// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <[email protected]>
* Copyright 2007 Johannes Berg <[email protected]>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright (C) 2015-2017 Intel Deutschland GmbH
* Copyright (C) 2018-2024 Intel Corporation
*
* utilities for mac80211
*/
#include <net/mac80211.h>
#include <linux/netdevice.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <net/net_namespace.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include <kunit/visibility.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "rate.h"
#include "mesh.h"
#include "wme.h"
#include "led.h"
#include "wep.h"
/* privid for wiphys to determine whether they belong to us or not */
const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
{
struct ieee80211_local *local;
local = wiphy_priv(wiphy);
return &local->hw;
}
EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = {
.mode = IEEE80211_CONN_MODE_EHT,
.bw_limit = IEEE80211_CONN_BW_LIMIT_320,
};
u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
enum nl80211_iftype type)
{
__le16 fc = hdr->frame_control;
if (ieee80211_is_data(fc)) {
if (len < 24) /* drop incorrect hdr len (data) */
return NULL;
if (ieee80211_has_a4(fc))
return NULL;
if (ieee80211_has_tods(fc))
return hdr->addr1;
if (ieee80211_has_fromds(fc))
return hdr->addr2;
return hdr->addr3;
}
if (ieee80211_is_s1g_beacon(fc)) {
struct ieee80211_ext *ext = (void *) hdr;
return ext->u.s1g_beacon.sa;
}
if (ieee80211_is_mgmt(fc)) {
if (len < 24) /* drop incorrect hdr len (mgmt) */
return NULL;
return hdr->addr3;
}
if (ieee80211_is_ctl(fc)) {
if (ieee80211_is_pspoll(fc))
return hdr->addr1;
if (ieee80211_is_back_req(fc)) {
switch (type) {
case NL80211_IFTYPE_STATION:
return hdr->addr2;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
return hdr->addr1;
default:
break; /* fall through to the return */
}
}
}
return NULL;
}
EXPORT_SYMBOL(ieee80211_get_bssid);
void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
{
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
skb_queue_walk(&tx->skbs, skb) {
hdr = (struct ieee80211_hdr *) skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
}
int ieee80211_frame_duration(enum nl80211_band band, size_t len,
int rate, int erp, int short_preamble)
{
int dur;
/* calculate duration (in microseconds, rounded up to next higher
* integer if it includes a fractional microsecond) to send frame of
* len bytes (does not include FCS) at the given rate. Duration will
* also include SIFS.
*
* rate is in 100 kbps, so divident is multiplied by 10 in the
* DIV_ROUND_UP() operations.
*/
if (band == NL80211_BAND_5GHZ || erp) {
/*
* OFDM:
*
* N_DBPS = DATARATE x 4
* N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
* (16 = SIGNAL time, 6 = tail bits)
* TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
*
* T_SYM = 4 usec
* 802.11a - 18.5.2: aSIFSTime = 16 usec
* 802.11g - 19.8.4: aSIFSTime = 10 usec +
* signal ext = 6 usec
*/
dur = 16; /* SIFS + signal ext */
dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
/* rates should already consider the channel bandwidth,
* don't apply divisor again.
*/
dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
4 * rate); /* T_SYM x N_SYM */
} else {
/*
* 802.11b or 802.11g with 802.11b compatibility:
* 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
* Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
*
* 802.11 (DS): 15.3.3, 802.11b: 18.3.4
* aSIFSTime = 10 usec
* aPreambleLength = 144 usec or 72 usec with short preamble
* aPLCPHeaderLength = 48 usec or 24 usec with short preamble
*/
dur = 10; /* aSIFSTime = 10 usec */
dur += short_preamble ? (72 + 24) : (144 + 48);
dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
}
return dur;
}
/* Exported duration function for driver use */
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_band band,
size_t frame_len,
struct ieee80211_rate *rate)
{
struct ieee80211_sub_if_data *sdata;
u16 dur;
int erp;
bool short_preamble = false;
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->deflink.operating_11g_mode)
erp = rate->flags & IEEE80211_RATE_ERP_G;
}
dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
short_preamble);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_generic_frame_duration);
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
struct ieee80211_sub_if_data *sdata;
bool short_preamble;
int erp, bitrate;
u16 dur;
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[frame_txctl->band];
short_preamble = false;
rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->deflink.operating_11g_mode)
erp = rate->flags & IEEE80211_RATE_ERP_G;
}
bitrate = rate->bitrate;
/* CTS duration */
dur = ieee80211_frame_duration(sband->band, 10, bitrate,
erp, short_preamble);
/* Data frame duration */
dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
erp, short_preamble);
/* ACK duration */
dur += ieee80211_frame_duration(sband->band, 10, bitrate,
erp, short_preamble);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_rts_duration);
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
const struct ieee80211_tx_info *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
struct ieee80211_sub_if_data *sdata;
bool short_preamble;
int erp, bitrate;
u16 dur;
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[frame_txctl->band];
short_preamble = false;
rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->deflink.operating_11g_mode)
erp = rate->flags & IEEE80211_RATE_ERP_G;
}
bitrate = rate->bitrate;
/* Data frame duration */
dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
erp, short_preamble);
if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
/* ACK duration */
dur += ieee80211_frame_duration(sband->band, 10, bitrate,
erp, short_preamble);
}
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_ctstoself_duration);
static void wake_tx_push_queue(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct ieee80211_txq *queue)
{
struct ieee80211_tx_control control = {
.sta = queue->sta,
};
struct sk_buff *skb;
while (1) {
skb = ieee80211_tx_dequeue(&local->hw, queue);
if (!skb)
break;
drv_tx(local, &control, skb);
}
}
/* wake_tx_queue handler for driver not implementing a custom one*/
void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
struct ieee80211_txq *queue;
spin_lock(&local->handle_wake_tx_queue_lock);
/* Use ieee80211_next_txq() for airtime fairness accounting */
ieee80211_txq_schedule_start(hw, txq->ac);
while ((queue = ieee80211_next_txq(hw, txq->ac))) {
wake_tx_push_queue(local, sdata, queue);
ieee80211_return_txq(hw, queue, false);
}
ieee80211_txq_schedule_end(hw, txq->ac);
spin_unlock(&local->handle_wake_tx_queue_lock);
}
EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue);
static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_vif *vif = &sdata->vif;
struct fq *fq = &local->fq;
struct ps_data *ps = NULL;
struct txq_info *txqi;
struct sta_info *sta;
int i;
local_bh_disable();
spin_lock(&fq->lock);
if (!test_bit(SDATA_STATE_RUNNING, &sdata->state))
goto out;
if (sdata->vif.type == NL80211_IFTYPE_AP)
ps = &sdata->bss->ps;
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sdata != sta->sdata)
continue;
for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
struct ieee80211_txq *txq = sta->sta.txq[i];
if (!txq)
continue;
txqi = to_txq_info(txq);
if (ac != txq->ac)
continue;
if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY,
&txqi->flags))
continue;
spin_unlock(&fq->lock);
drv_wake_tx_queue(local, txqi);
spin_lock(&fq->lock);
}
}
if (!vif->txq)
goto out;
txqi = to_txq_info(vif->txq);
if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) ||
(ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
goto out;
spin_unlock(&fq->lock);
drv_wake_tx_queue(local, txqi);
local_bh_enable();
return;
out:
spin_unlock(&fq->lock);
local_bh_enable();
}
static void
__releases(&local->queue_stop_reason_lock)
__acquires(&local->queue_stop_reason_lock)
_ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
{
struct ieee80211_sub_if_data *sdata;
int n_acs = IEEE80211_NUM_ACS;
int i;
rcu_read_lock();
if (local->hw.queues < IEEE80211_NUM_ACS)
n_acs = 1;
for (i = 0; i < local->hw.queues; i++) {
if (local->queue_stop_reasons[i])
continue;
spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
int ac;
for (ac = 0; ac < n_acs; ac++) {
int ac_queue = sdata->vif.hw_queue[ac];
if (ac_queue == i ||
sdata->vif.cab_queue == i)
__ieee80211_wake_txqs(sdata, ac);
}
}
spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
}
rcu_read_unlock();
}
void ieee80211_wake_txqs(struct tasklet_struct *t)
{
struct ieee80211_local *local = from_tasklet(local, t,
wake_txqs_tasklet);
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
_ieee80211_wake_txqs(local, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted,
unsigned long *flags)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_wake_queue(local, queue, reason);
if (WARN_ON(queue >= hw->queues))
return;
if (!test_bit(reason, &local->queue_stop_reasons[queue]))
return;
if (!refcounted) {
local->q_stop_reasons[queue][reason] = 0;
} else {
local->q_stop_reasons[queue][reason]--;
if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
local->q_stop_reasons[queue][reason] = 0;
}
if (local->q_stop_reasons[queue][reason] == 0)
__clear_bit(reason, &local->queue_stop_reasons[queue]);
if (local->queue_stop_reasons[queue] != 0)
/* someone still has this queue stopped */
return;
if (!skb_queue_empty(&local->pending[queue]))
tasklet_schedule(&local->tx_pending_tasklet);
/*
* Calling _ieee80211_wake_txqs here can be a problem because it may
* release queue_stop_reason_lock which has been taken by
* __ieee80211_wake_queue's caller. It is certainly not very nice to
* release someone's lock, but it is fine because all the callers of
* __ieee80211_wake_queue call it right before releasing the lock.
