// SPDX-License-Identifier: GPL-2.0
/*
* R-Car Gen4 Clock Pulse Generator
*
* Copyright (C) 2021 Renesas Electronics Corp.
*
* Based on rcar-gen3-cpg.c
*
* Copyright (C) 2015-2018 Glider bvba
* Copyright (C) 2019 Renesas Electronics Corp.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/slab.h>
#include "renesas-cpg-mssr.h"
#include "rcar-gen4-cpg.h"
#include "rcar-cpg-lib.h"
static const struct rcar_gen4_cpg_pll_config *cpg_pll_config __initdata;
static unsigned int cpg_clk_extalr __initdata;
static u32 cpg_mode __initdata;
#define CPG_PLLECR 0x0820 /* PLL Enable Control Register */
#define CPG_PLLECR_PLLST(n) BIT(8 + ((n) < 3 ? (n) - 1 : \
(n) > 3 ? (n) + 1 : n)) /* PLLn Circuit Status */
#define CPG_PLL1CR0 0x830 /* PLLn Control Registers */
#define CPG_PLL1CR1 0x8b0
#define CPG_PLL2CR0 0x834
#define CPG_PLL2CR1 0x8b8
#define CPG_PLL3CR0 0x83c
#define CPG_PLL3CR1 0x8c0
#define CPG_PLL4CR0 0x844
#define CPG_PLL4CR1 0x8c8
#define CPG_PLL6CR0 0x84c
#define CPG_PLL6CR1 0x8d8
#define CPG_PLLxCR0_KICK BIT(31)
#define CPG_PLLxCR0_SSMODE GENMASK(18, 16) /* PLL mode */
#define CPG_PLLxCR0_SSMODE_FM BIT(18) /* Fractional Multiplication */
#define CPG_PLLxCR0_SSMODE_DITH BIT(17) /* Frequency Dithering */
#define CPG_PLLxCR0_SSMODE_CENT BIT(16) /* Center (vs. Down) Spread Dithering */
#define CPG_PLLxCR0_SSFREQ GENMASK(14, 8) /* SSCG Modulation Frequency */
#define CPG_PLLxCR0_SSDEPT GENMASK(6, 0) /* SSCG Modulation Depth */
/* Fractional 8.25 PLL */
#define CPG_PLLxCR0_NI8 GENMASK(27, 20) /* Integer mult. factor */
#define CPG_PLLxCR1_NF25 GENMASK(24, 0) /* Fractional mult. factor */
/* Fractional 9.24 PLL */
#define CPG_PLLxCR0_NI9 GENMASK(28, 20) /* Integer mult. factor */
#define CPG_PLLxCR1_NF24 GENMASK(23, 0) /* Fractional mult. factor */
#define CPG_PLLxCR_STC GENMASK(30, 24) /* R_Car V3U PLLxCR */
#define CPG_RPCCKCR 0x874 /* RPC Clock Freq. Control Register */
#define CPG_SD0CKCR1 0x8a4 /* SD-IF0 Clock Freq. Control Reg. 1 */
#define CPG_SD0CKCR1_SDSRC_SEL GENMASK(30, 29) /* SDSRC clock freq. select */
/* PLL Clocks */
struct cpg_pll_clk {
struct clk_hw hw;
void __iomem *pllcr0_reg;
void __iomem *pllcr1_reg;
void __iomem *pllecr_reg;
u32 pllecr_pllst_mask;
};
#define to_pll_clk(_hw) container_of(_hw, struct cpg_pll_clk, hw)
static unsigned long cpg_pll_8_25_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
u32 cr0 = readl(pll_clk->pllcr0_reg);
unsigned int ni, nf;
unsigned long rate;
ni = (FIELD_GET(CPG_PLLxCR0_NI8, cr0) + 1) * 2;
rate = parent_rate * ni;
if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
nf = FIELD_GET(CPG_PLLxCR1_NF25, readl(pll_clk->pllcr1_reg));
rate += mul_u64_u32_shr(parent_rate, nf, 24);
}
return rate;
}
static int cpg_pll_8_25_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
unsigned int min_mult, max_mult, ni, nf;
u32 cr0 = readl(pll_clk->pllcr0_reg);
unsigned long prate;
prate = req->best_parent_rate * 2;
min_mult = max(div64_ul(req->min_rate, prate), 1ULL);
max_mult = min(div64_ul(req->max_rate, prate), 256ULL);
if (max_mult < min_mult)
return -EINVAL;
if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
ni = div64_ul(req->rate, prate);
if (ni < min_mult) {
ni = min_mult;
nf = 0;
} else {
ni = min(ni, max_mult);
nf = div64_ul((u64)(req->rate - prate * ni) << 24,
req->best_parent_rate);
