INT_MASK GENMASK(4, 0)
#define ASPEED_PECI_INT_BUS_TIMEOUT BIT(4)
#define ASPEED_PECI_INT_BUS_CONTENTION BIT(3)
#define ASPEED_PECI_INT_WR_FCS_BAD BIT(2)
#define ASPEED_PECI_INT_WR_FCS_ABORT BIT(1)
#define ASPEED_PECI_INT_CMD_DONE BIT(0)
/* Interrupt Status Register */
#define ASPEED_PECI_INT_STS 0x1c
#define ASPEED_PECI_INT_TIMING_RESULT_MASK GENMASK(29, 16)
/* bits[4..0]: Same bit fields in the 'Interrupt Register' */
/* Rx/Tx Data Buffer Registers */
#define ASPEED_PECI_WR_DATA0 0x20
#define ASPEED_PECI_WR_DATA1 0x24
#define ASPEED_PECI_WR_DATA2 0x28
#define ASPEED_PECI_WR_DATA3 0x2c
#define ASPEED_PECI_RD_DATA0 0x30
#define ASPEED_PECI_RD_DATA1 0x34
#define ASPEED_PECI_RD_DATA2 0x38
#define ASPEED_PECI_RD_DATA3 0x3c
#define ASPEED_PECI_WR_DATA4 0x40
#define ASPEED_PECI_WR_DATA5 0x44
#define ASPEED_PECI_WR_DATA6 0x48
#define ASPEED_PECI_WR_DATA7 0x4c
#define ASPEED_PECI_RD_DATA4 0x50
#define ASPEED_PECI_RD_DATA5 0x54
#define ASPEED_PECI_RD_DATA6 0x58
#define ASPEED_PECI_RD_DATA7 0x5c
#define ASPEED_PECI_DATA_BUF_SIZE_MAX 32
/* Timing Negotiation */
#define ASPEED_PECI_CLK_FREQUENCY_MIN 2000
#define ASPEED_PECI_CLK_FREQUENCY_DEFAULT 1000000
#define ASPEED_PECI_CLK_FREQUENCY_MAX 2000000
#define ASPEED_PECI_RD_SAMPLING_POINT_DEFAULT 8
/* Timeout */
#define ASPEED_PECI_IDLE_CHECK_TIMEOUT_US (50 * USEC_PER_MSEC)
#define ASPEED_PECI_IDLE_CHECK_INTERVAL_US (10 * USEC_PER_MSEC)
#define ASPEED_PECI_CMD_TIMEOUT_MS_DEFAULT 1000
#define ASPEED_PECI_CMD_TIMEOUT_MS_MAX 1000
#define ASPEED_PECI_CLK_DIV1(msg_timing) (4 * (msg_timing) + 1)
#define ASPEED_PECI_CLK_DIV2(clk_div_exp) BIT(clk_div_exp)
#define ASPEED_PECI_CLK_DIV(msg_timing, clk_div_exp) \
(4 * ASPEED_PECI_CLK_DIV1(msg_timing) * ASPEED_PECI_CLK_DIV2(clk_div_exp))
struct aspeed_peci {
struct peci_controller *controller;
struct device *dev;
void __iomem *base;
struct reset_control *rst;
int irq;
spinlock_t lock; /* to sync completion status handling */
struct completion xfer_complete;
struct clk *clk;
u32 clk_frequency;
u32 status;
u32 cmd_timeout_ms;
};
struct clk_aspeed_peci {
struct clk_hw hw;
struct aspeed_peci *aspeed_peci;
};
static void aspeed_peci_controller_enable(struct aspeed_peci *priv)
{
u32 val = readl(priv->base + ASPEED_PECI_CTRL);
val |= ASPEED_PECI_CTRL_PECI_CLK_EN;
val |= ASPEED_PECI_CTRL_PECI_EN;
writel(val, priv->base + ASPEED_PECI_CTRL);
}
static void aspeed_peci_init_regs(struct aspeed_peci *priv)
{
u32 val;
/* Clear interrupts */
writel(ASPEED_PECI_INT_MASK, priv->base + ASPEED_PECI_INT_STS);
/* Set timing negotiation mode and enable interrupts */
val = FIELD_PREP(ASPEED_PECI_TIMING_NEGO_SEL_MASK, ASPEED_PECI_1ST_BIT_OF_ADDR_NEGO);
val |= ASPEED_PECI_INT_MASK;
writel(val, priv->base + ASPEED_PECI_INT_CTRL);
val = FIELD_PREP(ASPEED_PECI_CTRL_SAMPLING_MASK, ASPEED_PECI_RD_SAMPLING_POINT_DEFAULT);
writel(val, priv->base + ASPEED_PECI_CTRL);
}
static int aspeed_peci_check_idle(struct aspeed_peci *priv)
{
u32 cmd_sts = readl(priv->base + ASPEED_PECI_CMD);
int ret;
/*
* Under normal circumstances, we expect to be idle here.