*/
if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
tasklet_schedule(&local->wake_txqs_tasklet);
else
_ieee80211_wake_txqs(local, flags);
}
void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
{
ieee80211_wake_queue_by_reason(hw, queue,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_wake_queue);
static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_stop_queue(local, queue, reason);
if (WARN_ON(queue >= hw->queues))
return;
if (!refcounted)
local->q_stop_reasons[queue][reason] = 1;
else
local->q_stop_reasons[queue][reason]++;
set_bit(reason, &local->queue_stop_reasons[queue]);
}
void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_stop_queue(hw, queue, reason, refcounted);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
{
ieee80211_stop_queue_by_reason(hw, queue,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_stop_queue);
void ieee80211_add_pending_skb(struct ieee80211_local *local,
struct sk_buff *skb)
{
struct ieee80211_hw *hw = &local->hw;
unsigned long flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int queue = info->hw_queue;
if (WARN_ON(!info->control.vif)) {
ieee80211_free_txskb(&local->hw, skb);
return;
}
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false);
__skb_queue_tail(&local->pending[queue], skb);
__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_add_pending_skbs(struct ieee80211_local *local,
struct sk_buff_head *skbs)
{
struct ieee80211_hw *hw = &local->hw;
struct sk_buff *skb;
unsigned long flags;
int queue, i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
while ((skb = skb_dequeue(skbs))) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (WARN_ON(!info->control.vif)) {
ieee80211_free_txskb(&local->hw, skb);
continue;
}
queue = info->hw_queue;
__ieee80211_stop_queue(hw, queue,
IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false);
__skb_queue_tail(&local->pending[queue], skb);
}
for (i = 0; i < hw->queues; i++)
__ieee80211_wake_queue(hw, i,
IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
false, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
unsigned long queues,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for_each_set_bit(i, &queues, hw->queues)
__ieee80211_stop_queue(hw, i, reason, refcounted);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queues(struct ieee80211_hw *hw)
{
ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_stop_queues);
int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int ret;
if (WARN_ON(queue >= hw->queues))
return true;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
&local->queue_stop_reasons[queue]);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
return ret;
}
EXPORT_SYMBOL(ieee80211_queue_stopped);
void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
unsigned long queues,
enum queue_stop_reason reason,
bool refcounted)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for_each_set_bit(i, &queues, hw->queues)
__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_wake_queues(struct ieee80211_hw *hw)
{
ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_DRIVER,
false);
}
EXPORT_SYMBOL(ieee80211_wake_queues);
static unsigned int
ieee80211_get_vif_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
unsigned int queues;
if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
int ac;
queues = 0;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
queues |= BIT(sdata->vif.hw_queue[ac]);
if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
queues |= BIT(sdata->vif.cab_queue);
} else {
/* all queues */
queues = BIT(local->hw.queues) - 1;
}
return queues;
}
void __ieee80211_flush_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
unsigned int queues, bool drop)
{
if (!local->ops->flush)
return;
/*
* If no queue was set, or if the HW doesn't support
* IEEE80211_HW_QUEUE_CONTROL - flush all queues
*/
if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
queues = ieee80211_get_vif_queues(local, sdata);
ieee80211_stop_queues_by_reason(&local->hw, queues,
IEEE80211_QUEUE_STOP_REASON_FLUSH,
false);
if (drop) {
struct sta_info *sta;
/* Purge the queues, so the frames on them won't be
* sent during __ieee80211_wake_queue()
*/
list_for_each_entry(sta, &local->sta_list, list) {
if (sdata != sta->sdata)
continue;
ieee80211_purge_sta_txqs(sta);
}
}
drv_flush(local, sdata, queues, drop);
ieee80211_wake_queues_by_reason(&local->hw, queues,
IEEE80211_QUEUE_STOP_REASON_FLUSH,
false);
}
void ieee80211_flush_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata, bool drop)
{
__ieee80211_flush_queues(local, sdata, 0, drop);
}
void ieee80211_stop_vif_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
enum queue_stop_reason reason)
{
ieee80211_stop_queues_by_reason(&local->hw,
ieee80211_get_vif_queues(local, sdata),
reason, true);
}
void ieee80211_wake_vif_queues(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
enum queue_stop_reason reason)
{
ieee80211_wake_queues_by_reason(&local->hw,
ieee80211_get_vif_queues(local, sdata),
reason, true);
}
static void __iterate_interfaces(struct ieee80211_local *local,
u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_sub_if_data *sdata;
bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
list_for_each_entry_rcu(sdata, &local->interfaces, list,
lockdep_is_held(&local->iflist_mtx) ||
lockdep_is_held(&local->hw.wiphy->mtx)) {
switch (sdata->vif.type) {
case NL80211_IFTYPE_MONITOR:
if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
continue;
break;
case NL80211_IFTYPE_AP_VLAN:
continue;
default:
break;
}
if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
continue;
if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
!(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
continue;
if (ieee80211_sdata_running(sdata) || !active_only)
iterator(data, sdata->vif.addr,
&sdata->vif);
}
sdata = rcu_dereference_check(local->monitor_sdata,
lockdep_is_held(&local->iflist_mtx) ||
lockdep_is_held(&local->hw.wiphy->mtx));
if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) &&
(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
sdata->flags & IEEE80211_SDATA_IN_DRIVER))
iterator(data, sdata->vif.addr, &sdata->vif);
}
void ieee80211_iterate_interfaces(
struct ieee80211_hw *hw, u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
mutex_lock(&local->iflist_mtx);
__iterate_interfaces(local, iter_flags, iterator, data);
mutex_unlock(&local->iflist_mtx);
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
void ieee80211_iterate_active_interfaces_atomic(
struct ieee80211_hw *hw, u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
rcu_read_lock();
__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
iterator, data);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
void ieee80211_iterate_active_interfaces_mtx(
struct ieee80211_hw *hw, u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
lockdep_assert_wiphy(hw->wiphy);
__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
iterator, data);
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
static void __iterate_stations(struct ieee80211_local *local,
void (*iterator)(void *data,
struct ieee80211_sta *sta),
void *data)
{
struct sta_info *sta;
list_for_each_entry_rcu(sta, &local->sta_list, list,
lockdep_is_held(&local->hw.wiphy->mtx)) {
if (!sta->uploaded)
continue;
iterator(data, &sta->sta);
}
}
void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
void (*iterator)(void *data,
struct ieee80211_sta *sta),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
rcu_read_lock();
__iterate_stations(local, iterator, data);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw,
void (*iterator)(void *data,
struct ieee80211_sta *sta),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
lockdep_assert_wiphy(local->hw.wiphy);
__iterate_stations(local, iterator, data);
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx);
struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
if (!ieee80211_sdata_running(sdata) ||
!(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
return NULL;
return &sdata->vif;
}
EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
{
if (!vif)
return NULL;
return &vif_to_sdata(vif)->wdev;
}
EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
/*
* Nothing should have been stuffed into the workqueue during
* the suspend->resume cycle. Since we can't check each caller
* of this function if we are already quiescing / suspended,
* check here and don't WARN since this can actually happen when
* the rx path (for example) is racing against __ieee80211_suspend
* and suspending / quiescing was set after the rx path checked
* them.
*/
static bool ieee80211_can_queue_work(struct ieee80211_local *local)
{
if (local->quiescing || (local->suspended && !local->resuming)) {
pr_warn("queueing ieee80211 work while going to suspend\n");
return false;
}
return true;
}
void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
{
struct ieee80211_local *local = hw_to_local(hw);
if (!ieee80211_can_queue_work(local))
return;
queue_work(local->workqueue, work);
}
EXPORT_SYMBOL(ieee80211_queue_work);
void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
struct delayed_work *dwork,
unsigned long delay)
{
struct ieee80211_local *local = hw_to_local(hw);
if (!ieee80211_can_queue_work(local))
return;
queue_delayed_work(local->workqueue, dwork, delay);
}
EXPORT_SYMBOL(ieee80211_queue_delayed_work);
void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
struct ieee80211_tx_queue_params
*qparam, int ac)
{
struct ieee80211_chanctx_conf *chanctx_conf;
const struct ieee80211_reg_rule *rrule;
const struct ieee80211_wmm_ac *wmm_ac;
u16 center_freq = 0;
if (sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_STATION)
return;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf);
if (chanctx_conf)
center_freq = chanctx_conf->def.chan->center_freq;
if (!center_freq) {
rcu_read_unlock();
return;
}
rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
rcu_read_unlock();
return;
}
if (sdata->vif.type == NL80211_IFTYPE_AP)
wmm_ac = &rrule->wmm_rule.ap[ac];
else
wmm_ac = &rrule->wmm_rule.client[ac];
qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
rcu_read_unlock();
}
void ieee80211_set_wmm_default(struct ieee80211_link_data *link,
bool bss_notify, bool enable_qos)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_queue_params qparam;
struct ieee80211_chanctx_conf *chanctx_conf;
int ac;
bool use_11b;
bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
int aCWmin, aCWmax;
if (!local->ops->conf_tx)
return;
if (local->hw.queues < IEEE80211_NUM_ACS)
return;
memset(&qparam, 0, sizeof(qparam));
rcu_read_lock();
chanctx_conf = rcu_dereference(link->conf->chanctx_conf);
use_11b = (chanctx_conf &&
chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
!link->operating_11g_mode;
rcu_read_unlock();
is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
/* Set defaults according to 802.11-2007 Table 7-37 */
aCWmax = 1023;
if (use_11b)
aCWmin = 31;
else
aCWmin = 15;
/* Confiure old 802.11b/g medium access rules. */
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
