linux/sound/soc/fsl/fsl_spdif.c

// SPDX-License-Identifier: GPL-2.0
//
// Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
//
// Copyright (C) 2013 Freescale Semiconductor, Inc.
//
// Based on stmp3xxx_spdif_dai.c
// Vladimir Barinov <[email protected]>
// Copyright 2008 SigmaTel, Inc
// Copyright 2008 Embedded Alley Solutions, Inc

#include <linux/bitrev.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/pm_runtime.h>

#include <sound/asoundef.h>
#include <sound/dmaengine_pcm.h>
#include <sound/soc.h>

#include "fsl_spdif.h"
#include "fsl_utils.h"
#include "imx-pcm.h"

#define FSL_SPDIF_TXFIFO_WML	0x8
#define FSL_SPDIF_RXFIFO_WML	0x8

#define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
#define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
				INT_LOSS_LOCK | INT_DPLL_LOCKED)

#define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)

/* Index list for the values that has if (DPLL Locked) condition */
static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
#define SRPC_NODPLL_START1	0x5
#define SRPC_NODPLL_START2	0xc

#define DEFAULT_RXCLK_SRC	1

#define RX_SAMPLE_RATE_KCONTROL "RX Sample Rate"

/**
 * struct fsl_spdif_soc_data: soc specific data
 *
 * @imx: for imx platform
 * @shared_root_clock: flag of sharing a clock source with others;
 *                     so the driver shouldn't set root clock rate
 * @raw_capture_mode: if raw capture mode support
 * @cchannel_192b: if there are registers for 192bits C channel data
 * @interrupts: interrupt number
 * @tx_burst: tx maxburst size
 * @rx_burst: rx maxburst size
 * @tx_formats: tx supported data format
 */
struct fsl_spdif_soc_data {
	bool imx;
	bool shared_root_clock;
	bool raw_capture_mode;
	bool cchannel_192b;
	u32 interrupts;
	u32 tx_burst;
	u32 rx_burst;
	u64 tx_formats;
};

/*
 * SPDIF control structure
 * Defines channel status, subcode and Q sub
 */
struct spdif_mixer_control {
	/* spinlock to access control data */
	spinlock_t ctl_lock;

	/* IEC958 channel tx status bit */
	unsigned char ch_status[4];

	/* User bits */
	unsigned char subcode[2 * SPDIF_UBITS_SIZE];

	/* Q subcode part of user bits */
	unsigned char qsub[2 * SPDIF_QSUB_SIZE];

	/* Buffer offset for U/Q */
	u32 upos;
	u32 qpos;

	/* Ready buffer index of the two buffers */
	u32 ready_buf;
};

/**
 * struct fsl_spdif_priv - Freescale SPDIF private data
 * @soc: SPDIF soc data
 * @fsl_spdif_control: SPDIF control data
 * @cpu_dai_drv: cpu dai driver
 * @snd_card: sound card pointer
 * @rxrate_kcontrol: kcontrol for RX Sample Rate
 * @pdev: platform device pointer
 * @regmap: regmap handler
 * @dpll_locked: dpll lock flag
 * @txrate: the best rates for playback
 * @txclk_df: STC_TXCLK_DF dividers value for playback
 * @sysclk_df: STC_SYSCLK_DF dividers value for playback
 * @txclk_src: STC_TXCLK_SRC values for playback
 * @rxclk_src: SRPC_CLKSRC_SEL values for capture
 * @txclk: tx clock sources for playback
 * @rxclk: rx clock sources for capture
 * @coreclk: core clock for register access via DMA
 * @sysclk: system clock for rx clock rate measurement
 * @spbaclk: SPBA clock (optional, depending on SoC design)
 * @dma_params_tx: DMA parameters for transmit channel
 * @dma_params_rx: DMA parameters for receive channel
 * @regcache_srpc: regcache for SRPC
 * @bypass: status of bypass input to output
 * @pll8k_clk: PLL clock for the rate of multiply of 8kHz
 * @pll11k_clk: PLL clock for the rate of multiply of 11kHz
 */
struct fsl_spdif_priv {
	const struct fsl_spdif_soc_data *soc;
	struct spdif_mixer_control fsl_spdif_control;
	struct snd_soc_dai_driver cpu_dai_drv;
	struct snd_card *snd_card;
	struct snd_kcontrol *rxrate_kcontrol;
	struct platform_device *pdev;
	struct regmap *regmap;
	bool dpll_locked;
	u32 txrate[SPDIF_TXRATE_MAX];
	u8 txclk_df[SPDIF_TXRATE_MAX];
	u16 sysclk_df[SPDIF_TXRATE_MAX];
	u8 txclk_src[SPDIF_TXRATE_MAX];
	u8 rxclk_src;
	struct clk *txclk[STC_TXCLK_SRC_MAX];
	struct clk *rxclk;
	struct clk *coreclk;
	struct clk *sysclk;
	struct clk *spbaclk;
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	/* regcache for SRPC */
	u32 regcache_srpc;
	bool bypass;
	struct clk *pll8k_clk;
	struct clk *pll11k_clk;
};

static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
	.imx = false,
	.shared_root_clock = false,
	.raw_capture_mode = false,
	.interrupts = 1,
	.tx_burst = FSL_SPDIF_TXFIFO_WML,
	.rx_burst = FSL_SPDIF_RXFIFO_WML,
	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
};

static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
	.imx = true,
	.shared_root_clock = false,
	.raw_capture_mode = false,
	.interrupts = 1,
	.tx_burst = FSL_SPDIF_TXFIFO_WML,
	.rx_burst = FSL_SPDIF_RXFIFO_WML,
	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
};

static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
	.imx = true,
	.shared_root_clock = true,
	.raw_capture_mode = false,
	.interrupts = 1,
	.tx_burst = FSL_SPDIF_TXFIFO_WML,
	.rx_burst = FSL_SPDIF_RXFIFO_WML,
	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,