* In case there were any errors/timeouts that led to the situation
* where the hardware is not in idle state - we need to reset and
* reinitialize it to avoid potential controller hang.
*/
if (FIELD_GET(ASPEED_PECI_CMD_STS_MASK, cmd_sts)) {
ret = reset_control_assert(priv->rst);
if (ret) {
dev_err(priv->dev, "cannot assert reset control\n");
return ret;
}
ret = reset_control_deassert(priv->rst);
if (ret) {
dev_err(priv->dev, "cannot deassert reset control\n");
return ret;
}
aspeed_peci_init_regs(priv);
ret = clk_set_rate(priv->clk, priv->clk_frequency);
if (ret < 0) {
dev_err(priv->dev, "cannot set clock frequency\n");
return ret;
}
aspeed_peci_controller_enable(priv);
}
return readl_poll_timeout(priv->base + ASPEED_PECI_CMD,
cmd_sts,
!(cmd_sts & ASPEED_PECI_CMD_IDLE_MASK),
ASPEED_PECI_IDLE_CHECK_INTERVAL_US,
ASPEED_PECI_IDLE_CHECK_TIMEOUT_US);
}
static int aspeed_peci_xfer(struct peci_controller *controller,
u8 addr, struct peci_request *req)
{
struct aspeed_peci *priv = dev_get_drvdata(controller->dev.parent);
unsigned long timeout = msecs_to_jiffies(priv->cmd_timeout_ms);
u32 peci_head;
int ret, i;
if (req->tx.len > ASPEED_PECI_DATA_BUF_SIZE_MAX ||
req->rx.len > ASPEED_PECI_DATA_BUF_SIZE_MAX)
return -EINVAL;
/* Check command sts and bus idle state */
ret = aspeed_peci_check_idle(priv);
if (ret)
return ret; /* -ETIMEDOUT */
spin_lock_irq(&priv->lock);
reinit_completion(&priv->xfer_complete);
peci_head = FIELD_PREP(ASPEED_PECI_TARGET_ADDR_MASK, addr) |
FIELD_PREP(ASPEED_PECI_WR_LEN_MASK, req->tx.len) |
FIELD_PREP(ASPEED_PECI_RD_LEN_MASK, req->rx.len);
writel(peci_head, priv->base + ASPEED_PECI_RW_LENGTH);
for (i = 0; i < req->tx.len; i += 4) {
u32 reg = (i < 16 ? ASPEED_PECI_WR_DATA0 : ASPEED_PECI_WR_DATA4) + i % 16;
writel(get_unaligned_le32(&req->tx.buf[i]), priv->base + reg);
}
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
dev_dbg(priv->dev, "HEAD : %#08x\n", peci_head);
print_hex_dump_bytes("TX : ", DUMP_PREFIX_NONE, req->tx.buf, req->tx.len);
#endif
priv->status = 0;
writel(ASPEED_PECI_CMD_FIRE, priv->base + ASPEED_PECI_CMD);
spin_unlock_irq(&priv->lock);
ret = wait_for_completion_interruptible_timeout(&priv->xfer_complete, timeout);
if (ret < 0)
return ret;
if (ret == 0) {
dev_dbg(priv->dev, "timeout waiting for a response\n");
return -ETIMEDOUT;
}
spin_lock_irq(&priv->lock);
if (priv->status != ASPEED_PECI_INT_CMD_DONE) {
spin_unlock_irq(&priv->lock);
dev_dbg(priv->dev, "no valid response, status: %#02x\n", priv->status);
return -EIO;
}
spin_unlock_irq(&priv->lock);
/*
* We need to use dword reads for register access, make sure that the
* buffer size is multiple of 4-bytes.