qparam.aifs = 2;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
/* Update if QoS is enabled. */
if (enable_qos) {
switch (ac) {
case IEEE80211_AC_BK:
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
if (is_ocb)
qparam.aifs = 9;
else
qparam.aifs = 7;
break;
/* never happens but let's not leave undefined */
default:
case IEEE80211_AC_BE:
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
if (is_ocb)
qparam.aifs = 6;
else
qparam.aifs = 3;
break;
case IEEE80211_AC_VI:
qparam.cw_max = aCWmin;
qparam.cw_min = (aCWmin + 1) / 2 - 1;
if (is_ocb)
qparam.txop = 0;
else if (use_11b)
qparam.txop = 6016/32;
else
qparam.txop = 3008/32;
if (is_ocb)
qparam.aifs = 3;
else
qparam.aifs = 2;
break;
case IEEE80211_AC_VO:
qparam.cw_max = (aCWmin + 1) / 2 - 1;
qparam.cw_min = (aCWmin + 1) / 4 - 1;
if (is_ocb)
qparam.txop = 0;
else if (use_11b)
qparam.txop = 3264/32;
else
qparam.txop = 1504/32;
qparam.aifs = 2;
break;
}
}
ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
qparam.uapsd = false;
link->tx_conf[ac] = qparam;
drv_conf_tx(local, link, ac, &qparam);
}
if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
sdata->vif.type != NL80211_IFTYPE_NAN) {
link->conf->qos = enable_qos;
if (bss_notify)
ieee80211_link_info_change_notify(sdata, link,
BSS_CHANGED_QOS);
}
}
void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
u16 transaction, u16 auth_alg, u16 status,
const u8 *extra, size_t extra_len, const u8 *da,
const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
u32 tx_flags)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
bool multi_link = ieee80211_vif_is_mld(&sdata->vif);
struct {
u8 id;
u8 len;
u8 ext_id;
struct ieee80211_multi_link_elem ml;
struct ieee80211_mle_basic_common_info basic;
} __packed mle = {
.id = WLAN_EID_EXTENSION,
.len = sizeof(mle) - 2,
.ext_id = WLAN_EID_EXT_EHT_MULTI_LINK,
.ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC),
.basic.len = sizeof(mle.basic),
};
int err;
memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN);
/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN +
multi_link * sizeof(mle));
if (!skb)
return;
skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
mgmt = skb_put_zero(skb, 24 + 6);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_AUTH);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, bssid, ETH_ALEN);
mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
mgmt->u.auth.status_code = cpu_to_le16(status);
if (extra)
skb_put_data(skb, extra, extra_len);
if (multi_link)
skb_put_data(skb, &mle, sizeof(mle));
if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
if (WARN_ON(err)) {
kfree_skb(skb);
return;
}
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
tx_flags;
ieee80211_tx_skb(sdata, skb);
}
void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
const u8 *da, const u8 *bssid,
u16 stype, u16 reason,
bool send_frame, u8 *frame_buf)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt = (void *)frame_buf;
/* build frame */
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
mgmt->duration = 0; /* initialize only */
mgmt->seq_ctrl = 0; /* initialize only */
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, bssid, ETH_ALEN);
/* u.deauth.reason_code == u.disassoc.reason_code */
mgmt->u.deauth.reason_code = cpu_to_le16(reason);
if (send_frame) {
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
IEEE80211_DEAUTH_FRAME_LEN);
if (!skb)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
/* copy in frame */
skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
if (sdata->vif.type != NL80211_IFTYPE_STATION ||
!(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
IEEE80211_SKB_CB(skb)->flags |=
IEEE80211_TX_INTFL_DONT_ENCRYPT;
ieee80211_tx_skb(sdata, skb);
}
}
static int ieee80211_put_s1g_cap(struct sk_buff *skb,
struct ieee80211_sta_s1g_cap *s1g_cap)
{
if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap))
return -ENOBUFS;
skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES);
skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap));
skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap));
skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs));
return 0;
}
static int ieee80211_put_preq_ies_band(struct sk_buff *skb,
struct ieee80211_sub_if_data *sdata,
const u8 *ie, size_t ie_len,
size_t *offset,
enum nl80211_band band,
u32 rate_mask,
struct cfg80211_chan_def *chandef,
u32 flags)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_supported_band *sband;
int i, err;
size_t noffset;
u32 rate_flags;
bool have_80mhz = false;
*offset = 0;
sband = local->hw.wiphy->bands[band];
if (WARN_ON_ONCE(!sband))
return 0;
rate_flags = ieee80211_chandef_rate_flags(chandef);
/* For direct scan add S1G IE and consider its override bits */
if (band == NL80211_BAND_S1GHZ)
return ieee80211_put_s1g_cap(skb, &sband->s1g_cap);
err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags,
~rate_mask, WLAN_EID_SUPP_RATES);
if (err)
return err;
/* insert "request information" if in custom IEs */
if (ie && ie_len) {
static const u8 before_extrates[] = {
WLAN_EID_SSID,
WLAN_EID_SUPP_RATES,
WLAN_EID_REQUEST,
};
noffset = ieee80211_ie_split(ie, ie_len,
before_extrates,
ARRAY_SIZE(before_extrates),
*offset);
if (skb_tailroom(skb) < noffset - *offset)
return -ENOBUFS;
skb_put_data(skb, ie + *offset, noffset - *offset);
*offset = noffset;
}
err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags,
~rate_mask, WLAN_EID_EXT_SUPP_RATES);
if (err)
return err;
if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
if (skb_tailroom(skb) < 3)
return -ENOBUFS;
skb_put_u8(skb, WLAN_EID_DS_PARAMS);
skb_put_u8(skb, 1);
skb_put_u8(skb,
ieee80211_frequency_to_channel(chandef->chan->center_freq));
}
if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
return 0;
/* insert custom IEs that go before HT */
if (ie && ie_len) {
static const u8 before_ht[] = {
/*
* no need to list the ones split off already
* (or generated here)
*/
WLAN_EID_DS_PARAMS,
WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
};
noffset = ieee80211_ie_split(ie, ie_len,
before_ht, ARRAY_SIZE(before_ht),
*offset);
if (skb_tailroom(skb) < noffset - *offset)
return -ENOBUFS;
skb_put_data(skb, ie + *offset, noffset - *offset);
*offset = noffset;
}
if (sband->ht_cap.ht_supported) {
u8 *pos;
if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap))
return -ENOBUFS;
pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap));
ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
sband->ht_cap.cap);
}
/* insert custom IEs that go before VHT */
if (ie && ie_len) {
static const u8 before_vht[] = {
/*
* no need to list the ones split off already
* (or generated here)
*/
WLAN_EID_BSS_COEX_2040,
WLAN_EID_EXT_CAPABILITY,
WLAN_EID_SSID_LIST,
WLAN_EID_CHANNEL_USAGE,
WLAN_EID_INTERWORKING,
WLAN_EID_MESH_ID,
/* 60 GHz (Multi-band, DMG, MMS) can't happen */
};
noffset = ieee80211_ie_split(ie, ie_len,
before_vht, ARRAY_SIZE(before_vht),
*offset);
if (skb_tailroom(skb) < noffset - *offset)
return -ENOBUFS;
skb_put_data(skb, ie + *offset, noffset - *offset);
*offset = noffset;
}
/* Check if any channel in this sband supports at least 80 MHz */
for (i = 0; i < sband->n_channels; i++) {
if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
IEEE80211_CHAN_NO_80MHZ))
continue;
have_80mhz = true;
break;
}
if (sband->vht_cap.vht_supported && have_80mhz) {
u8 *pos;
if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap))
return -ENOBUFS;
pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap));
ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
sband->vht_cap.cap);
}
/* insert custom IEs that go before HE */
if (ie && ie_len) {
static const u8 before_he[] = {
/*
* no need to list the ones split off before VHT
* or generated here
*/
WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
WLAN_EID_AP_CSN,
/* TODO: add 11ah/11aj/11ak elements */
};
noffset = ieee80211_ie_split(ie, ie_len,
before_he, ARRAY_SIZE(before_he),
*offset);
if (skb_tailroom(skb) < noffset - *offset)
return -ENOBUFS;
skb_put_data(skb, ie + *offset, noffset - *offset);
*offset = noffset;
}
if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
IEEE80211_CHAN_NO_HE)) {
err = ieee80211_put_he_cap(skb, sdata, sband, NULL);
if (err)
return err;
}
if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
IEEE80211_CHAN_NO_HE |
IEEE80211_CHAN_NO_EHT)) {
err = ieee80211_put_eht_cap(skb, sdata, sband, NULL);
if (err)
return err;
}
err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF);
if (err)
return err;
/*
* If adding more here, adjust code in main.c
* that calculates local->scan_ies_len.
*/
return 0;
}
static int ieee80211_put_preq_ies(struct sk_buff *skb,
struct ieee80211_sub_if_data *sdata,
struct ieee80211_scan_ies *ie_desc,
const u8 *ie, size_t ie_len,
u8 bands_used, u32 *rate_masks,
struct cfg80211_chan_def *chandef,
u32 flags)
{
size_t custom_ie_offset = 0;
int i, err;
memset(ie_desc, 0, sizeof(*ie_desc));
for (i = 0; i < NUM_NL80211_BANDS; i++) {
if (bands_used & BIT(i)) {
ie_desc->ies[i] = skb_tail_pointer(skb);
err = ieee80211_put_preq_ies_band(skb, sdata,
ie, ie_len,
&custom_ie_offset,
i, rate_masks[i],
chandef, flags);
if (err)
return err;
ie_desc->len[i] = skb_tail_pointer(skb) -
ie_desc->ies[i];
}
}
/* add any remaining custom IEs */
if (ie && ie_len) {
if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset,
"not enough space for preq custom IEs\n"))
return -ENOBUFS;
ie_desc->common_ies = skb_tail_pointer(skb);
skb_put_data(skb, ie + custom_ie_offset,
ie_len - custom_ie_offset);
ie_desc->common_ie_len = skb_tail_pointer(skb) -
ie_desc->common_ies;
}
return 0;
};
int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
size_t buffer_len,
struct ieee80211_scan_ies *ie_desc,
const u8 *ie, size_t ie_len,
u8 bands_used, u32 *rate_masks,
struct cfg80211_chan_def *chandef,
u32 flags)
{
struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL);
uintptr_t offs;
int ret, i;
u8 *start;
if (!skb)
return -ENOMEM;
start = skb_tail_pointer(skb);
memset(start, 0, skb_tailroom(skb));
ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len,
bands_used, rate_masks, chandef,
flags);
if (ret < 0) {
goto out;
}
if (skb->len > buffer_len) {
ret = -ENOBUFS;
goto out;
}
memcpy(buffer, start, skb->len);
/* adjust ie_desc for copy */
for (i = 0; i < NUM_NL80211_BANDS; i++) {
offs = ie_desc->ies[i] - start;
ie_desc->ies[i] = buffer + offs;
}
offs = ie_desc->common_ies - start;
ie_desc->common_ies = buffer + offs;
ret = skb->len;
out:
consume_skb(skb);
return ret;
}
struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
const u8 *src, const u8 *dst,
u32 ratemask,
struct ieee80211_channel *chan,
const u8 *ssid, size_t ssid_len,
const u8 *ie, size_t ie_len,
u32 flags)
{
struct ieee80211_local *local = sdata->local;
struct cfg80211_chan_def chandef;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u32 rate_masks[NUM_NL80211_BANDS] = {};
struct ieee80211_scan_ies dummy_ie_desc;
/*
* Do not send DS Channel parameter for directed probe requests
* in order to maximize the chance that we get a response. Some
* badly-behaved APs don't respond when this parameter is included.