};

static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
	.imx = true,
	.shared_root_clock = true,
	.raw_capture_mode = false,
	.interrupts = 2,
	.tx_burst = 2,		/* Applied for EDMA */
	.rx_burst = 2,		/* Applied for EDMA */
	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,  /* Applied for EDMA */
};

static struct fsl_spdif_soc_data fsl_spdif_imx8mm = {
	.imx = true,
	.shared_root_clock = false,
	.raw_capture_mode = true,
	.interrupts = 1,
	.tx_burst = FSL_SPDIF_TXFIFO_WML,
	.rx_burst = FSL_SPDIF_RXFIFO_WML,
	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
};

static struct fsl_spdif_soc_data fsl_spdif_imx8ulp = {
	.imx = true,
	.shared_root_clock = true,
	.raw_capture_mode = false,
	.interrupts = 1,
	.tx_burst = 2,		/* Applied for EDMA */
	.rx_burst = 2,		/* Applied for EDMA */
	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,	/* Applied for EDMA */
	.cchannel_192b = true,
};

/* Check if clk is a root clock that does not share clock source with others */
static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
{
	return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
}

/* DPLL locked and lock loss interrupt handler */
static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 locked;

	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
	locked &= SRPC_DPLL_LOCKED;

	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
			locked ? "locked" : "loss lock");

	spdif_priv->dpll_locked = locked ? true : false;

	if (spdif_priv->snd_card && spdif_priv->rxrate_kcontrol) {
		snd_ctl_notify(spdif_priv->snd_card,
			       SNDRV_CTL_EVENT_MASK_VALUE,
			       &spdif_priv->rxrate_kcontrol->id);
	}
}

/* Receiver found illegal symbol interrupt handler */
static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;

	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");

	/* Clear illegal symbol if DPLL unlocked since no audio stream */
	if (!spdif_priv->dpll_locked)
		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
}

/* U/Q Channel receive register full */
static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 *pos, size, val, reg;

	switch (name) {
	case 'U':
		pos = &ctrl->upos;
		size = SPDIF_UBITS_SIZE;
		reg = REG_SPDIF_SRU;
		break;
	case 'Q':
		pos = &ctrl->qpos;
		size = SPDIF_QSUB_SIZE;
		reg = REG_SPDIF_SRQ;
		break;
	default:
		dev_err(&pdev->dev, "unsupported channel name\n");
		return;
	}

	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);

	if (*pos >= size * 2) {
		*pos = 0;
	} else if (unlikely((*pos % size) + 3 > size)) {
		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
		return;
	}

	regmap_read(regmap, reg, &val);
	ctrl->subcode[*pos++] = val >> 16;
	ctrl->subcode[*pos++] = val >> 8;
	ctrl->subcode[*pos++] = val;
}

/* U/Q Channel sync found */
static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct platform_device *pdev = spdif_priv->pdev;

	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");

	/* U/Q buffer reset */
	if (ctrl->qpos == 0)
		return;

	/* Set ready to this buffer */
	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
}

/* U/Q Channel framing error */
static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 val;

	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");

	/* Read U/Q data to clear the irq and do buffer reset */
	regmap_read(regmap, REG_SPDIF_SRU, &val);
	regmap_read(regmap, REG_SPDIF_SRQ, &val);

	/* Drop this U/Q buffer */
	ctrl->ready_buf = 0;
	ctrl->upos = 0;
	ctrl->qpos = 0;
}

/* Get spdif interrupt status and clear the interrupt */
static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	u32 val, val2;

	regmap_read(regmap, REG_SPDIF_SIS, &val);
	regmap_read(regmap, REG_SPDIF_SIE, &val2);

	regmap_write(regmap, REG_SPDIF_SIC, val & val2);

	return val;
}

static irqreturn_t spdif_isr(int irq, void *devid)
{
	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 sis;

	sis = spdif_intr_status_clear(spdif_priv);

	if (sis & INT_DPLL_LOCKED)
		spdif_irq_dpll_lock(spdif_priv);

	if (sis & INT_TXFIFO_UNOV)
		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");

	if (sis & INT_TXFIFO_RESYNC)
		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");

	if (sis & INT_CNEW)
		dev_dbg(&pdev->dev, "isr: cstatus new\n");

	if (sis & INT_VAL_NOGOOD)
		dev_dbg(&pdev->dev, "isr: validity flag no good\n");

	if (sis & INT_SYM_ERR)
		spdif_irq_sym_error(spdif_priv);

	if (sis & INT_BIT_ERR)
		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");

	if (sis & INT_URX_FUL)
		spdif_irq_uqrx_full(spdif_priv, 'U');

	if (sis & INT_URX_OV)
		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");

	if (sis & INT_QRX_FUL)
		spdif_irq_uqrx_full(spdif_priv, 'Q');

	if (sis & INT_QRX_OV)
		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");

	if (sis & INT_UQ_SYNC)
		spdif_irq_uq_sync(spdif_priv);

	if (sis & INT_UQ_ERR)
		spdif_irq_uq_err(spdif_priv);

	if (sis & INT_RXFIFO_UNOV)
		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");

	if (sis & INT_RXFIFO_RESYNC)
		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");

	if (sis & INT_LOSS_LOCK)
		spdif_irq_dpll_lock(spdif_priv);