}
} else {
ni = DIV_ROUND_CLOSEST_ULL(req->rate, prate);
ni = clamp(ni, min_mult, max_mult);
nf = 0;
}
req->rate = prate * ni + mul_u64_u32_shr(req->best_parent_rate, nf, 24);
return 0;
}
static int cpg_pll_8_25_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
unsigned long prate = parent_rate * 2;
u32 cr0 = readl(pll_clk->pllcr0_reg);
unsigned int ni, nf;
u32 val;
if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
ni = div64_ul(rate, prate);
if (ni < 1) {
ni = 1;
nf = 0;
} else {
ni = min(ni, 256U);
nf = div64_ul((u64)(rate - prate * ni) << 24,
parent_rate);
}
} else {
ni = DIV_ROUND_CLOSEST_ULL(rate, prate);
ni = clamp(ni, 1U, 256U);
}
if (readl(pll_clk->pllcr0_reg) & CPG_PLLxCR0_KICK)
return -EBUSY;
cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_NI8,
FIELD_PREP(CPG_PLLxCR0_NI8, ni - 1));
if (cr0 & CPG_PLLxCR0_SSMODE_FM)
cpg_reg_modify(pll_clk->pllcr1_reg, CPG_PLLxCR1_NF25,
FIELD_PREP(CPG_PLLxCR1_NF25, nf));
/*
* Set KICK bit in PLLxCR0 to update hardware setting and wait for
* clock change completion.
*/
cpg_reg_modify(pll_clk->pllcr0_reg, 0, CPG_PLLxCR0_KICK);
/*
* Note: There is no HW information about the worst case latency.
*
* Using experimental measurements, it seems that no more than
* ~45 µs are needed, independently of the CPU rate.
* Since this value might be dependent on external xtal rate, pll
* rate or even the other emulation clocks rate, use 1000 as a
* "super" safe value.
*/
return readl_poll_timeout(pll_clk->pllecr_reg, val,
val & pll_clk->pllecr_pllst_mask, 0, 1000);
}
static const struct clk_ops cpg_pll_f8_25_clk_ops = {
.recalc_rate = cpg_pll_8_25_clk_recalc_rate,
};
static const struct clk_ops cpg_pll_v8_25_clk_ops = {
.recalc_rate = cpg_pll_8_25_clk_recalc_rate,
.determine_rate = cpg_pll_8_25_clk_determine_rate,
.set_rate = cpg_pll_8_25_clk_set_rate,
};
static unsigned long cpg_pll_9_24_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
u32 cr0 = readl(pll_clk->pllcr0_reg);
unsigned int ni, nf;
unsigned long rate;
ni = FIELD_GET(CPG_PLLxCR0_NI9, cr0) + 1;
rate = parent_rate * ni;
if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
nf = FIELD_GET(CPG_PLLxCR1_NF24, readl(pll_clk->pllcr1_reg));
rate += mul_u64_u32_shr(parent_rate, nf, 24);
} else {
rate *= 2;
}
return rate;
}
static const struct clk_ops cpg_pll_f9_24_clk_ops = {
.recalc_rate = cpg_pll_9_24_clk_recalc_rate,
};
static struct clk * __init cpg_pll_clk_register(const char *name,
const char *parent_name,
void __iomem *base,
unsigned int index,
const struct clk_ops *ops)
{
static const struct { u16 cr0, cr1; } pll_cr_offsets[] __initconst = {
[1 - 1] = { CPG_PLL1CR0, CPG_PLL1CR1 },
[2 - 1] = { CPG_PLL2CR0, CPG_PLL2CR1 },
[3 - 1] = { CPG_PLL3CR0, CPG_PLL3CR1 },
[4 - 1] = { CPG_PLL4CR0, CPG_PLL4CR1 },
[6 - 1] = { CPG_PLL6CR0, CPG_PLL6CR1 },
};
struct clk_init_data init = {};
struct cpg_pll_clk *pll_clk;
struct clk *clk;
pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL);
if (!pll_clk)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = ops;
init.parent_names = &parent_name;
init.num_parents = 1;
pll_clk->hw.init = &init;
pll_clk->pllcr0_reg = base + pll_cr_offsets[index - 1].cr0;
pll_clk->pllcr1_reg = base + pll_cr_offsets[index - 1].cr1;
pll_clk->pllecr_reg = base + CPG_PLLECR;
pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index);
