// SPDX-License-Identifier: GPL-2.0
// ff-protocol-former.c - a part of driver for RME Fireface series
//
// Copyright (c) 2019 Takashi Sakamoto
#include <linux/delay.h>
#include "ff.h"
#define FORMER_REG_SYNC_STATUS 0x0000801c0000ull
/* For block write request. */
#define FORMER_REG_FETCH_PCM_FRAMES 0x0000801c0000ull
#define FORMER_REG_CLOCK_CONFIG 0x0000801c0004ull
static int parse_clock_bits(u32 data, unsigned int *rate,
enum snd_ff_clock_src *src)
{
static const struct {
unsigned int rate;
u32 mask;
} *rate_entry, rate_entries[] = {
{ 32000, 0x00000002, },
{ 44100, 0x00000000, },
{ 48000, 0x00000006, },
{ 64000, 0x0000000a, },
{ 88200, 0x00000008, },
{ 96000, 0x0000000e, },
{ 128000, 0x00000012, },
{ 176400, 0x00000010, },
{ 192000, 0x00000016, },
};
static const struct {
enum snd_ff_clock_src src;
u32 mask;
} *clk_entry, clk_entries[] = {
{ SND_FF_CLOCK_SRC_ADAT1, 0x00000000, },
{ SND_FF_CLOCK_SRC_ADAT2, 0x00000400, },
{ SND_FF_CLOCK_SRC_SPDIF, 0x00000c00, },
{ SND_FF_CLOCK_SRC_WORD, 0x00001000, },
{ SND_FF_CLOCK_SRC_LTC, 0x00001800, },
};
int i;
for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
rate_entry = rate_entries + i;
if ((data & 0x0000001e) == rate_entry->mask) {
*rate = rate_entry->rate;
break;
}
}
if (i == ARRAY_SIZE(rate_entries))
return -EIO;
if (data & 0x00000001) {
*src = SND_FF_CLOCK_SRC_INTERNAL;
} else {
for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
clk_entry = clk_entries + i;
if ((data & 0x00001c00) == clk_entry->mask) {
*src = clk_entry->src;
break;
}
}
if (i == ARRAY_SIZE(clk_entries))
return -EIO;
}
return 0;
}
static int former_get_clock(struct snd_ff *ff, unsigned int *rate,
enum snd_ff_clock_src *src)
{
__le32 reg;
u32 data;
int err;
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
FORMER_REG_CLOCK_CONFIG, ®, sizeof(reg), 0);
if (err < 0)
return err;
data = le32_to_cpu(reg);
return parse_clock_bits(data, rate, src);
}
static int former_switch_fetching_mode(struct snd_ff *ff, bool enable)
{
unsigned int count;
__le32 *reg;
int i;
int err;
count = 0;
for (i = 0; i < SND_FF_STREAM_MODE_COUNT; ++i)
count = max(count, ff->spec->pcm_playback_channels[i]);
reg = kcalloc(count, sizeof(__le32), GFP_KERNEL);
if (!reg)
return -ENOMEM;
if (!enable) {
/*
* Each quadlet is corresponding to data channels in a data
* blocks in reverse order. Precisely, quadlets for available
* data channels should be enabled. Here, I take second best
* to fetch PCM frames from all of data channels regardless of
* stf.