*/
chandef.width = sdata->vif.bss_conf.chanreq.oper.width;
if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
chandef.chan = NULL;
else
chandef.chan = chan;
skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
local->scan_ies_len + ie_len);
if (!skb)
return NULL;
rate_masks[chan->band] = ratemask;
ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc,
ie, ie_len, BIT(chan->band),
rate_masks, &chandef, flags);
if (dst) {
mgmt = (struct ieee80211_mgmt *) skb->data;
memcpy(mgmt->da, dst, ETH_ALEN);
memcpy(mgmt->bssid, dst, ETH_ALEN);
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
return skb;
}
u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
struct ieee802_11_elems *elems,
enum nl80211_band band, u32 *basic_rates)
{
struct ieee80211_supported_band *sband;
size_t num_rates;
u32 supp_rates, rate_flags;
int i, j;
sband = sdata->local->hw.wiphy->bands[band];
if (WARN_ON(!sband))
return 1;
rate_flags =
ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper);
num_rates = sband->n_bitrates;
supp_rates = 0;
for (i = 0; i < elems->supp_rates_len +
elems->ext_supp_rates_len; i++) {
u8 rate = 0;
int own_rate;
bool is_basic;
if (i < elems->supp_rates_len)
rate = elems->supp_rates[i];
else if (elems->ext_supp_rates)
rate = elems->ext_supp_rates
[i - elems->supp_rates_len];
own_rate = 5 * (rate & 0x7f);
is_basic = !!(rate & 0x80);
if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
continue;
for (j = 0; j < num_rates; j++) {
int brate;
if ((rate_flags & sband->bitrates[j].flags)
!= rate_flags)
continue;
brate = sband->bitrates[j].bitrate;
if (brate == own_rate) {
supp_rates |= BIT(j);
if (basic_rates && is_basic)
*basic_rates |= BIT(j);
}
}
}
return supp_rates;
}
void ieee80211_stop_device(struct ieee80211_local *local, bool suspend)
{
local_bh_disable();
ieee80211_handle_queued_frames(local);
local_bh_enable();
ieee80211_led_radio(local, false);
ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter);
flush_workqueue(local->workqueue);
wiphy_work_flush(local->hw.wiphy, NULL);
drv_stop(local, suspend);
}
static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
bool aborted)
{
/* It's possible that we don't handle the scan completion in
* time during suspend, so if it's still marked as completed
* here, queue the work and flush it to clean things up.
* Instead of calling the worker function directly here, we
* really queue it to avoid potential races with other flows
* scheduling the same work.
*/
if (test_bit(SCAN_COMPLETED, &local->scanning)) {
/* If coming from reconfiguration failure, abort the scan so
* we don't attempt to continue a partial HW scan - which is
* possible otherwise if (e.g.) the 2.4 GHz portion was the
* completed scan, and a 5 GHz portion is still pending.
*/
if (aborted)
set_bit(SCAN_ABORTED, &local->scanning);
wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0);
wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work);
}
}
static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_chanctx *ctx;
lockdep_assert_wiphy(local->hw.wiphy);
/*
* We get here if during resume the device can't be restarted properly.
* We might also get here if this happens during HW reset, which is a
* slightly different situation and we need to drop all connections in
* the latter case.
*
* Ask cfg80211 to turn off all interfaces, this will result in more
* warnings but at least we'll then get into a clean stopped state.
*/
local->resuming = false;
local->suspended = false;
local->in_reconfig = false;
local->reconfig_failure = true;
ieee80211_flush_completed_scan(local, true);
/* scheduled scan clearly can't be running any more, but tell
* cfg80211 and clear local state
*/
ieee80211_sched_scan_end(local);
list_for_each_entry(sdata, &local->interfaces, list)
sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
/* Mark channel contexts as not being in the driver any more to avoid
* removing them from the driver during the shutdown process...
*/
list_for_each_entry(ctx, &local->chanctx_list, list)
ctx->driver_present = false;
}
static void ieee80211_assign_chanctx(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct ieee80211_link_data *link)
{
struct ieee80211_chanctx_conf *conf;
struct ieee80211_chanctx *ctx;
lockdep_assert_wiphy(local->hw.wiphy);
conf = rcu_dereference_protected(link->conf->chanctx_conf,
lockdep_is_held(&local->hw.wiphy->mtx));
if (conf) {
ctx = container_of(conf, struct ieee80211_chanctx, conf);
drv_assign_vif_chanctx(local, sdata, link->conf, ctx);
}
}
static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
lockdep_assert_wiphy(local->hw.wiphy);
/* add STAs back */
list_for_each_entry(sta, &local->sta_list, list) {
enum ieee80211_sta_state state;
if (!sta->uploaded || sta->sdata != sdata)
continue;
for (state = IEEE80211_STA_NOTEXIST;
state < sta->sta_state; state++)
WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
state + 1));
}
}
static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
{
struct cfg80211_nan_func *func, **funcs;
int res, id, i = 0;
res = drv_start_nan(sdata->local, sdata,
&sdata->u.nan.conf);
if (WARN_ON(res))
return res;
funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
sizeof(*funcs),
GFP_KERNEL);
if (!funcs)
return -ENOMEM;
/* Add all the functions:
* This is a little bit ugly. We need to call a potentially sleeping
* callback for each NAN function, so we can't hold the spinlock.
*/
spin_lock_bh(&sdata->u.nan.func_lock);
idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
funcs[i++] = func;
spin_unlock_bh(&sdata->u.nan.func_lock);
for (i = 0; funcs[i]; i++) {
res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
if (WARN_ON(res))
ieee80211_nan_func_terminated(&sdata->vif,
funcs[i]->instance_id,
NL80211_NAN_FUNC_TERM_REASON_ERROR,
GFP_KERNEL);
}
kfree(funcs);
return 0;
}
static void ieee80211_reconfig_ap_links(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
u64 changed)
{
int link_id;
for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) {
struct ieee80211_link_data *link;
if (!(sdata->vif.active_links & BIT(link_id)))
continue;
link = sdata_dereference(sdata->link[link_id], sdata);
if (!link)
continue;
if (rcu_access_pointer(link->u.ap.beacon))
drv_start_ap(local, sdata, link->conf);
if (!link->conf->enable_beacon)
continue;
changed |= BSS_CHANGED_BEACON |
BSS_CHANGED_BEACON_ENABLED;
ieee80211_link_info_change_notify(sdata, link, changed);
}
}
int ieee80211_reconfig(struct ieee80211_local *local)
{
struct ieee80211_hw *hw = &local->hw;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_chanctx *ctx;
struct sta_info *sta;
int res, i;
bool reconfig_due_to_wowlan = false;
struct ieee80211_sub_if_data *sched_scan_sdata;
struct cfg80211_sched_scan_request *sched_scan_req;
bool sched_scan_stopped = false;
bool suspended = local->suspended;
bool in_reconfig = false;
lockdep_assert_wiphy(local->hw.wiphy);
/* nothing to do if HW shouldn't run */
if (!local->open_count)
goto wake_up;
#ifdef CONFIG_PM
if (suspended)
local->resuming = true;
if (local->wowlan) {
/*
* In the wowlan case, both mac80211 and the device
* are functional when the resume op is called, so
* clear local->suspended so the device could operate
* normally (e.g. pass rx frames).
*/
local->suspended = false;
res = drv_resume(local);
local->wowlan = false;
if (res < 0) {
local->resuming = false;
return res;
}
if (res == 0)
goto wake_up;
WARN_ON(res > 1);
/*
* res is 1, which means the driver requested
* to go through a regular reset on wakeup.
* restore local->suspended in this case.
*/
reconfig_due_to_wowlan = true;
local->suspended = true;
}
#endif
/*
* In case of hw_restart during suspend (without wowlan),
* cancel restart work, as we are reconfiguring the device
* anyway.
* Note that restart_work is scheduled on a frozen workqueue,
* so we can't deadlock in this case.
*/
if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
cancel_work_sync(&local->restart_work);
local->started = false;
/*
* Upon resume hardware can sometimes be goofy due to
* various platform / driver / bus issues, so restarting
* the device may at times not work immediately. Propagate
* the error.