	/* FIXME: Write Tx FIFO to clear TxEm */
	if (sis & INT_TX_EM)
		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");

	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
	if (sis & INT_RXFIFO_FUL)
		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");

	return IRQ_HANDLED;
}

static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	u32 val, cycle = 1000;

	regcache_cache_bypass(regmap, true);

	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);

	/*
	 * RESET bit would be cleared after finishing its reset procedure,
	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
	 */
	do {
		regmap_read(regmap, REG_SPDIF_SCR, &val);
	} while ((val & SCR_SOFT_RESET) && cycle--);

	regcache_cache_bypass(regmap, false);
	regcache_mark_dirty(regmap);
	regcache_sync(regmap);

	if (cycle)
		return 0;
	else
		return -EBUSY;
}

static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
				u8 mask, u8 cstatus)
{
	ctrl->ch_status[3] &= ~mask;
	ctrl->ch_status[3] |= cstatus & mask;
}

static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 ch_status;

	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
		    (bitrev8(ctrl->ch_status[1]) << 8) |
		    bitrev8(ctrl->ch_status[2]);
	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);

	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);

	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);

	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);

	if (spdif_priv->soc->cchannel_192b) {
		ch_status = (bitrev8(ctrl->ch_status[0]) << 24) |
			    (bitrev8(ctrl->ch_status[1]) << 16) |
			    (bitrev8(ctrl->ch_status[2]) << 8) |
			    bitrev8(ctrl->ch_status[3]);

		regmap_update_bits(regmap, REG_SPDIF_SCR, 0x1000000, 0x1000000);

		/*
		 * The first 32bit should be in REG_SPDIF_STCCA_31_0 register,
		 * but here we need to set REG_SPDIF_STCCA_191_160 on 8ULP
		 * then can get correct result with HDMI analyzer capture.
		 * There is a hardware bug here.
		 */
		regmap_write(regmap, REG_SPDIF_STCCA_191_160, ch_status);
	}
}

/* Set SPDIF PhaseConfig register for rx clock */
static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
				enum spdif_gainsel gainsel, int dpll_locked)
{
	struct regmap *regmap = spdif_priv->regmap;
	u8 clksrc = spdif_priv->rxclk_src;

	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
		return -EINVAL;

	regmap_update_bits(regmap, REG_SPDIF_SRPC,
			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));

	return 0;
}

static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index);

static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
				int sample_rate)
{
	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	unsigned long csfs = 0;
	u32 stc, mask, rate;
	u16 sysclk_df;
	u8 clk, txclk_df;
	int ret;

	switch (sample_rate) {
	case 22050:
		rate = SPDIF_TXRATE_22050;
		csfs = IEC958_AES3_CON_FS_22050;
		break;
	case 32000:
		rate = SPDIF_TXRATE_32000;
		csfs = IEC958_AES3_CON_FS_32000;
		break;
	case 44100:
		rate = SPDIF_TXRATE_44100;
		csfs = IEC958_AES3_CON_FS_44100;
		break;
	case 48000:
		rate = SPDIF_TXRATE_48000;
		csfs = IEC958_AES3_CON_FS_48000;
		break;
	case 88200:
		rate = SPDIF_TXRATE_88200;
		csfs = IEC958_AES3_CON_FS_88200;
		break;
	case 96000:
		rate = SPDIF_TXRATE_96000;
		csfs = IEC958_AES3_CON_FS_96000;
		break;
	case 176400:
		rate = SPDIF_TXRATE_176400;
		csfs = IEC958_AES3_CON_FS_176400;
		break;
	case 192000:
		rate = SPDIF_TXRATE_192000;
		csfs = IEC958_AES3_CON_FS_192000;
		break;
	default:
		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
		return -EINVAL;
	}

	ret = fsl_spdif_probe_txclk(spdif_priv, rate);
	if (ret)
		return ret;

	clk = spdif_priv->txclk_src[rate];
	if (clk >= STC_TXCLK_SRC_MAX) {
		dev_err(&pdev->dev, "tx clock source is out of range\n");
		return -EINVAL;
	}

	txclk_df = spdif_priv->txclk_df[rate];
	if (txclk_df == 0) {
		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
		return -EINVAL;
	}

	sysclk_df = spdif_priv->sysclk_df[rate];

	if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
		goto clk_set_bypass;

	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
	ret = clk_set_rate(spdif_priv->txclk[clk],
			   64 * sample_rate * txclk_df);
	if (ret) {
		dev_err(&pdev->dev, "failed to set tx clock rate\n");
		return ret;
	}

clk_set_bypass:
	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
			(64 * sample_rate * txclk_df * sysclk_df));
	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
			clk_get_rate(spdif_priv->txclk[clk]));

	/* set fs field in consumer channel status */
	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);

	/* select clock source and divisor */
	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);

	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
			spdif_priv->txrate[rate], sample_rate);

	return 0;
}

static int fsl_spdif_startup(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *cpu_dai)
{
	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
	struct platform_device *pdev = spdif_priv->pdev;
	struct regmap *regmap = spdif_priv->regmap;
	u32 scr, mask;
	int ret;