*/
for (i = 0; i < count; ++i)
reg[i] = cpu_to_le32(0x00000001);
}
err = snd_fw_transaction(ff->unit, TCODE_WRITE_BLOCK_REQUEST,
FORMER_REG_FETCH_PCM_FRAMES, reg,
sizeof(__le32) * count, 0);
kfree(reg);
return err;
}
static void dump_clock_config(struct snd_ff *ff, struct snd_info_buffer *buffer)
{
__le32 reg;
u32 data;
unsigned int rate;
enum snd_ff_clock_src src;
const char *label;
int err;
err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
FORMER_REG_CLOCK_CONFIG, ®, sizeof(reg), 0);
if (err < 0)
return;
data = le32_to_cpu(reg);
snd_iprintf(buffer, "Output S/PDIF format: %s (Emphasis: %s)\n",
(data & 0x00000020) ? "Professional" : "Consumer",
(data & 0x00000040) ? "on" : "off");
snd_iprintf(buffer, "Optical output interface format: %s\n",
(data & 0x00000100) ? "S/PDIF" : "ADAT");
snd_iprintf(buffer, "Word output single speed: %s\n",
(data & 0x00002000) ? "on" : "off");
snd_iprintf(buffer, "S/PDIF input interface: %s\n",
(data & 0x00000200) ? "Optical" : "Coaxial");
err = parse_clock_bits(data, &rate, &src);
if (err < 0)
return;
label = snd_ff_proc_get_clk_label(src);
if (!label)
return;
snd_iprintf(buffer, "Clock configuration: %d %s\n", rate, label);
}
static void dump_sync_status(struct snd_ff *ff, struct snd_info_buffer *buffer)
{
static const struct {
char *const label;
u32 locked_mask;
u32 synced_mask;
} *clk_entry, clk_entries[] = {
{ "WDClk", 0x40000000, 0x20000000, },
{ "S/PDIF", 0x00080000, 0x00040000, },
{ "ADAT1", 0x00000400, 0x00001000, },
{ "ADAT2", 0x00000800, 0x00002000, },
};
static const struct {
char *const label;
u32 mask;
} *referred_entry, referred_entries[] = {
{ "ADAT1", 0x00000000, },
{ "ADAT2", 0x00400000, },
{ "S/PDIF", 0x00c00000, },
{ "WDclk", 0x01000000, },
{ "TCO", 0x01400000, },
};
static const struct {
unsigned int rate;
u32 mask;
} *rate_entry, rate_entries[] = {
{ 32000, 0x02000000, },
{ 44100, 0x04000000, },
{ 48000, 0x06000000, },
{ 64000, 0x08000000, },
{ 88200, 0x0a000000, },
{ 96000, 0x0c000000, },
{ 128000, 0x0e000000, },
{ 176400, 0x10000000, },
{ 192000, 0x12000000, },
};
__le32 reg[2];
u32 data[2];
int i;
int err;
err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
FORMER_REG_SYNC_STATUS, reg, sizeof(reg), 0);
if (err < 0)
return;
data[0] = le32_to_cpu(reg[0]);
data[1] = le32_to_cpu(reg[1]);
snd_iprintf(buffer, "External source detection:\n");
for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
const char *state;
clk_entry = clk_entries + i;
if (data[0] & clk_entry->locked_mask) {
if (data[0] & clk_entry->synced_mask)
state = "sync";
else
state = "lock";
} else {
state = "none";
}
snd_iprintf(buffer, "%s: %s\n", clk_entry->label, state);
}
snd_iprintf(buffer, "Referred clock:\n");
if (data[1] & 0x00000001) {
snd_iprintf(buffer, "Internal\n");
} else {
unsigned int rate;
const char *label;
for (i = 0; i < ARRAY_SIZE(referred_entries); ++i) {
referred_entry = referred_entries + i;
if ((data[0] & 0x1e0000) == referred_entry->mask) {
label = referred_entry->label;
break;
}
}
if (i == ARRAY_SIZE(referred_entries))
label = "none";
for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
rate_entry = rate_entries + i;
if ((data[0] & 0x1e000000) == rate_entry->mask) {
rate = rate_entry->rate;
break;
}
}
if (i == ARRAY_SIZE(rate_entries))
rate = 0;
snd_iprintf(buffer, "%s %d\n", label, rate);
}
}
static void former_dump_status(struct snd_ff *ff,
struct snd_info_buffer *buffer)
{
dump_clock_config(ff, buffer);
dump_sync_status(ff, buffer);
}
static int former_fill_midi_msg(struct snd_ff *ff,
struct snd_rawmidi_substream *substream,
unsigned int port)
{
u8 *buf = (u8 *)ff->msg_buf[port];
int len;
int i;
len = snd_rawmidi_transmit_peek(substream, buf,
SND_FF_MAXIMIM_MIDI_QUADS);
if (len <= 0)
return len;
// One quadlet includes one byte.