*/
res = drv_start(local);
if (res) {
if (suspended)
WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
else
WARN(1, "Hardware became unavailable during restart.\n");
ieee80211_handle_reconfig_failure(local);
return res;
}
/* setup fragmentation threshold */
drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
/* setup RTS threshold */
drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
/* reset coverage class */
drv_set_coverage_class(local, hw->wiphy->coverage_class);
ieee80211_led_radio(local, true);
ieee80211_mod_tpt_led_trig(local,
IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
/* add interfaces */
sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) {
/* in HW restart it exists already */
WARN_ON(local->resuming);
res = drv_add_interface(local, sdata);
if (WARN_ON(res)) {
RCU_INIT_POINTER(local->monitor_sdata, NULL);
synchronize_net();
kfree(sdata);
}
}
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_MONITOR &&
ieee80211_sdata_running(sdata)) {
res = drv_add_interface(local, sdata);
if (WARN_ON(res))
break;
}
}
/* If adding any of the interfaces failed above, roll back and
* report failure.
*/
if (res) {
list_for_each_entry_continue_reverse(sdata, &local->interfaces,
list)
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_MONITOR &&
ieee80211_sdata_running(sdata))
drv_remove_interface(local, sdata);
ieee80211_handle_reconfig_failure(local);
return res;
}
/* add channel contexts */
list_for_each_entry(ctx, &local->chanctx_list, list)
if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER)
WARN_ON(drv_add_chanctx(local, ctx));
sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
if (sdata && ieee80211_sdata_running(sdata))
ieee80211_assign_chanctx(local, sdata, &sdata->deflink);
/* reconfigure hardware */
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL |
IEEE80211_CONF_CHANGE_MONITOR |
IEEE80211_CONF_CHANGE_PS |
IEEE80211_CONF_CHANGE_RETRY_LIMITS |
IEEE80211_CONF_CHANGE_IDLE);
ieee80211_configure_filter(local);
/* Finally also reconfigure all the BSS information */
list_for_each_entry(sdata, &local->interfaces, list) {
/* common change flags for all interface types - link only */
u64 changed = BSS_CHANGED_ERP_CTS_PROT |
BSS_CHANGED_ERP_PREAMBLE |
BSS_CHANGED_ERP_SLOT |
BSS_CHANGED_HT |
BSS_CHANGED_BASIC_RATES |
BSS_CHANGED_BEACON_INT |
BSS_CHANGED_BSSID |
BSS_CHANGED_CQM |
BSS_CHANGED_QOS |
BSS_CHANGED_TXPOWER |
BSS_CHANGED_MCAST_RATE;
struct ieee80211_link_data *link = NULL;
unsigned int link_id;
u32 active_links = 0;
if (!ieee80211_sdata_running(sdata))
continue;
if (ieee80211_vif_is_mld(&sdata->vif)) {
struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = {
[0] = &sdata->vif.bss_conf,
};
if (sdata->vif.type == NL80211_IFTYPE_STATION) {
/* start with a single active link */
active_links = sdata->vif.active_links;
link_id = ffs(active_links) - 1;
sdata->vif.active_links = BIT(link_id);
}
drv_change_vif_links(local, sdata, 0,
sdata->vif.active_links,
old);
}
sdata->restart_active_links = active_links;
for (link_id = 0;
link_id < ARRAY_SIZE(sdata->vif.link_conf);
link_id++) {
if (!ieee80211_vif_link_active(&sdata->vif, link_id))
continue;
link = sdata_dereference(sdata->link[link_id], sdata);
if (!link)
continue;
ieee80211_assign_chanctx(local, sdata, link);
}
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_MONITOR:
break;
case NL80211_IFTYPE_ADHOC:
if (sdata->vif.cfg.ibss_joined)
WARN_ON(drv_join_ibss(local, sdata));
fallthrough;
default:
ieee80211_reconfig_stations(sdata);
fallthrough;
case NL80211_IFTYPE_AP: /* AP stations are handled later */
for (i = 0; i < IEEE80211_NUM_ACS; i++)
drv_conf_tx(local, &sdata->deflink, i,
&sdata->deflink.tx_conf[i]);
break;
}
if (sdata->vif.bss_conf.mu_mimo_owner)
changed |= BSS_CHANGED_MU_GROUPS;
if (!ieee80211_vif_is_mld(&sdata->vif))
changed |= BSS_CHANGED_IDLE;
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (!ieee80211_vif_is_mld(&sdata->vif)) {
changed |= BSS_CHANGED_ASSOC |
BSS_CHANGED_ARP_FILTER |
BSS_CHANGED_PS;
/* Re-send beacon info report to the driver */
if (sdata->deflink.u.mgd.have_beacon)
changed |= BSS_CHANGED_BEACON_INFO;
if (sdata->vif.bss_conf.max_idle_period ||
sdata->vif.bss_conf.protected_keep_alive)
changed |= BSS_CHANGED_KEEP_ALIVE;
ieee80211_bss_info_change_notify(sdata,
changed);
} else if (!WARN_ON(!link)) {
ieee80211_link_info_change_notify(sdata, link,
changed);
changed = BSS_CHANGED_ASSOC |
BSS_CHANGED_IDLE |
BSS_CHANGED_PS |
BSS_CHANGED_ARP_FILTER;
ieee80211_vif_cfg_change_notify(sdata, changed);
}
break;
case NL80211_IFTYPE_OCB:
changed |= BSS_CHANGED_OCB;
ieee80211_bss_info_change_notify(sdata, changed);
break;
case NL80211_IFTYPE_ADHOC:
changed |= BSS_CHANGED_IBSS;
fallthrough;
case NL80211_IFTYPE_AP:
changed |= BSS_CHANGED_P2P_PS;
if (ieee80211_vif_is_mld(&sdata->vif))
ieee80211_vif_cfg_change_notify(sdata,
BSS_CHANGED_SSID);
else
changed |= BSS_CHANGED_SSID;
if (sdata->vif.bss_conf.ftm_responder == 1 &&
wiphy_ext_feature_isset(sdata->local->hw.wiphy,
NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
changed |= BSS_CHANGED_FTM_RESPONDER;
if (sdata->vif.type == NL80211_IFTYPE_AP) {
changed |= BSS_CHANGED_AP_PROBE_RESP;
if (ieee80211_vif_is_mld(&sdata->vif)) {
ieee80211_reconfig_ap_links(local,
sdata,
changed);
break;
}
if (rcu_access_pointer(sdata->deflink.u.ap.beacon))
drv_start_ap(local, sdata,
sdata->deflink.conf);
}
fallthrough;
case NL80211_IFTYPE_MESH_POINT:
if (sdata->vif.bss_conf.enable_beacon) {
changed |= BSS_CHANGED_BEACON |
BSS_CHANGED_BEACON_ENABLED;
ieee80211_bss_info_change_notify(sdata, changed);
}
break;
case NL80211_IFTYPE_NAN:
res = ieee80211_reconfig_nan(sdata);
if (res < 0) {
ieee80211_handle_reconfig_failure(local);
return res;
}
break;
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_P2P_DEVICE:
/* nothing to do */
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_WDS:
WARN_ON(1);
break;
}
}
ieee80211_recalc_ps(local);
/*
* The sta might be in psm against the ap (e.g. because
* this was the state before a hw restart), so we
* explicitly send a null packet in order to make sure
* it'll sync against the ap (and get out of psm).
*/
if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_STATION)
continue;
if (!sdata->u.mgd.associated)
continue;
ieee80211_send_nullfunc(local, sdata, false);
}
}
/* APs are now beaconing, add back stations */
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_AP:
ieee80211_reconfig_stations(sdata);
break;
default:
break;
}
}
/* add back keys */
list_for_each_entry(sdata, &local->interfaces, list)
ieee80211_reenable_keys(sdata);
/* re-enable multi-link for client interfaces */
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->restart_active_links)
ieee80211_set_active_links(&sdata->vif,
sdata->restart_active_links);
/*
* If a link switch was scheduled before the restart, and ran
* before reconfig, it will do nothing, so re-schedule.
*/
if (sdata->desired_active_links)
wiphy_work_queue(sdata->local->hw.wiphy,
&sdata->activate_links_work);
}
/* Reconfigure sched scan if it was interrupted by FW restart */
sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
lockdep_is_held(&local->hw.wiphy->mtx));
sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
lockdep_is_held(&local->hw.wiphy->mtx));
if (sched_scan_sdata && sched_scan_req)
/*
* Sched scan stopped, but we don't want to report it. Instead,
* we're trying to reschedule. However, if more than one scan
* plan was set, we cannot reschedule since we don't know which
* scan plan was currently running (and some scan plans may have
* already finished).
*/
if (sched_scan_req->n_scan_plans > 1 ||
__ieee80211_request_sched_scan_start(sched_scan_sdata,
sched_scan_req)) {
RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
RCU_INIT_POINTER(local->sched_scan_req, NULL);
sched_scan_stopped = true;
}
if (sched_scan_stopped)
cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0);
wake_up:
if (local->monitors == local->open_count && local->monitors > 0)
ieee80211_add_virtual_monitor(local);
/*
* Clear the WLAN_STA_BLOCK_BA flag so new aggregation
* sessions can be established after a resume.
*
* Also tear down aggregation sessions since reconfiguring
* them in a hardware restart scenario is not easily done
* right now, and the hardware will have lost information
* about the sessions, but we and the AP still think they
* are active. This is really a workaround though.
*/
if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
list_for_each_entry(sta, &local->sta_list, list) {
if (!local->resuming)
ieee80211_sta_tear_down_BA_sessions(
sta, AGG_STOP_LOCAL_REQUEST);
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
}
}
/*
* If this is for hw restart things are still running.
* We may want to change that later, however.