*/
BUILD_BUG_ON(PECI_REQUEST_MAX_BUF_SIZE % 4);
for (i = 0; i < req->rx.len; i += 4) {
u32 reg = (i < 16 ? ASPEED_PECI_RD_DATA0 : ASPEED_PECI_RD_DATA4) + i % 16;
u32 rx_data = readl(priv->base + reg);
put_unaligned_le32(rx_data, &req->rx.buf[i]);
}
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
print_hex_dump_bytes("RX : ", DUMP_PREFIX_NONE, req->rx.buf, req->rx.len);
#endif
return 0;
}
static irqreturn_t aspeed_peci_irq_handler(int irq, void *arg)
{
struct aspeed_peci *priv = arg;
u32 status;
spin_lock(&priv->lock);
status = readl(priv->base + ASPEED_PECI_INT_STS);
writel(status, priv->base + ASPEED_PECI_INT_STS);
priv->status |= (status & ASPEED_PECI_INT_MASK);
/*
* All commands should be ended up with a ASPEED_PECI_INT_CMD_DONE bit
* set even in an error case.
*/
if (status & ASPEED_PECI_INT_CMD_DONE)
complete(&priv->xfer_complete);
writel(0, priv->base + ASPEED_PECI_CMD);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static void clk_aspeed_peci_find_div_values(unsigned long rate, int *msg_timing, int *clk_div_exp)
{
unsigned long best_diff = ~0ul, diff;
int msg_timing_temp, clk_div_exp_temp, i, j;
for (i = 1; i <= 255; i++)
for (j = 0; j < 8; j++) {
diff = abs(rate - ASPEED_PECI_CLK_DIV1(i) * ASPEED_PECI_CLK_DIV2(j));
if (diff < best_diff) {
msg_timing_temp = i;
clk_div_exp_temp = j;
best_diff = diff;
}
}
*msg_timing = msg_timing_temp;
*clk_div_exp = clk_div_exp_temp;
}
static int clk_aspeed_peci_get_div(unsigned long rate, const unsigned long *prate)
{
unsigned long this_rate = *prate / (4 * rate);
int msg_timing, clk_div_exp;
clk_aspeed_peci_find_div_values(this_rate, &msg_timing, &clk_div_exp);
return ASPEED_PECI_CLK_DIV(msg_timing, clk_div_exp);
}
static int clk_aspeed_peci_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_aspeed_peci *peci_clk = container_of(hw, struct clk_aspeed_peci, hw);
struct aspeed_peci *aspeed_peci = peci_clk->aspeed_peci;
unsigned long this_rate = prate / (4 * rate);
int clk_div_exp, msg_timing;
u32 val;
clk_aspeed_peci_find_div_values(this_rate, &msg_timing, &clk_div_exp);
val = readl(aspeed_peci->base + ASPEED_PECI_CTRL);
val &= ~ASPEED_PECI_CTRL_CLK_DIV_MASK;
val |= FIELD_PREP(ASPEED_PECI_CTRL_CLK_DIV_MASK, clk_div_exp);
writel(val, aspeed_peci->base + ASPEED_PECI_CTRL);
val = FIELD_PREP(ASPEED_PECI_T_NEGO_MSG_MASK, msg_timing);
val |= FIELD_PREP(ASPEED_PECI_T_NEGO_ADDR_MASK, msg_timing);
writel(val, aspeed_peci->base + ASPEED_PECI_TIMING_NEGOTIATION);
return 0;
}
static long clk_aspeed_peci_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
int div = clk_aspeed_peci_get_div(rate, prate);
return DIV_ROUND_UP_ULL(*prate, div);
}
static unsigned long clk_aspeed_peci_recalc_rate(struct clk_hw *hw, unsigned long prate)
{
struct clk_aspeed_peci *peci_clk = container_of(hw, struct clk_aspeed_peci, hw);