for (i = len - 1; i >= 0; --i)
ff->msg_buf[port][i] = cpu_to_le32(buf[i]);
ff->rx_bytes[port] = len;
return len;
}
#define FF800_STF 0x0000fc88f000
#define FF800_RX_PACKET_FORMAT 0x0000fc88f004
#define FF800_ALLOC_TX_STREAM 0x0000fc88f008
#define FF800_ISOC_COMM_START 0x0000fc88f00c
#define FF800_TX_S800_FLAG 0x00000800
#define FF800_ISOC_COMM_STOP 0x0000fc88f010
#define FF800_TX_PACKET_ISOC_CH 0x0000801c0008
static int allocate_tx_resources(struct snd_ff *ff)
{
__le32 reg;
unsigned int count;
unsigned int tx_isoc_channel;
int err;
reg = cpu_to_le32(ff->tx_stream.data_block_quadlets);
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF800_ALLOC_TX_STREAM, ®, sizeof(reg), 0);
if (err < 0)
return err;
// Wait till the format of tx packet is available.
count = 0;
while (count++ < 10) {
u32 data;
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
FF800_TX_PACKET_ISOC_CH, ®, sizeof(reg), 0);
if (err < 0)
return err;
data = le32_to_cpu(reg);
if (data != 0xffffffff) {
tx_isoc_channel = data;
break;
}
msleep(50);
}
if (count >= 10)
return -ETIMEDOUT;
// NOTE: this is a makeshift to start OHCI 1394 IR context in the
// channel. On the other hand, 'struct fw_iso_resources.allocated' is
// not true and it's not deallocated at stop.
ff->tx_resources.channel = tx_isoc_channel;
return 0;
}
static int ff800_allocate_resources(struct snd_ff *ff, unsigned int rate)
{
u32 data;
__le32 reg;
int err;
reg = cpu_to_le32(rate);
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF800_STF, ®, sizeof(reg), 0);
if (err < 0)
return err;
// If starting isochronous communication immediately, change of STF has
// no effect. In this case, the communication runs based on former STF.
// Let's sleep for a bit.
msleep(100);
// Controllers should allocate isochronous resources for rx stream.
err = fw_iso_resources_allocate(&ff->rx_resources,
amdtp_stream_get_max_payload(&ff->rx_stream),
fw_parent_device(ff->unit)->max_speed);
if (err < 0)
return err;
// Set isochronous channel and the number of quadlets of rx packets.
// This should be done before the allocation of tx resources to avoid
// periodical noise.
data = ff->rx_stream.data_block_quadlets << 3;
data = (data << 8) | ff->rx_resources.channel;
reg = cpu_to_le32(data);
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF800_RX_PACKET_FORMAT, ®, sizeof(reg), 0);
if (err < 0)
return err;
return allocate_tx_resources(ff);
}
static int ff800_begin_session(struct snd_ff *ff, unsigned int rate)
{
unsigned int generation = ff->rx_resources.generation;
__le32 reg;
if (generation != fw_parent_device(ff->unit)->card->generation) {
int err = fw_iso_resources_update(&ff->rx_resources);
if (err < 0)
return err;
}
reg = cpu_to_le32(0x80000000);
reg |= cpu_to_le32(ff->tx_stream.data_block_quadlets);
if (fw_parent_device(ff->unit)->max_speed == SCODE_800)
reg |= cpu_to_le32(FF800_TX_S800_FLAG);
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF800_ISOC_COMM_START, ®, sizeof(reg), 0);
}
static void ff800_finish_session(struct snd_ff *ff)
{
__le32 reg;
reg = cpu_to_le32(0x80000000);
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF800_ISOC_COMM_STOP, ®, sizeof(reg), 0);
}
// Fireface 800 doesn't allow drivers to register lower 4 bytes of destination
// address.