*/
if (local->open_count && (!suspended || reconfig_due_to_wowlan))
drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
if (local->in_reconfig) {
in_reconfig = local->in_reconfig;
local->in_reconfig = false;
barrier();
ieee80211_reconfig_roc(local);
/* Requeue all works */
list_for_each_entry(sdata, &local->interfaces, list)
wiphy_work_queue(local->hw.wiphy, &sdata->work);
}
ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_SUSPEND,
false);
if (in_reconfig) {
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_STATION)
ieee80211_sta_restart(sdata);
}
}
if (!suspended)
return 0;
#ifdef CONFIG_PM
/* first set suspended false, then resuming */
local->suspended = false;
mb();
local->resuming = false;
ieee80211_flush_completed_scan(local, false);
if (local->open_count && !reconfig_due_to_wowlan)
drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_STATION)
ieee80211_sta_restart(sdata);
}
mod_timer(&local->sta_cleanup, jiffies + 1);
#else
WARN_ON(1);
#endif
return 0;
}
static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local;
struct ieee80211_key *key;
if (WARN_ON(!vif))
return;
sdata = vif_to_sdata(vif);
local = sdata->local;
lockdep_assert_wiphy(local->hw.wiphy);
if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME &&
!local->resuming))
return;
if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART &&
!local->in_reconfig))
return;
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
return;
sdata->flags |= flag;
list_for_each_entry(key, &sdata->key_list, list)
key->flags |= KEY_FLAG_TAINTED;
}
void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif)
{
ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART);
}
EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect);
void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
{
ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME);
}
EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata,
struct ieee80211_link_data *link)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_chanctx *chanctx;
lockdep_assert_wiphy(local->hw.wiphy);
chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf,
lockdep_is_held(&local->hw.wiphy->mtx));
/*
* This function can be called from a work, thus it may be possible
* that the chanctx_conf is removed (due to a disconnection, for
* example).
* So nothing should be done in such case.
*/
if (!chanctx_conf)
return;
chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
ieee80211_recalc_smps_chanctx(local, chanctx);
}
void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata,
int link_id)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_chanctx *chanctx;
int i;
lockdep_assert_wiphy(local->hw.wiphy);
for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) {
struct ieee80211_bss_conf *bss_conf;
if (link_id >= 0 && link_id != i)
continue;
rcu_read_lock();
bss_conf = rcu_dereference(sdata->vif.link_conf[i]);
if (!bss_conf) {
rcu_read_unlock();
continue;
}
chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf,
lockdep_is_held(&local->hw.wiphy->mtx));
/*
* Since we hold the wiphy mutex (checked above)
* we can take the chanctx_conf pointer out of the
* RCU critical section, it cannot go away without
* the mutex. Just the way we reached it could - in
* theory - go away, but we don't really care and
* it really shouldn't happen anyway.
*/
rcu_read_unlock();
if (!chanctx_conf)
return;
chanctx = container_of(chanctx_conf, struct ieee80211_chanctx,
conf);
ieee80211_recalc_chanctx_min_def(local, chanctx, NULL, false);
}
}
size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
{
size_t pos = offset;
while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
pos += 2 + ies[pos + 1];
return pos;
}
u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
u16 cap)
{
__le16 tmp;
*pos++ = WLAN_EID_HT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_ht_cap);
memset(pos, 0, sizeof(struct ieee80211_ht_cap));
/* capability flags */
tmp = cpu_to_le16(cap);
memcpy(pos, &tmp, sizeof(u16));
pos += sizeof(u16);
/* AMPDU parameters */
*pos++ = ht_cap->ampdu_factor |
(ht_cap->ampdu_density <<
IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
/* MCS set */
memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
pos += sizeof(ht_cap->mcs);
/* extended capabilities */
pos += sizeof(__le16);
/* BF capabilities */
pos += sizeof(__le32);
/* antenna selection */
pos += sizeof(u8);
return pos;
}
u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
u32 cap)
{
__le32 tmp;
*pos++ = WLAN_EID_VHT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_vht_cap);
memset(pos, 0, sizeof(struct ieee80211_vht_cap));
/* capability flags */
tmp = cpu_to_le32(cap);
memcpy(pos, &tmp, sizeof(u32));
pos += sizeof(u32);
/* VHT MCS set */
memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
pos += sizeof(vht_cap->vht_mcs);
return pos;
}
/* this may return more than ieee80211_put_he_6ghz_cap() will need */
u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata)
{
const struct ieee80211_sta_he_cap *he_cap;
struct ieee80211_supported_band *sband;
u8 n;
sband = ieee80211_get_sband(sdata);
if (!sband)
return 0;
he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
if (!he_cap)
return 0;
n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
return 2 + 1 +
sizeof(he_cap->he_cap_elem) + n +
ieee80211_he_ppe_size(he_cap->ppe_thres[0],
he_cap->he_cap_elem.phy_cap_info);
}
static void
ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn,
const struct ieee80211_sta_he_cap *he_cap,
struct ieee80211_he_cap_elem *elem)
{
u8 ru_limit, max_ru;
*elem = he_cap->he_cap_elem;
switch (conn->bw_limit) {
case IEEE80211_CONN_BW_LIMIT_20:
ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242;
break;
case IEEE80211_CONN_BW_LIMIT_40:
ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
break;
case IEEE80211_CONN_BW_LIMIT_80:
ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996;
break;
default:
ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996;
break;
}
max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK;
max_ru = min(max_ru, ru_limit);
elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK;
elem->phy_cap_info[8] |= max_ru;
if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) {
elem->phy_cap_info[0] &=
~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G);
elem->phy_cap_info[9] &=
~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM;
}
if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) {
elem->phy_cap_info[0] &=
~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G);
elem->phy_cap_info[5] &=
~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
elem->phy_cap_info[7] &=
~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ);
}
}
int ieee80211_put_he_cap(struct sk_buff *skb,
struct ieee80211_sub_if_data *sdata,
const struct ieee80211_supported_band *sband,
const struct ieee80211_conn_settings *conn)
{
const struct ieee80211_sta_he_cap *he_cap;
struct ieee80211_he_cap_elem elem;
u8 *len;
u8 n;
u8 ie_len;
if (!conn)
conn = &ieee80211_conn_settings_unlimited;
he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
if (!he_cap)
return 0;
/* modify on stack first to calculate 'n' and 'ie_len' correctly */
ieee80211_get_adjusted_he_cap(conn, he_cap, &elem);
n = ieee80211_he_mcs_nss_size(&elem);
ie_len = 2 + 1 +
sizeof(he_cap->he_cap_elem) + n +
ieee80211_he_ppe_size(he_cap->ppe_thres[0],
he_cap->he_cap_elem.phy_cap_info);
if (skb_tailroom(skb) < ie_len)
return -ENOBUFS;
skb_put_u8(skb, WLAN_EID_EXTENSION);
len = skb_put(skb, 1); /* We'll set the size later below */
skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY);
/* Fixed data */
skb_put_data(skb, &elem, sizeof(elem));
skb_put_data(skb, &he_cap->he_mcs_nss_supp, n);
/* Check if PPE Threshold should be present */
if ((he_cap->he_cap_elem.phy_cap_info[6] &
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
goto end;
/*
* Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
* (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
*/
n = hweight8(he_cap->ppe_thres[0] &
IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
IEEE80211_PPE_THRES_NSS_POS));
/*
* Each pair is 6 bits, and we need to add the 7 "header" bits to the
* total size.
*/
n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
n = DIV_ROUND_UP(n, 8);
/* Copy PPE Thresholds */
skb_put_data(skb, &he_cap->ppe_thres, n);
end:
*len = skb_tail_pointer(skb) - len - 1;
return 0;
}
int ieee80211_put_he_6ghz_cap(struct sk_buff *skb,
struct ieee80211_sub_if_data *sdata,
enum ieee80211_smps_mode smps_mode)
{
struct ieee80211_supported_band *sband;
const struct ieee80211_sband_iftype_data *iftd;
enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
__le16 cap;
if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy,
BIT(NL80211_BAND_6GHZ),
IEEE80211_CHAN_NO_HE))
return 0;
sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ];
iftd = ieee80211_get_sband_iftype_data(sband, iftype);
if (!iftd)
return 0;
/* Check for device HE 6 GHz capability before adding element */
if (!iftd->he_6ghz_capa.capa)
return 0;
cap = iftd->he_6ghz_capa.capa;
cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS);
switch (smps_mode) {
case IEEE80211_SMPS_AUTOMATIC:
case IEEE80211_SMPS_NUM_MODES:
WARN_ON(1);
fallthrough;
case IEEE80211_SMPS_OFF:
cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
IEEE80211_HE_6GHZ_CAP_SM_PS);
break;
case IEEE80211_SMPS_STATIC:
cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
IEEE80211_HE_6GHZ_CAP_SM_PS);
break;
case IEEE80211_SMPS_DYNAMIC:
cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
IEEE80211_HE_6GHZ_CAP_SM_PS);
break;
}
if (skb_tailroom(skb) < 2 + 1 + sizeof(cap))
return -ENOBUFS;
skb_put_u8(skb, WLAN_EID_EXTENSION);
skb_put_u8(skb, 1 + sizeof(cap));
skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA);
skb_put_data(skb, &cap, sizeof(cap));
return 0;
}
u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
const struct cfg80211_chan_def *chandef,
u16 prot_mode, bool rifs_mode)
{
struct ieee80211_ht_operation *ht_oper;
/* Build HT Information */
*pos++ = WLAN_EID_HT_OPERATION;
*pos++ = sizeof(struct ieee80211_ht_operation);
ht_oper = (struct ieee80211_ht_operation *)pos;
ht_oper->primary_chan = ieee80211_frequency_to_channel(
chandef->chan->center_freq);
switch (chandef->width) {
case NL80211_CHAN_WIDTH_160:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_80:
case NL80211_CHAN_WIDTH_40:
if (chandef->center_freq1 > chandef->chan->center_freq)
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
else
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
break;
case NL80211_CHAN_WIDTH_320:
/* HT information element should not be included on 6GHz */
WARN_ON(1);
return pos;
default:
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
break;
}
if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
chandef->width != NL80211_CHAN_WIDTH_20)
ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
if (rifs_mode)
ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
ht_oper->operation_mode = cpu_to_le16(prot_mode);
ht_oper->stbc_param = 0x0000;
/* It seems that Basic MCS set and Supported MCS set
are identical for the first 10 bytes */
memset(&ht_oper->basic_set, 0, 16);
memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
return pos + sizeof(struct ieee80211_ht_operation);
}
void ieee80211_ie_build_wide_bw_cs(u8 *pos,
const struct cfg80211_chan_def *chandef)
{
*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */
*pos++ = 3; /* IE length */
/* New channel width */
switch (chandef->width) {
case NL80211_CHAN_WIDTH_80:
*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
break;
case NL80211_CHAN_WIDTH_160:
*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
break;
case NL80211_CHAN_WIDTH_80P80:
*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
break;
case NL80211_CHAN_WIDTH_320:
/* The behavior is not defined for 320 MHz channels */
WARN_ON(1);
fallthrough;
default:
*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
}
/* new center frequency segment 0 */
*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
/* new center frequency segment 1 */
if (chandef->center_freq2)
*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
else
*pos++ = 0;
}
u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
const struct cfg80211_chan_def *chandef)
{
struct ieee80211_vht_operation *vht_oper;
*pos++ = WLAN_EID_VHT_OPERATION;
*pos++ = sizeof(struct ieee80211_vht_operation);
vht_oper = (struct ieee80211_vht_operation *)pos;
vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
chandef->center_freq1);
if (chandef->center_freq2)
vht_oper->center_freq_seg1_idx =
ieee80211_frequency_to_channel(chandef->center_freq2);
else
vht_oper->center_freq_seg1_idx = 0x00;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_160:
/*
* Convert 160 MHz channel width to new style as interop
* workaround.