	/* Reset module and interrupts only for first initialization */
	if (!snd_soc_dai_active(cpu_dai)) {
		ret = spdif_softreset(spdif_priv);
		if (ret) {
			dev_err(&pdev->dev, "failed to soft reset\n");
			return ret;
		}

		/* Disable all the interrupts */
		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
			SCR_TXFIFO_FSEL_IF8;
		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
			SCR_TXFIFO_FSEL_MASK;
	} else {
		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
	}
	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);

	/* Power up SPDIF module */
	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);

	return 0;
}

static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
				struct snd_soc_dai *cpu_dai)
{
	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
	struct regmap *regmap = spdif_priv->regmap;
	u32 scr, mask;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		scr = 0;
		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
			SCR_TXFIFO_FSEL_MASK;
		/* Disable TX clock */
		regmap_update_bits(regmap, REG_SPDIF_STC, STC_TXCLK_ALL_EN_MASK, 0);
	} else {
		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
	}
	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);

	/* Power down SPDIF module only if tx&rx are both inactive */
	if (!snd_soc_dai_active(cpu_dai)) {
		spdif_intr_status_clear(spdif_priv);
		regmap_update_bits(regmap, REG_SPDIF_SCR,
				SCR_LOW_POWER, SCR_LOW_POWER);
	}
}

static int spdif_reparent_rootclk(struct fsl_spdif_priv *spdif_priv, unsigned int sample_rate)
{
	struct platform_device *pdev = spdif_priv->pdev;
	struct clk *clk;
	int ret;

	/* Reparent clock if required condition is true */
	if (!fsl_spdif_can_set_clk_rate(spdif_priv, STC_TXCLK_SPDIF_ROOT))
		return 0;

	/* Get root clock */
	clk = spdif_priv->txclk[STC_TXCLK_SPDIF_ROOT];

	/* Disable clock first, for it was enabled by pm_runtime */
	clk_disable_unprepare(clk);
	fsl_asoc_reparent_pll_clocks(&pdev->dev, clk, spdif_priv->pll8k_clk,
				     spdif_priv->pll11k_clk, sample_rate);
	ret = clk_prepare_enable(clk);
	if (ret)
		return ret;

	return 0;
}
static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
				struct snd_pcm_hw_params *params,
				struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 sample_rate = params_rate(params);
	int ret = 0;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		ret = spdif_reparent_rootclk(spdif_priv, sample_rate);
		if (ret) {
			dev_err(&pdev->dev, "%s: reparent root clk failed: %d\n",
				__func__, sample_rate);
			return ret;
		}

		ret  = spdif_set_sample_rate(substream, sample_rate);
		if (ret) {
			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
					__func__, sample_rate);
			return ret;
		}
		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
				  IEC958_AES3_CON_CLOCK_1000PPM);
		spdif_write_channel_status(spdif_priv);
	} else {
		/* Setup rx clock source */
		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
	}

	return ret;
}

static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
				int cmd, struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
	struct regmap *regmap = spdif_priv->regmap;
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	u32 intr = SIE_INTR_FOR(tx);
	u32 dmaen = SCR_DMA_xX_EN(tx);

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
		regmap_write(regmap, REG_SPDIF_STL, 0x0);
		regmap_write(regmap, REG_SPDIF_STR, 0x0);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/*
 * FSL SPDIF IEC958 controller(mixer) functions
 *
 *	Channel status get/put control
 *	User bit value get/put control
 *	Valid bit value get control
 *	DPLL lock status get control
 *	User bit sync mode selection control
 */

static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;

	return 0;
}

static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *uvalue)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;

	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
	uvalue->value.iec958.status[3] = ctrl->ch_status[3];

	return 0;
}

static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *uvalue)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;

	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
	ctrl->ch_status[3] = uvalue->value.iec958.status[3];

	spdif_write_channel_status(spdif_priv);

	return 0;
}

/* Get channel status from SPDIF_RX_CCHAN register */
static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 cstatus, val;

	regmap_read(regmap, REG_SPDIF_SIS, &val);
	if (!(val & INT_CNEW))
		return -EAGAIN;

	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
	ucontrol->value.iec958.status[2] = cstatus & 0xFF;

	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
	ucontrol->value.iec958.status[5] = cstatus & 0xFF;

	/* Clear intr */
	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);

	return 0;
}

/*
 * Get User bits (subcode) from chip value which readed out
 * in UChannel register.
 */
static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	unsigned long flags;
	int ret = -EAGAIN;

	spin_lock_irqsave(&ctrl->ctl_lock, flags);
	if (ctrl->ready_buf) {
		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
		memcpy(&ucontrol->value.iec958.subcode[0],
				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
		ret = 0;
	}
	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);

	return ret;
}

/* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
	uinfo->count = SPDIF_QSUB_SIZE;

	return 0;
}

/* Get Q subcode from chip value which readed out in QChannel register */
static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	unsigned long flags;
	int ret = -EAGAIN;

	spin_lock_irqsave(&ctrl->ctl_lock, flags);
	if (ctrl->ready_buf) {
		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
		memcpy(&ucontrol->value.bytes.data[0],
				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
		ret = 0;
	}
	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);

	return ret;
}

/* Get valid good bit from interrupt status register */
static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val;

	regmap_read(regmap, REG_SPDIF_SIS, &val);
	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);

	return 0;
}

static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val;

	regmap_read(regmap, REG_SPDIF_SCR, &val);
	val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
	val = 1 - val;
	ucontrol->value.integer.value[0] = val;

	return 0;
}

static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;