// A write transaction to clear registered higher 4 bytes of destination address
// has an effect to suppress asynchronous transaction from device.
static void ff800_handle_midi_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf,
size_t length, u32 tstamp)
{
int i;
for (i = 0; i < length / 4; i++) {
u8 byte = le32_to_cpu(buf[i]) & 0xff;
struct snd_rawmidi_substream *substream;
substream = READ_ONCE(ff->tx_midi_substreams[0]);
if (substream)
snd_rawmidi_receive(substream, &byte, 1);
}
}
const struct snd_ff_protocol snd_ff_protocol_ff800 = {
.handle_msg = ff800_handle_midi_msg,
.fill_midi_msg = former_fill_midi_msg,
.get_clock = former_get_clock,
.switch_fetching_mode = former_switch_fetching_mode,
.allocate_resources = ff800_allocate_resources,
.begin_session = ff800_begin_session,
.finish_session = ff800_finish_session,
.dump_status = former_dump_status,
};
#define FF400_STF 0x000080100500ull
#define FF400_RX_PACKET_FORMAT 0x000080100504ull
#define FF400_ISOC_COMM_START 0x000080100508ull
#define FF400_TX_PACKET_FORMAT 0x00008010050cull
#define FF400_ISOC_COMM_STOP 0x000080100510ull
// Fireface 400 manages isochronous channel number in 3 bit field. Therefore,
// we can allocate between 0 and 7 channel.
static int ff400_allocate_resources(struct snd_ff *ff, unsigned int rate)
{
__le32 reg;
enum snd_ff_stream_mode mode;
int i;
int err;
// Check whether the given value is supported or not.
for (i = 0; i < CIP_SFC_COUNT; i++) {
if (amdtp_rate_table[i] == rate)
break;
}
if (i >= CIP_SFC_COUNT)
return -EINVAL;
// Set the number of data blocks transferred in a second.
reg = cpu_to_le32(rate);
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF400_STF, ®, sizeof(reg), 0);
if (err < 0)
return err;
msleep(100);
err = snd_ff_stream_get_multiplier_mode(i, &mode);
if (err < 0)
return err;
// Keep resources for in-stream.
ff->tx_resources.channels_mask = 0x00000000000000ffuLL;
err = fw_iso_resources_allocate(&ff->tx_resources,
amdtp_stream_get_max_payload(&ff->tx_stream),
fw_parent_device(ff->unit)->max_speed);
if (err < 0)
return err;
// Keep resources for out-stream.
ff->rx_resources.channels_mask = 0x00000000000000ffuLL;
err = fw_iso_resources_allocate(&ff->rx_resources,
amdtp_stream_get_max_payload(&ff->rx_stream),
fw_parent_device(ff->unit)->max_speed);
if (err < 0)
fw_iso_resources_free(&ff->tx_resources);
return err;
}
static int ff400_begin_session(struct snd_ff *ff, unsigned int rate)
{
unsigned int generation = ff->rx_resources.generation;
__le32 reg;
int err;
if (generation != fw_parent_device(ff->unit)->card->generation) {
err = fw_iso_resources_update(&ff->tx_resources);
if (err < 0)
return err;
err = fw_iso_resources_update(&ff->rx_resources);
if (err < 0)
return err;
}
// Set isochronous channel and the number of quadlets of received
// packets.
reg = cpu_to_le32(((ff->rx_stream.data_block_quadlets << 3) << 8) |
ff->rx_resources.channel);
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF400_RX_PACKET_FORMAT, ®, sizeof(reg), 0);
if (err < 0)
return err;
// Set isochronous channel and the number of quadlets of transmitted
// packet.