*/
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
if (chandef->chan->center_freq < chandef->center_freq1)
vht_oper->center_freq_seg0_idx -= 8;
else
vht_oper->center_freq_seg0_idx += 8;
break;
case NL80211_CHAN_WIDTH_80P80:
/*
* Convert 80+80 MHz channel width to new style as interop
* workaround.
*/
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
break;
case NL80211_CHAN_WIDTH_80:
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
break;
case NL80211_CHAN_WIDTH_320:
/* VHT information element should not be included on 6GHz */
WARN_ON(1);
return pos;
default:
vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
break;
}
/* don't require special VHT peer rates */
vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
return pos + sizeof(struct ieee80211_vht_operation);
}
u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef)
{
struct ieee80211_he_operation *he_oper;
struct ieee80211_he_6ghz_oper *he_6ghz_op;
u32 he_oper_params;
u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
if (chandef->chan->band == NL80211_BAND_6GHZ)
ie_len += sizeof(struct ieee80211_he_6ghz_oper);
*pos++ = WLAN_EID_EXTENSION;
*pos++ = ie_len;
*pos++ = WLAN_EID_EXT_HE_OPERATION;
he_oper_params = 0;
he_oper_params |= u32_encode_bits(1023, /* disabled */
IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
he_oper_params |= u32_encode_bits(1,
IEEE80211_HE_OPERATION_ER_SU_DISABLE);
he_oper_params |= u32_encode_bits(1,
IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
if (chandef->chan->band == NL80211_BAND_6GHZ)
he_oper_params |= u32_encode_bits(1,
IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
he_oper = (struct ieee80211_he_operation *)pos;
he_oper->he_oper_params = cpu_to_le32(he_oper_params);
/* don't require special HE peer rates */
he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
pos += sizeof(struct ieee80211_he_operation);
if (chandef->chan->band != NL80211_BAND_6GHZ)
goto out;
/* TODO add VHT operational */
he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
he_6ghz_op->minrate = 6; /* 6 Mbps */
he_6ghz_op->primary =
ieee80211_frequency_to_channel(chandef->chan->center_freq);
he_6ghz_op->ccfs0 =
ieee80211_frequency_to_channel(chandef->center_freq1);
if (chandef->center_freq2)
he_6ghz_op->ccfs1 =
ieee80211_frequency_to_channel(chandef->center_freq2);
else
he_6ghz_op->ccfs1 = 0;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_320:
/*
* TODO: mesh operation is not defined over 6GHz 320 MHz
* channels.
*/
WARN_ON(1);
break;
case NL80211_CHAN_WIDTH_160:
/* Convert 160 MHz channel width to new style as interop
* workaround.
*/
he_6ghz_op->control =
IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
if (chandef->chan->center_freq < chandef->center_freq1)
he_6ghz_op->ccfs0 -= 8;
else
he_6ghz_op->ccfs0 += 8;
fallthrough;
case NL80211_CHAN_WIDTH_80P80:
he_6ghz_op->control =
IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
break;
case NL80211_CHAN_WIDTH_80:
he_6ghz_op->control =
IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
break;
case NL80211_CHAN_WIDTH_40:
he_6ghz_op->control =
IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
break;
default:
he_6ghz_op->control =
IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
break;
}
pos += sizeof(struct ieee80211_he_6ghz_oper);
out:
return pos;
}
u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef,
const struct ieee80211_sta_eht_cap *eht_cap)
{
const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss =
&eht_cap->eht_mcs_nss_supp.only_20mhz;
struct ieee80211_eht_operation *eht_oper;
struct ieee80211_eht_operation_info *eht_oper_info;
u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional);
u8 eht_oper_info_len =
offsetof(struct ieee80211_eht_operation_info, optional);
u8 chan_width = 0;
*pos++ = WLAN_EID_EXTENSION;
*pos++ = 1 + eht_oper_len + eht_oper_info_len;
*pos++ = WLAN_EID_EXT_EHT_OPERATION;
eht_oper = (struct ieee80211_eht_operation *)pos;
memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss));
eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT;
pos += eht_oper_len;
eht_oper_info =
(struct ieee80211_eht_operation_info *)eht_oper->optional;
eht_oper_info->ccfs0 =
ieee80211_frequency_to_channel(chandef->center_freq1);
if (chandef->center_freq2)
eht_oper_info->ccfs1 =
ieee80211_frequency_to_channel(chandef->center_freq2);
else
eht_oper_info->ccfs1 = 0;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_320:
chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ;
eht_oper_info->ccfs1 = eht_oper_info->ccfs0;
if (chandef->chan->center_freq < chandef->center_freq1)
eht_oper_info->ccfs0 -= 16;
else
eht_oper_info->ccfs0 += 16;
break;
case NL80211_CHAN_WIDTH_160:
eht_oper_info->ccfs1 = eht_oper_info->ccfs0;
if (chandef->chan->center_freq < chandef->center_freq1)
eht_oper_info->ccfs0 -= 8;
else
eht_oper_info->ccfs0 += 8;
fallthrough;
case NL80211_CHAN_WIDTH_80P80:
chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ;
break;
case NL80211_CHAN_WIDTH_80:
chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ;
break;
case NL80211_CHAN_WIDTH_40:
chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ;
break;
default:
chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ;
break;
}
eht_oper_info->control = chan_width;
pos += eht_oper_info_len;
/* TODO: eht_oper_info->optional */
return pos;
}
bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
struct cfg80211_chan_def *chandef)
{
enum nl80211_channel_type channel_type;
if (!ht_oper)
return false;
switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
case IEEE80211_HT_PARAM_CHA_SEC_NONE:
channel_type = NL80211_CHAN_HT20;
break;
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
channel_type = NL80211_CHAN_HT40PLUS;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
channel_type = NL80211_CHAN_HT40MINUS;
break;
default:
return false;
}
cfg80211_chandef_create(chandef, chandef->chan, channel_type);
return true;
}
bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
const struct ieee80211_vht_operation *oper,
const struct ieee80211_ht_operation *htop,
struct cfg80211_chan_def *chandef)
{
struct cfg80211_chan_def new = *chandef;
int cf0, cf1;
int ccfs0, ccfs1, ccfs2;
int ccf0, ccf1;
u32 vht_cap;
bool support_80_80 = false;
bool support_160 = false;
u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info,
IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
u8 supp_chwidth = u32_get_bits(vht_cap_info,
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
if (!oper || !htop)
return false;
vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
support_80_80 = ((vht_cap &
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
(vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
ccfs0 = oper->center_freq_seg0_idx;
ccfs1 = oper->center_freq_seg1_idx;
ccfs2 = (le16_to_cpu(htop->operation_mode) &
IEEE80211_HT_OP_MODE_CCFS2_MASK)
>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
ccf0 = ccfs0;
/* if not supported, parse as though we didn't understand it */
if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
ext_nss_bw_supp = 0;
/*
* Cf. IEEE 802.11 Table 9-250
*
* We really just consider that because it's inefficient to connect
* at a higher bandwidth than we'll actually be able to use.