struct aspeed_peci *aspeed_peci = peci_clk->aspeed_peci;
int div, msg_timing, addr_timing, clk_div_exp;
u32 reg;
reg = readl(aspeed_peci->base + ASPEED_PECI_TIMING_NEGOTIATION);
msg_timing = FIELD_GET(ASPEED_PECI_T_NEGO_MSG_MASK, reg);
addr_timing = FIELD_GET(ASPEED_PECI_T_NEGO_ADDR_MASK, reg);
if (msg_timing != addr_timing)
return 0;
reg = readl(aspeed_peci->base + ASPEED_PECI_CTRL);
clk_div_exp = FIELD_GET(ASPEED_PECI_CTRL_CLK_DIV_MASK, reg);
div = ASPEED_PECI_CLK_DIV(msg_timing, clk_div_exp);
return DIV_ROUND_UP_ULL(prate, div);
}
static const struct clk_ops clk_aspeed_peci_ops = {
.set_rate = clk_aspeed_peci_set_rate,
.round_rate = clk_aspeed_peci_round_rate,
.recalc_rate = clk_aspeed_peci_recalc_rate,
};
/*
* PECI HW contains a clock divider which is a combination of:
* div0: 4 (fixed divider)
* div1: x + 1
* div2: 1 << y
* In other words, out_clk = in_clk / (div0 * div1 * div2)
* The resulting frequency is used by PECI Controller to drive the PECI bus to
* negotiate optimal transfer rate.
*/
static struct clk *devm_aspeed_peci_register_clk_div(struct device *dev, struct clk *parent,
struct aspeed_peci *priv)
{
struct clk_aspeed_peci *peci_clk;
struct clk_init_data init;
const char *parent_name;
char name[32];
int ret;
snprintf(name, sizeof(name), "%s_div", dev_name(dev));
parent_name = __clk_get_name(parent);
init.ops = &clk_aspeed_peci_ops;
init.name = name;
init.parent_names = (const char* []) { parent_name };
init.num_parents = 1;
init.flags = 0;
peci_clk = devm_kzalloc(dev, sizeof(struct clk_aspeed_peci), GFP_KERNEL);
if (!peci_clk)
return ERR_PTR(-ENOMEM);
peci_clk->hw.init = &init;
peci_clk->aspeed_peci = priv;
ret = devm_clk_hw_register(dev, &peci_clk->hw);
if (ret)
return ERR_PTR(ret);
return peci_clk->hw.clk;
}
static void aspeed_peci_property_sanitize(struct device *dev, const char *propname,
u32 min, u32 max, u32 default_val, u32 *propval)
{
u32 val;
int ret;
ret = device_property_read_u32(dev, propname, &val);
if (ret) {
val = default_val;
} else if (val > max || val < min) {
dev_warn(dev, "invalid %s: %u, falling back to: %u\n",
propname, val, default_val);
val = default_val;
}
*propval = val;
}
static void aspeed_peci_property_setup(struct aspeed_peci *priv)
{
aspeed_peci_property_sanitize(priv->dev, "clock-frequency",
ASPEED_PECI_CLK_FREQUENCY_MIN, ASPEED_PECI_CLK_FREQUENCY_MAX,
ASPEED_PECI_CLK_FREQUENCY_DEFAULT, &priv->clk_frequency);
aspeed_peci_property_sanitize(priv->dev, "cmd-timeout-ms",
1, ASPEED_PECI_CMD_TIMEOUT_MS_MAX,
ASPEED_PECI_CMD_TIMEOUT_MS_DEFAULT, &priv->cmd_timeout_ms);
}
static const struct peci_controller_ops aspeed_ops = {
.xfer = aspeed_peci_xfer,
};
static void aspeed_peci_reset_control_release(void *data)
{
reset_control_assert(data);
}
static int devm_aspeed_peci_reset_control_deassert(struct device *dev, struct reset_control *rst)
{
int ret;