// TODO: investigate the purpose of this 0x80.
reg = cpu_to_le32((0x80 << 24) |
(ff->tx_resources.channel << 5) |
(ff->tx_stream.data_block_quadlets));
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF400_TX_PACKET_FORMAT, ®, sizeof(reg), 0);
if (err < 0)
return err;
// Allow to transmit packets.
reg = cpu_to_le32(0x00000001);
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF400_ISOC_COMM_START, ®, sizeof(reg), 0);
}
static void ff400_finish_session(struct snd_ff *ff)
{
__le32 reg;
reg = cpu_to_le32(0x80000000);
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
FF400_ISOC_COMM_STOP, ®, sizeof(reg), 0);
}
static void parse_midi_msg(struct snd_ff *ff, u32 quad, unsigned int port)
{
struct snd_rawmidi_substream *substream = READ_ONCE(ff->tx_midi_substreams[port]);
if (substream != NULL) {
u8 byte = (quad >> (16 * port)) & 0x000000ff;
snd_rawmidi_receive(substream, &byte, 1);
}
}
#define FF400_QUEUE_SIZE 32
struct ff400_msg_parser {
struct {
u32 msg;
u32 tstamp;
} msgs[FF400_QUEUE_SIZE];
size_t push_pos;
size_t pull_pos;
};
static bool ff400_has_msg(struct snd_ff *ff)
{
struct ff400_msg_parser *parser = ff->msg_parser;
return (parser->push_pos != parser->pull_pos);
}
// For Fireface 400, lower 4 bytes of destination address is configured by bit
// flag in quadlet register (little endian) at 0x'0000'801'0051c. Drivers can
// select one of 4 options:
//
// bit flags: offset of destination address
// - 0x04000000: 0x'....'....'0000'0000
// - 0x08000000: 0x'....'....'0000'0080
// - 0x10000000: 0x'....'....'0000'0100
// - 0x20000000: 0x'....'....'0000'0180
//
// Drivers can suppress the device to transfer asynchronous transactions by
// using below 2 bits.
// - 0x01000000: suppress transmission
// - 0x02000000: suppress transmission
//
// Actually, the register is write-only and includes the other options such as
// input attenuation. This driver allocates destination address with '0000'0000
// in its lower offset and expects userspace application to configure the
// register for it.
// When the message is for signal level operation, the upper 4 bits in MSB expresses the pair of
// stereo physical port.
// - 0: Microphone input 0/1
// - 1: Line input 0/1
// - [2-4]: Line output 0-5
// - 5: Headphone output 0/1
// - 6: S/PDIF output 0/1
// - [7-10]: ADAT output 0-7
//
// The value of signal level can be detected by mask of 0x00fffc00. For signal level of microphone
// input:
//
// - 0: 0.0 dB
// - 10: +10.0 dB
// - 11: +11.0 dB
// - 12: +12.0 dB
// - ...
// - 63: +63.0 dB:
// - 64: +64.0 dB:
// - 65: +65.0 dB:
//
// For signal level of line input:
//
// - 0: 0.0 dB
// - 1: +0.5 dB
// - 2: +1.0 dB
// - 3: +1.5 dB
// - ...
// - 34: +17.0 dB:
// - 35: +17.5 dB:
// - 36: +18.0 dB:
//
// For signal level of any type of output:
//
// - 63: -infinite
// - 62: -58.0 dB
// - 61: -56.0 dB
// - 60: -54.0 dB
// - 59: -53.0 dB
// - 58: -52.0 dB
// - ...
// - 7: -1.0 dB
// - 6: 0.0 dB
// - 5: +1.0 dB
// - ...