clk = clk_register(NULL, &pll_clk->hw);
if (IS_ERR(clk))
kfree(pll_clk);
return clk;
}
/*
* Z0 Clock & Z1 Clock
*/
#define CPG_FRQCRB 0x00000804
#define CPG_FRQCRB_KICK BIT(31)
#define CPG_FRQCRC0 0x00000808
#define CPG_FRQCRC1 0x000008e0
struct cpg_z_clk {
struct clk_hw hw;
void __iomem *reg;
void __iomem *kick_reg;
unsigned long max_rate; /* Maximum rate for normal mode */
unsigned int fixed_div;
u32 mask;
};
#define to_z_clk(_hw) container_of(_hw, struct cpg_z_clk, hw)
static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int mult;
u32 val;
val = readl(zclk->reg) & zclk->mask;
mult = 32 - (val >> __ffs(zclk->mask));
return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
32 * zclk->fixed_div);
}
static int cpg_z_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int min_mult, max_mult, mult;
unsigned long rate, prate;
rate = min(req->rate, req->max_rate);
if (rate <= zclk->max_rate) {
/* Set parent rate to initial value for normal modes */
prate = zclk->max_rate;
} else {
/* Set increased parent rate for boost modes */
prate = rate;
}
req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
prate * zclk->fixed_div);
prate = req->best_parent_rate / zclk->fixed_div;
min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
if (max_mult < min_mult)
return -EINVAL;
mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate);
mult = clamp(mult, min_mult, max_mult);
req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32);
return 0;
}
static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int mult;
unsigned int i;
mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
parent_rate);
mult = clamp(mult, 1U, 32U);
if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
return -EBUSY;
cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask));
/*
* Set KICK bit in FRQCRB to update hardware setting and wait for
* clock change completion.
*/
cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
/*
* Note: There is no HW information about the worst case latency.
*
* Using experimental measurements, it seems that no more than
* ~10 iterations are needed, independently of the CPU rate.
* Since this value might be dependent on external xtal rate, pll1
* rate or even the other emulation clocks rate, use 1000 as a
* "super" safe value.
*/
for (i = 1000; i; i--) {
if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
return 0;
cpu_relax();
}
return -ETIMEDOUT;
}
static const struct clk_ops cpg_z_clk_ops = {
.recalc_rate = cpg_z_clk_recalc_rate,
.determine_rate = cpg_z_clk_determine_rate,
.set_rate = cpg_z_clk_set_rate,
};
static struct clk * __init cpg_z_clk_register(const char *name,
const char *parent_name,
void __iomem *reg,
unsigned int div,
unsigned int offset)
{
struct clk_init_data init = {};
struct cpg_z_clk *zclk;
struct clk *clk;
zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
if (!zclk)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &cpg_z_clk_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = &parent_name;
init.num_parents = 1;
if (offset < 32) {
zclk->reg = reg + CPG_FRQCRC0;
} else {
zclk->reg = reg + CPG_FRQCRC1;
offset -= 32;
}
zclk->kick_reg = reg + CPG_FRQCRB;
zclk->hw.init = &init;
zclk->mask = GENMASK(offset + 4, offset);
zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