	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);

	return 0;
}

static int fsl_spdif_rx_rcm_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val;

	regmap_read(regmap, REG_SPDIF_SCR, &val);
	val = (val & SCR_RAW_CAPTURE_MODE) ? 1 : 0;
	ucontrol->value.integer.value[0] = val;

	return 0;
}

static int fsl_spdif_rx_rcm_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val = (ucontrol->value.integer.value[0] ? SCR_RAW_CAPTURE_MODE : 0);

	if (val)
		cpu_dai->driver->capture.formats |= SNDRV_PCM_FMTBIT_S32_LE;
	else
		cpu_dai->driver->capture.formats &= ~SNDRV_PCM_FMTBIT_S32_LE;

	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_RAW_CAPTURE_MODE, val);

	return 0;
}

static int fsl_spdif_bypass_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);

	ucontrol->value.integer.value[0] = priv->bypass ? 1 : 0;

	return 0;
}

static int fsl_spdif_bypass_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
	struct snd_soc_card *card = dai->component->card;
	bool set = (ucontrol->value.integer.value[0] != 0);
	struct regmap *regmap = priv->regmap;
	struct snd_soc_pcm_runtime *rtd;
	u32 scr, mask;
	int stream;

	rtd = snd_soc_get_pcm_runtime(card, card->dai_link);

	if (priv->bypass == set)
		return 0; /* nothing to do */

	if (snd_soc_dai_active(dai)) {
		dev_err(dai->dev, "Cannot change BYPASS mode while stream is running.\n");
		return -EBUSY;
	}

	pm_runtime_get_sync(dai->dev);

	if (set) {
		/* Disable interrupts */
		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);

		/* Configure BYPASS mode */
		scr = SCR_TXSEL_RX | SCR_RXFIFO_OFF;
		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK |
			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK | SCR_TXSEL_MASK;
		/* Power up SPDIF module */
		mask |= SCR_LOW_POWER;
	} else {
		/* Power down SPDIF module, disable TX */
		scr = SCR_LOW_POWER | SCR_TXSEL_OFF;
		mask = SCR_LOW_POWER | SCR_TXSEL_MASK;
	}

	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);

	/* Disable playback & capture if BYPASS mode is enabled, enable otherwise */
	for_each_pcm_streams(stream)
		rtd->pcm->streams[stream].substream_count = (set ? 0 : 1);

	priv->bypass = set;
	pm_runtime_put_sync(dai->dev);

	return 0;
}

/* DPLL lock information */
static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 16000;
	uinfo->value.integer.max = 192000;

	return 0;
}

static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
	24, 16, 12, 8, 6, 4, 3,
};

/* Get RX data clock rate given the SPDIF bus_clk */
static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
				enum spdif_gainsel gainsel)
{
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u64 tmpval64, busclk_freq = 0;
	u32 freqmeas, phaseconf;
	u8 clksrc;

	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);

	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;

	/* Get bus clock from system */
	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
		busclk_freq = clk_get_rate(spdif_priv->sysclk);

	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
	tmpval64 = (u64) busclk_freq * freqmeas;
	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
	do_div(tmpval64, 128 * 1024);

	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);

	return (int)tmpval64;
}

/*
 * Get DPLL lock or not info from stable interrupt status register.
 * User application must use this control to get locked,
 * then can do next PCM operation
 */
static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	int rate = 0;

	if (spdif_priv->dpll_locked)
		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);

	ucontrol->value.integer.value[0] = rate;

	return 0;
}

/*
 * User bit sync mode:
 * 1 CD User channel subcode
 * 0 Non-CD data
 */
static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val;

	regmap_read(regmap, REG_SPDIF_SRCD, &val);
	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;

	return 0;
}

/*
 * User bit sync mode:
 * 1 CD User channel subcode
 * 0 Non-CD data
 */
static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;

	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);

	return 0;
}

/* FSL SPDIF IEC958 controller defines */
static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
	/* Status cchanel controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_WRITE |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_info,
		.get = fsl_spdif_pb_get,
		.put = fsl_spdif_pb_put,
	},
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_info,
		.get = fsl_spdif_capture_get,
	},
	/* User bits controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 Subcode Capture Default",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_info,
		.get = fsl_spdif_subcode_get,
	},
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 Q-subcode Capture Default",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_qinfo,
		.get = fsl_spdif_qget,
	},
	/* Valid bit error controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 RX V-Bit Errors",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = snd_ctl_boolean_mono_info,
		.get = fsl_spdif_rx_vbit_get,
	},
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 TX V-Bit",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_WRITE |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = snd_ctl_boolean_mono_info,
		.get = fsl_spdif_tx_vbit_get,
		.put = fsl_spdif_tx_vbit_put,
	},
	/* DPLL lock info get controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = RX_SAMPLE_RATE_KCONTROL,
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_rxrate_info,
		.get = fsl_spdif_rxrate_get,
	},
	/* RX bypass controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "Bypass Mode",
		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
		.info = snd_ctl_boolean_mono_info,
		.get = fsl_spdif_bypass_get,
		.put = fsl_spdif_bypass_put,
	},
	/* User bit sync mode set/get controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 USyncMode CDText",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_WRITE |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = snd_ctl_boolean_mono_info,
		.get = fsl_spdif_usync_get,
		.put = fsl_spdif_usync_put,
	},
};

static struct snd_kcontrol_new fsl_spdif_ctrls_rcm[] = {
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 Raw Capture Mode",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_WRITE |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = snd_ctl_boolean_mono_info,
		.get = fsl_spdif_rx_rcm_get,
		.put = fsl_spdif_rx_rcm_put,
	},
};

static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);