// - 2: +4.0 dB
// - 1: +5.0 dB
// - 0: +6.0 dB
//
// When the message is not for signal level operation, it's for MIDI bytes. When matching to
// FF400_MSG_FLAG_IS_MIDI_PORT_0, one MIDI byte can be detected by mask of 0x000000ff. When
// matching to FF400_MSG_FLAG_IS_MIDI_PORT_1, one MIDI byte can be detected by mask of 0x00ff0000.
#define FF400_MSG_FLAG_IS_SIGNAL_LEVEL 0x04000000
#define FF400_MSG_FLAG_IS_RIGHT_CHANNEL 0x08000000
#define FF400_MSG_FLAG_IS_STEREO_PAIRED 0x02000000
#define FF400_MSG_MASK_STEREO_PAIR 0xf0000000
#define FF400_MSG_MASK_SIGNAL_LEVEL 0x00fffc00
#define FF400_MSG_FLAG_IS_MIDI_PORT_0 0x00000100
#define FF400_MSG_MASK_MIDI_PORT_0 0x000000ff
#define FF400_MSG_FLAG_IS_MIDI_PORT_1 0x01000000
#define FF400_MSG_MASK_MIDI_PORT_1 0x00ff0000
static void ff400_handle_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf,
size_t length, u32 tstamp)
{
bool need_hwdep_wake_up = false;
int i;
for (i = 0; i < length / 4; i++) {
u32 quad = le32_to_cpu(buf[i]);
if (quad & FF400_MSG_FLAG_IS_SIGNAL_LEVEL) {
struct ff400_msg_parser *parser = ff->msg_parser;
parser->msgs[parser->push_pos].msg = quad;
parser->msgs[parser->push_pos].tstamp = tstamp;
++parser->push_pos;
if (parser->push_pos >= FF400_QUEUE_SIZE)
parser->push_pos = 0;
need_hwdep_wake_up = true;
} else if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_0) {
parse_midi_msg(ff, quad, 0);
} else if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_1) {
parse_midi_msg(ff, quad, 1);
}
}
if (need_hwdep_wake_up)
wake_up(&ff->hwdep_wait);
}
static long ff400_copy_msg_to_user(struct snd_ff *ff, char __user *buf, long count)
{
struct snd_firewire_event_ff400_message ev = {
.type = SNDRV_FIREWIRE_EVENT_FF400_MESSAGE,
.message_count = 0,
};
struct ff400_msg_parser *parser = ff->msg_parser;
long consumed = 0;
long ret = 0;
if (count < sizeof(ev) || parser->pull_pos == parser->push_pos)
return 0;
count -= sizeof(ev);
consumed += sizeof(ev);
while (count >= sizeof(*parser->msgs) && parser->pull_pos != parser->push_pos) {
spin_unlock_irq(&ff->lock);
if (copy_to_user(buf + consumed, parser->msgs + parser->pull_pos,
sizeof(*parser->msgs)))
ret = -EFAULT;
spin_lock_irq(&ff->lock);
if (ret)
return ret;
++parser->pull_pos;
if (parser->pull_pos >= FF400_QUEUE_SIZE)
parser->pull_pos = 0;
++ev.message_count;
count -= sizeof(*parser->msgs);
consumed += sizeof(*parser->msgs);
}
spin_unlock_irq(&ff->lock);
if (copy_to_user(buf, &ev, sizeof(ev)))
ret = -EFAULT;
spin_lock_irq(&ff->lock);
if (ret)
return ret;
return consumed;
}
const struct snd_ff_protocol snd_ff_protocol_ff400 = {
.msg_parser_size = sizeof(struct ff400_msg_parser),
.has_msg = ff400_has_msg,
.copy_msg_to_user = ff400_copy_msg_to_user,
.handle_msg = ff400_handle_msg,
.fill_midi_msg = former_fill_midi_msg,
.get_clock = former_get_clock,
.switch_fetching_mode = former_switch_fetching_mode,
.allocate_resources = ff400_allocate_resources,
.begin_session = ff400_begin_session,
.finish_session = ff400_finish_session,
.dump_status = former_dump_status,
};