clk = clk_register(NULL, &zclk->hw);
if (IS_ERR(clk)) {
kfree(zclk);
return clk;
}
zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) /
zclk->fixed_div;
return clk;
}
/*
* RPC Clocks
*/
static const struct clk_div_table cpg_rpcsrc_div_table[] = {
{ 0, 4 }, { 1, 6 }, { 2, 5 }, { 3, 6 }, { 0, 0 },
};
struct clk * __init rcar_gen4_cpg_clk_register(struct device *dev,
const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
struct clk **clks, void __iomem *base,
struct raw_notifier_head *notifiers)
{
const struct clk *parent;
unsigned int mult = 1;
unsigned int div = 1;
u32 value;
parent = clks[core->parent & 0xffff]; /* some types use high bits */
if (IS_ERR(parent))
return ERR_CAST(parent);
switch (core->type) {
case CLK_TYPE_GEN4_MAIN:
div = cpg_pll_config->extal_div;
break;
case CLK_TYPE_GEN4_PLL1:
mult = cpg_pll_config->pll1_mult;
div = cpg_pll_config->pll1_div;
break;
case CLK_TYPE_GEN4_PLL5:
mult = cpg_pll_config->pll5_mult;
div = cpg_pll_config->pll5_div;
break;
case CLK_TYPE_GEN4_PLL2X_3X:
value = readl(base + core->offset);
mult = (FIELD_GET(CPG_PLLxCR_STC, value) + 1) * 2;
break;
case CLK_TYPE_GEN4_PLL_F8_25:
return cpg_pll_clk_register(core->name, __clk_get_name(parent),
base, core->offset,
&cpg_pll_f8_25_clk_ops);
case CLK_TYPE_GEN4_PLL_V8_25:
return cpg_pll_clk_register(core->name, __clk_get_name(parent),
base, core->offset,
&cpg_pll_v8_25_clk_ops);
case CLK_TYPE_GEN4_PLL_V9_24:
/* Variable fractional 9.24 is not yet supported, using fixed */
fallthrough;
case CLK_TYPE_GEN4_PLL_F9_24:
return cpg_pll_clk_register(core->name, __clk_get_name(parent),
base, core->offset,
&cpg_pll_f9_24_clk_ops);
case CLK_TYPE_GEN4_Z:
return cpg_z_clk_register(core->name, __clk_get_name(parent),
base, core->div, core->offset);
case CLK_TYPE_GEN4_SDSRC:
value = readl(base + CPG_SD0CKCR1);
div = FIELD_GET(CPG_SD0CKCR1_SDSRC_SEL, value) + 4;
break;
case CLK_TYPE_GEN4_SDH:
return cpg_sdh_clk_register(core->name, base + core->offset,
__clk_get_name(parent), notifiers);
case CLK_TYPE_GEN4_SD:
return cpg_sd_clk_register(core->name, base + core->offset,
__clk_get_name(parent));
case CLK_TYPE_GEN4_MDSEL:
/*
* Clock selectable between two parents and two fixed dividers
* using a mode pin
*/
if (cpg_mode & BIT(core->offset)) {
div = core->div & 0xffff;
} else {
parent = clks[core->parent >> 16];
if (IS_ERR(parent))
return ERR_CAST(parent);
div = core->div >> 16;
}
mult = 1;
break;
case CLK_TYPE_GEN4_OSC:
/*
* Clock combining OSC EXTAL predivider and a fixed divider
*/
div = cpg_pll_config->osc_prediv * core->div;
break;
case CLK_TYPE_GEN4_RPCSRC:
return clk_register_divider_table(NULL, core->name,
__clk_get_name(parent), 0,
base + CPG_RPCCKCR, 3, 2, 0,
cpg_rpcsrc_div_table,
&cpg_lock);
case CLK_TYPE_GEN4_RPC:
return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR,
__clk_get_name(parent), notifiers);
case CLK_TYPE_GEN4_RPCD2:
return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR,
__clk_get_name(parent));
default:
return ERR_PTR(-EINVAL);
}
return clk_register_fixed_factor(NULL, core->name,
__clk_get_name(parent), 0, mult, div);
}
int __init rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config *config,
unsigned int clk_extalr, u32 mode)
{
cpg_pll_config = config;
cpg_clk_extalr = clk_extalr;
cpg_mode = mode;
return 0;
}