	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
				  &spdif_private->dma_params_rx);

	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));

	if (spdif_private->soc->raw_capture_mode)
		snd_soc_add_dai_controls(dai, fsl_spdif_ctrls_rcm,
					 ARRAY_SIZE(fsl_spdif_ctrls_rcm));

	spdif_private->snd_card = dai->component->card->snd_card;
	spdif_private->rxrate_kcontrol = snd_soc_card_get_kcontrol(dai->component->card,
								   RX_SAMPLE_RATE_KCONTROL);
	if (!spdif_private->rxrate_kcontrol)
		dev_err(&spdif_private->pdev->dev, "failed to get %s kcontrol\n",
			RX_SAMPLE_RATE_KCONTROL);

	/*Clear the val bit for Tx*/
	regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
			   SCR_VAL_MASK, SCR_VAL_CLEAR);

	return 0;
}

static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
	.probe		= fsl_spdif_dai_probe,
	.startup	= fsl_spdif_startup,
	.hw_params	= fsl_spdif_hw_params,
	.trigger	= fsl_spdif_trigger,
	.shutdown	= fsl_spdif_shutdown,
};

static struct snd_soc_dai_driver fsl_spdif_dai = {
	.playback = {
		.stream_name = "CPU-Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSL_SPDIF_RATES_PLAYBACK,
		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
	},
	.capture = {
		.stream_name = "CPU-Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSL_SPDIF_RATES_CAPTURE,
		.formats = FSL_SPDIF_FORMATS_CAPTURE,
	},
	.ops = &fsl_spdif_dai_ops,
};

static const struct snd_soc_component_driver fsl_spdif_component = {
	.name			= "fsl-spdif",
	.legacy_dai_naming	= 1,
};

/* FSL SPDIF REGMAP */
static const struct reg_default fsl_spdif_reg_defaults[] = {
	{REG_SPDIF_SCR,    0x00000400},
	{REG_SPDIF_SRCD,   0x00000000},
	{REG_SPDIF_SIE,	   0x00000000},
	{REG_SPDIF_STL,	   0x00000000},
	{REG_SPDIF_STR,	   0x00000000},
	{REG_SPDIF_STCSCH, 0x00000000},
	{REG_SPDIF_STCSCL, 0x00000000},
	{REG_SPDIF_STCSPH, 0x00000000},
	{REG_SPDIF_STCSPL, 0x00000000},
	{REG_SPDIF_STC,	   0x00020f00},
};

static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_SPDIF_SCR:
	case REG_SPDIF_SRCD:
	case REG_SPDIF_SRPC:
	case REG_SPDIF_SIE:
	case REG_SPDIF_SIS:
	case REG_SPDIF_SRL:
	case REG_SPDIF_SRR:
	case REG_SPDIF_SRCSH:
	case REG_SPDIF_SRCSL:
	case REG_SPDIF_SRU:
	case REG_SPDIF_SRQ:
	case REG_SPDIF_STCSCH:
	case REG_SPDIF_STCSCL:
	case REG_SPDIF_STCSPH:
	case REG_SPDIF_STCSPL:
	case REG_SPDIF_SRFM:
	case REG_SPDIF_STC:
	case REG_SPDIF_SRCCA_31_0:
	case REG_SPDIF_SRCCA_63_32:
	case REG_SPDIF_SRCCA_95_64:
	case REG_SPDIF_SRCCA_127_96:
	case REG_SPDIF_SRCCA_159_128:
	case REG_SPDIF_SRCCA_191_160:
	case REG_SPDIF_STCCA_31_0:
	case REG_SPDIF_STCCA_63_32:
	case REG_SPDIF_STCCA_95_64:
	case REG_SPDIF_STCCA_127_96:
	case REG_SPDIF_STCCA_159_128:
	case REG_SPDIF_STCCA_191_160:
		return true;
	default:
		return false;
	}
}

static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_SPDIF_SRPC:
	case REG_SPDIF_SIS:
	case REG_SPDIF_SRL:
	case REG_SPDIF_SRR:
	case REG_SPDIF_SRCSH:
	case REG_SPDIF_SRCSL:
	case REG_SPDIF_SRU:
	case REG_SPDIF_SRQ:
	case REG_SPDIF_SRFM:
	case REG_SPDIF_SRCCA_31_0:
	case REG_SPDIF_SRCCA_63_32:
	case REG_SPDIF_SRCCA_95_64:
	case REG_SPDIF_SRCCA_127_96:
	case REG_SPDIF_SRCCA_159_128:
	case REG_SPDIF_SRCCA_191_160:
		return true;
	default:
		return false;
	}
}