ret = reset_control_deassert(rst);
if (ret)
return ret;
return devm_add_action_or_reset(dev, aspeed_peci_reset_control_release, rst);
}
static void aspeed_peci_clk_release(void *data)
{
clk_disable_unprepare(data);
}
static int devm_aspeed_peci_clk_enable(struct device *dev, struct clk *clk)
{
int ret;
ret = clk_prepare_enable(clk);
if (ret)
return ret;
return devm_add_action_or_reset(dev, aspeed_peci_clk_release, clk);
}
static int aspeed_peci_probe(struct platform_device *pdev)
{
struct peci_controller *controller;
struct aspeed_peci *priv;
struct clk *ref_clk;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &pdev->dev;
dev_set_drvdata(priv->dev, priv);
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->irq = platform_get_irq(pdev, 0);
if (priv->irq < 0)
return priv->irq;
ret = devm_request_irq(&pdev->dev, priv->irq, aspeed_peci_irq_handler,
0, "peci-aspeed", priv);
if (ret)
return ret;
init_completion(&priv->xfer_complete);
spin_lock_init(&priv->lock);
priv->rst = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(priv->rst))
return dev_err_probe(priv->dev, PTR_ERR(priv->rst),
"failed to get reset control\n");
ret = devm_aspeed_peci_reset_control_deassert(priv->dev, priv->rst);
if (ret)
return dev_err_probe(priv->dev, ret, "cannot deassert reset control\n");
aspeed_peci_property_setup(priv);
aspeed_peci_init_regs(priv);
ref_clk = devm_clk_get(priv->dev, NULL);
if (IS_ERR(ref_clk))
return dev_err_probe(priv->dev, PTR_ERR(ref_clk), "failed to get ref clock\n");
priv->clk = devm_aspeed_peci_register_clk_div(priv->dev, ref_clk, priv);
if (IS_ERR(priv->clk))
return dev_err_probe(priv->dev, PTR_ERR(priv->clk), "cannot register clock\n");
ret = clk_set_rate(priv->clk, priv->clk_frequency);
if (ret < 0)
return dev_err_probe(priv->dev, ret, "cannot set clock frequency\n");
ret = devm_aspeed_peci_clk_enable(priv->dev, priv->clk);
if (ret)
return dev_err_probe(priv->dev, ret, "failed to enable clock\n");
aspeed_peci_controller_enable(priv);
controller = devm_peci_controller_add(priv->dev, &aspeed_ops);
if (IS_ERR(controller))
return dev_err_probe(priv->dev, PTR_ERR(controller),
"failed to add aspeed peci controller\n");
priv->controller = controller;
return 0;
}
static const struct of_device_id aspeed_peci_of_table[] = {
{ .compatible = "aspeed,ast2400-peci", },
{ .compatible = "aspeed,ast2500-peci", },
{ .compatible = "aspeed,ast2600-peci", },
{ }
};
MODULE_DEVICE_TABLE(of, aspeed_peci_of_table);
static struct platform_driver aspeed_peci_driver = {
.probe = aspeed_peci_probe,
.driver = {
.name = "peci-aspeed",
.of_match_table = aspeed_peci_of_table,
},
};
module_platform_driver(aspeed_peci_driver);
MODULE_AUTHOR("Ryan Chen <[email protected]>");
MODULE_AUTHOR("Jae Hyun Yoo <[email protected]>");
MODULE_DESCRIPTION("ASPEED PECI driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(PECI);