static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_SPDIF_SCR:
	case REG_SPDIF_SRCD:
	case REG_SPDIF_SRPC:
	case REG_SPDIF_SIE:
	case REG_SPDIF_SIC:
	case REG_SPDIF_STL:
	case REG_SPDIF_STR:
	case REG_SPDIF_STCSCH:
	case REG_SPDIF_STCSCL:
	case REG_SPDIF_STCSPH:
	case REG_SPDIF_STCSPL:
	case REG_SPDIF_STC:
	case REG_SPDIF_STCCA_31_0:
	case REG_SPDIF_STCCA_63_32:
	case REG_SPDIF_STCCA_95_64:
	case REG_SPDIF_STCCA_127_96:
	case REG_SPDIF_STCCA_159_128:
	case REG_SPDIF_STCCA_191_160:
		return true;
	default:
		return false;
	}
}

static const struct regmap_config fsl_spdif_regmap_config = {
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = REG_SPDIF_STCCA_191_160,
	.reg_defaults = fsl_spdif_reg_defaults,
	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
	.readable_reg = fsl_spdif_readable_reg,
	.volatile_reg = fsl_spdif_volatile_reg,
	.writeable_reg = fsl_spdif_writeable_reg,
	.cache_type = REGCACHE_FLAT,
};

static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
				struct clk *clk, u64 savesub,
				enum spdif_txrate index, bool round)
{
	static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400,
				    192000, };
	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
	u64 rate_ideal, rate_actual, sub;
	u32 arate;
	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
	u8 txclk_df;

	/* The sysclk has an extra divisor [2, 512] */
	sysclk_dfmin = is_sysclk ? 2 : 1;
	sysclk_dfmax = is_sysclk ? 512 : 1;

	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
			rate_ideal = rate[index] * txclk_df * 64ULL;
			if (round)
				rate_actual = clk_round_rate(clk, rate_ideal);
			else
				rate_actual = clk_get_rate(clk);

			arate = rate_actual / 64;
			arate /= txclk_df * sysclk_df;

			if (arate == rate[index]) {
				/* We are lucky */
				savesub = 0;
				spdif_priv->txclk_df[index] = txclk_df;
				spdif_priv->sysclk_df[index] = sysclk_df;
				spdif_priv->txrate[index] = arate;
				goto out;
			} else if (arate / rate[index] == 1) {
				/* A little bigger than expect */
				sub = (u64)(arate - rate[index]) * 100000;
				do_div(sub, rate[index]);
				if (sub >= savesub)
					continue;
				savesub = sub;
				spdif_priv->txclk_df[index] = txclk_df;
				spdif_priv->sysclk_df[index] = sysclk_df;
				spdif_priv->txrate[index] = arate;
			} else if (rate[index] / arate == 1) {
				/* A little smaller than expect */
				sub = (u64)(rate[index] - arate) * 100000;
				do_div(sub, rate[index]);
				if (sub >= savesub)
					continue;
				savesub = sub;
				spdif_priv->txclk_df[index] = txclk_df;
				spdif_priv->sysclk_df[index] = sysclk_df;
				spdif_priv->txrate[index] = arate;
			}
		}
	}

out:
	return savesub;
}

static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
				enum spdif_txrate index)
{
	static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400,
				    192000, };
	struct platform_device *pdev = spdif_priv->pdev;
	struct device *dev = &pdev->dev;
	u64 savesub = 100000, ret;
	struct clk *clk;
	int i;

	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
		clk = spdif_priv->txclk[i];
		if (IS_ERR(clk)) {
			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
			return PTR_ERR(clk);
		}
		if (!clk_get_rate(clk))
			continue;

		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
					     fsl_spdif_can_set_clk_rate(spdif_priv, i));
		if (savesub == ret)
			continue;

		savesub = ret;
		spdif_priv->txclk_src[index] = i;

		/* To quick catch a divisor, we allow a 0.1% deviation */
		if (savesub < 100)
			break;
	}

	dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
			spdif_priv->txclk_src[index], rate[index]);
	dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
			spdif_priv->txclk_df[index], rate[index]);
	if (clk_is_match(spdif_priv->txclk[spdif_priv->txclk_src[index]], spdif_priv->sysclk))
		dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
				spdif_priv->sysclk_df[index], rate[index]);
	dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
			rate[index], spdif_priv->txrate[index]);

	return 0;
}

static int fsl_spdif_probe(struct platform_device *pdev)
{
	struct fsl_spdif_priv *spdif_priv;
	struct spdif_mixer_control *ctrl;
	struct resource *res;
	void __iomem *regs;
	int irq, ret, i;
	char tmp[16];

	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
	if (!spdif_priv)
		return -ENOMEM;

	spdif_priv->pdev = pdev;

	spdif_priv->soc = of_device_get_match_data(&pdev->dev);

	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
	spdif_priv->cpu_dai_drv.playback.formats =
				spdif_priv->soc->tx_formats;

	/* Get the addresses and IRQ */
	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
	if (IS_ERR(regs))
		return PTR_ERR(regs);

	spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config);
	if (IS_ERR(spdif_priv->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(spdif_priv->regmap);
	}

	for (i = 0; i < spdif_priv->soc->interrupts; i++) {
		irq = platform_get_irq(pdev, i);
		if (irq < 0)
			return irq;

		ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
				       dev_name(&pdev->dev), spdif_priv);
		if (ret) {
			dev_err(&pdev->dev, "could not claim irq %u\n", irq);
			return ret;
		}
	}

	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
		sprintf(tmp, "rxtx%d", i);
		spdif_priv->txclk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(spdif_priv->txclk[i])) {
			dev_err(&pdev->dev, "no rxtx%d clock in devicetree\n", i);
			return PTR_ERR(spdif_priv->txclk[i]);
		}
	}

	/* Get system clock for rx clock rate calculation */
	spdif_priv->sysclk = spdif_priv->txclk[5];
	if (IS_ERR(spdif_priv->sysclk)) {
		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
		return PTR_ERR(spdif_priv->sysclk);
	}

	/* Get core clock for data register access via DMA */
	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(spdif_priv->coreclk)) {
		dev_err(&pdev->dev, "no core clock in devicetree\n");
		return PTR_ERR(spdif_priv->coreclk);
	}

	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
	if (IS_ERR(spdif_priv->spbaclk))
		dev_warn(&pdev->dev, "no spba clock in devicetree\n");

	/* Select clock source for rx/tx clock */
	spdif_priv->rxclk = spdif_priv->txclk[1];
	if (IS_ERR(spdif_priv->rxclk)) {
		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
		return PTR_ERR(spdif_priv->rxclk);
	}
	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;

	fsl_asoc_get_pll_clocks(&pdev->dev, &spdif_priv->pll8k_clk,
				&spdif_priv->pll11k_clk);

	/* Initial spinlock for control data */
	ctrl = &spdif_priv->fsl_spdif_control;
	spin_lock_init(&ctrl->ctl_lock);

	/* Init tx channel status default value */
	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
			     IEC958_AES0_CON_EMPHASIS_5015;
	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
	ctrl->ch_status[2] = 0x00;
	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
			     IEC958_AES3_CON_CLOCK_1000PPM;

	spdif_priv->dpll_locked = false;

	spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
	spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;

	/* Register with ASoC */
	dev_set_drvdata(&pdev->dev, spdif_priv);
	pm_runtime_enable(&pdev->dev);
	regcache_cache_only(spdif_priv->regmap, true);

	/*
	 * Register platform component before registering cpu dai for there
	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
	 */
	ret = imx_pcm_dma_init(pdev);
	if (ret) {
		dev_err_probe(&pdev->dev, ret, "imx_pcm_dma_init failed\n");
		goto err_pm_disable;
	}

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
					      &spdif_priv->cpu_dai_drv, 1);
	if (ret) {
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
		goto err_pm_disable;
	}

	return ret;

err_pm_disable:
	pm_runtime_disable(&pdev->dev);
	return ret;
}

static void fsl_spdif_remove(struct platform_device *pdev)
{
	pm_runtime_disable(&pdev->dev);
}

static int fsl_spdif_runtime_suspend(struct device *dev)
{
	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
	int i;

	/* Disable all the interrupts */
	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SIE, 0xffffff, 0);

	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
			&spdif_priv->regcache_srpc);
	regcache_cache_only(spdif_priv->regmap, true);

	for (i = 0; i < STC_TXCLK_SRC_MAX; i++)
		clk_disable_unprepare(spdif_priv->txclk[i]);

	if (!IS_ERR(spdif_priv->spbaclk))
		clk_disable_unprepare(spdif_priv->spbaclk);
	clk_disable_unprepare(spdif_priv->coreclk);

	return 0;
}

static int fsl_spdif_runtime_resume(struct device *dev)
{
	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
	int ret;
	int i;

	ret = clk_prepare_enable(spdif_priv->coreclk);
	if (ret) {
		dev_err(dev, "failed to enable core clock\n");
		return ret;
	}

	if (!IS_ERR(spdif_priv->spbaclk)) {
		ret = clk_prepare_enable(spdif_priv->spbaclk);
		if (ret) {
			dev_err(dev, "failed to enable spba clock\n");
			goto disable_core_clk;
		}
	}

	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
		ret = clk_prepare_enable(spdif_priv->txclk[i]);
		if (ret)
			goto disable_tx_clk;
	}

	regcache_cache_only(spdif_priv->regmap, false);
	regcache_mark_dirty(spdif_priv->regmap);

	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
			spdif_priv->regcache_srpc);

	ret = regcache_sync(spdif_priv->regmap);
	if (ret)
		goto disable_tx_clk;

	return 0;

disable_tx_clk:
	for (i--; i >= 0; i--)
		clk_disable_unprepare(spdif_priv->txclk[i]);
	if (!IS_ERR(spdif_priv->spbaclk))
		clk_disable_unprepare(spdif_priv->spbaclk);
disable_core_clk:
	clk_disable_unprepare(spdif_priv->coreclk);

	return ret;
}

static const struct dev_pm_ops fsl_spdif_pm = {
	SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
	RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
		       NULL)
};

static const struct of_device_id fsl_spdif_dt_ids[] = {
	{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
	{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
	{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
	{ .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
	{ .compatible = "fsl,imx8mm-spdif", .data = &fsl_spdif_imx8mm, },
	{ .compatible = "fsl,imx8ulp-spdif", .data = &fsl_spdif_imx8ulp, },
	{}
};
MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);

static struct platform_driver fsl_spdif_driver = {
	.driver = {
		.name = "fsl-spdif-dai",
		.of_match_table = fsl_spdif_dt_ids,
		.pm = pm_ptr(&fsl_spdif_pm),
	},
	.probe = fsl_spdif_probe,
	.remove = fsl_spdif_remove,
};

module_platform_driver(fsl_spdif_driver);

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:fsl-spdif-dai");