*/
switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
default:
case 0x00:
ccf1 = 0;
support_160 = false;
support_80_80 = false;
break;
case 0x01:
support_80_80 = false;
fallthrough;
case 0x02:
case 0x03:
ccf1 = ccfs2;
break;
case 0x10:
ccf1 = ccfs1;
break;
case 0x11:
case 0x12:
if (!ccfs1)
ccf1 = ccfs2;
else
ccf1 = ccfs1;
break;
case 0x13:
case 0x20:
case 0x23:
ccf1 = ccfs1;
break;
}
cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
switch (oper->chan_width) {
case IEEE80211_VHT_CHANWIDTH_USE_HT:
/* just use HT information directly */
break;
case IEEE80211_VHT_CHANWIDTH_80MHZ:
new.width = NL80211_CHAN_WIDTH_80;
new.center_freq1 = cf0;
/* If needed, adjust based on the newer interop workaround. */
if (ccf1) {
unsigned int diff;
diff = abs(ccf1 - ccf0);
if ((diff == 8) && support_160) {
new.width = NL80211_CHAN_WIDTH_160;
new.center_freq1 = cf1;
} else if ((diff > 8) && support_80_80) {
new.width = NL80211_CHAN_WIDTH_80P80;
new.center_freq2 = cf1;
}
}
break;
case IEEE80211_VHT_CHANWIDTH_160MHZ:
/* deprecated encoding */
new.width = NL80211_CHAN_WIDTH_160;
new.center_freq1 = cf0;
break;
case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
/* deprecated encoding */
new.width = NL80211_CHAN_WIDTH_80P80;
new.center_freq1 = cf0;
new.center_freq2 = cf1;
break;
default:
return false;
}
if (!cfg80211_chandef_valid(&new))
return false;
*chandef = new;
return true;
}
void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info,
struct cfg80211_chan_def *chandef)
{
chandef->center_freq1 =
ieee80211_channel_to_frequency(info->ccfs0,
chandef->chan->band);
switch (u8_get_bits(info->control,
IEEE80211_EHT_OPER_CHAN_WIDTH)) {
case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ:
chandef->width = NL80211_CHAN_WIDTH_20;
break;
case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ:
chandef->width = NL80211_CHAN_WIDTH_40;
break;
case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ:
chandef->width = NL80211_CHAN_WIDTH_80;
break;
case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ:
chandef->width = NL80211_CHAN_WIDTH_160;
chandef->center_freq1 =
ieee80211_channel_to_frequency(info->ccfs1,
chandef->chan->band);
break;
case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ:
chandef->width = NL80211_CHAN_WIDTH_320;
chandef->center_freq1 =
ieee80211_channel_to_frequency(info->ccfs1,
chandef->chan->band);
break;
}
}
bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local,
const struct ieee80211_he_operation *he_oper,
const struct ieee80211_eht_operation *eht_oper,
struct cfg80211_chan_def *chandef)
{
struct cfg80211_chan_def he_chandef = *chandef;
const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
u32 freq;
if (chandef->chan->band != NL80211_BAND_6GHZ)
return true;
if (!he_oper)
return false;
he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
if (!he_6ghz_oper)
return false;
/*
* The EHT operation IE does not contain the primary channel so the
* primary channel frequency should be taken from the 6 GHz operation
* information.
*/
freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary,
NL80211_BAND_6GHZ);
he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq);
if (!he_chandef.chan)
return false;
if (!eht_oper ||
!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) {
switch (u8_get_bits(he_6ghz_oper->control,
IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
he_chandef.width = NL80211_CHAN_WIDTH_20;
break;
case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
he_chandef.width = NL80211_CHAN_WIDTH_40;
break;
case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
he_chandef.width = NL80211_CHAN_WIDTH_80;
break;
case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
he_chandef.width = NL80211_CHAN_WIDTH_80;
if (!he_6ghz_oper->ccfs1)
break;
if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8)
he_chandef.width = NL80211_CHAN_WIDTH_160;
else
he_chandef.width = NL80211_CHAN_WIDTH_80P80;
break;
}
if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
he_chandef.center_freq1 =
ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
NL80211_BAND_6GHZ);
} else {
he_chandef.center_freq1 =
ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0,
NL80211_BAND_6GHZ);
he_chandef.center_freq2 =
ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
NL80211_BAND_6GHZ);
}
} else {
ieee80211_chandef_eht_oper((const void *)eht_oper->optional,
&he_chandef);
he_chandef.punctured =
ieee80211_eht_oper_dis_subchan_bitmap(eht_oper);
}
if (!cfg80211_chandef_valid(&he_chandef))
return false;
*chandef = he_chandef;
return true;
}
bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper,
struct cfg80211_chan_def *chandef)
{
u32 oper_freq;
if (!oper)
return false;
switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
case IEEE80211_S1G_CHANWIDTH_1MHZ:
chandef->width = NL80211_CHAN_WIDTH_1;
break;
case IEEE80211_S1G_CHANWIDTH_2MHZ:
chandef->width = NL80211_CHAN_WIDTH_2;
break;
case IEEE80211_S1G_CHANWIDTH_4MHZ:
chandef->width = NL80211_CHAN_WIDTH_4;
break;
case IEEE80211_S1G_CHANWIDTH_8MHZ:
chandef->width = NL80211_CHAN_WIDTH_8;
break;
case IEEE80211_S1G_CHANWIDTH_16MHZ:
chandef->width = NL80211_CHAN_WIDTH_16;
break;
default:
return false;
}
oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch,
NL80211_BAND_S1GHZ);
chandef->center_freq1 = KHZ_TO_MHZ(oper_freq);
chandef->freq1_offset = oper_freq % 1000;
return true;
}
int ieee80211_put_srates_elem(struct sk_buff *skb,
const struct ieee80211_supported_band *sband,
u32 basic_rates, u32 rate_flags, u32 masked_rates,
u8 element_id)
{
u8 i, rates, skip;
rates = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
continue;
if (masked_rates & BIT(i))
continue;
rates++;
}
if (element_id == WLAN_EID_SUPP_RATES) {
rates = min_t(u8, rates, 8);
skip = 0;
} else {
skip = 8;
if (rates <= skip)
return 0;
rates -= skip;
}
if (skb_tailroom(skb) < rates + 2)
return -ENOBUFS;
skb_put_u8(skb, element_id);
skb_put_u8(skb, rates);
for (i = 0; i < sband->n_bitrates && rates; i++) {
int rate;
u8 basic;
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
continue;
if (masked_rates & BIT(i))
continue;
if (skip > 0) {
skip--;
continue;
}
basic = basic_rates & BIT(i) ? 0x80 : 0;
rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5);
skb_put_u8(skb, basic | (u8)rate);
rates--;
}
WARN(rates > 0, "rates confused: rates:%d, element:%d\n",
rates, element_id);
return 0;
}
int ieee80211_ave_rssi(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION))
return 0;
return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal);
}
EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
{
if (!mcs)
return 1;
/* TODO: consider rx_highest */
if (mcs->rx_mask[3])
return 4;
if (mcs->rx_mask[2])
return 3;
if (mcs->rx_mask[1])
return 2;
return 1;
}
/**
* ieee80211_calculate_rx_timestamp - calculate timestamp in frame
* @local: mac80211 hw info struct
* @status: RX status
* @mpdu_len: total MPDU length (including FCS)
* @mpdu_offset: offset into MPDU to calculate timestamp at
*
* This function calculates the RX timestamp at the given MPDU offset, taking
* into account what the RX timestamp was. An offset of 0 will just normalize
* the timestamp to TSF at beginning of MPDU reception.
*
* Returns: the calculated timestamp
*/
u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
struct ieee80211_rx_status *status,
unsigned int mpdu_len,
unsigned int mpdu_offset)
{
u64 ts = status->mactime;
bool mactime_plcp_start;
struct rate_info ri;
u16 rate;
u8 n_ltf;
if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
return 0;
mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) ==
RX_FLAG_MACTIME_PLCP_START;
memset(&ri, 0, sizeof(ri));
ri.bw = status->bw;
/* Fill cfg80211 rate info */
switch (status->encoding) {
case RX_ENC_EHT:
ri.flags |= RATE_INFO_FLAGS_EHT_MCS;
ri.mcs = status->rate_idx;
ri.nss = status->nss;
ri.eht_ru_alloc = status->eht.ru;
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
/* TODO/FIXME: is this right? handle other PPDUs */
if (mactime_plcp_start) {
mpdu_offset += 2;
ts += 36;
}
break;
case RX_ENC_HE:
ri.flags |= RATE_INFO_FLAGS_HE_MCS;
ri.mcs = status->rate_idx;
ri.nss = status->nss;
ri.he_ru_alloc = status->he_ru;
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
/*
* See P802.11ax_D6.0, section 27.3.4 for
* VHT PPDU format.
*/
if (mactime_plcp_start) {
mpdu_offset += 2;
ts += 36;
/*
* TODO:
* For HE MU PPDU, add the HE-SIG-B.
* For HE ER PPDU, add 8us for the HE-SIG-A.
* For HE TB PPDU, add 4us for the HE-STF.
* Add the HE-LTF durations - variable.
*/
}
break;
case RX_ENC_HT:
ri.mcs = status->rate_idx;
ri.flags |= RATE_INFO_FLAGS_MCS;
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
/*
* See P802.11REVmd_D3.0, section 19.3.2 for
* HT PPDU format.
*/
if (mactime_plcp_start) {
mpdu_offset += 2;
if (status->enc_flags & RX_ENC_FLAG_HT_GF)
ts += 24;
else
ts += 32;
/*
* Add Data HT-LTFs per streams
* TODO: add Extension HT-LTFs, 4us per LTF
*/
n_ltf = ((ri.mcs >> 3) & 3) + 1;
n_ltf = n_ltf == 3 ? 4 : n_ltf;
ts += n_ltf * 4;
}
break;
case RX_ENC_VHT:
ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
ri.mcs = status->rate_idx;
ri.nss = status->nss;
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
/*
* See P802.11REVmd_D3.0, section 21.3.2 for
* VHT PPDU format.
*/
if (mactime_plcp_start) {
mpdu_offset += 2;
ts += 36;
/*
* Add VHT-LTFs per streams
*/
n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
ri.nss + 1 : ri.nss;
ts += 4 * n_ltf;
}
break;
default:
WARN_ON(1);
fallthrough;
case RX_ENC_LEGACY: {
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[status->band];
ri.legacy = sband->bitrates[status->rate_idx].bitrate;
if (mactime_plcp_start) {
if (status->band == NL80211_BAND_5GHZ) {
ts += 20;
mpdu_offset += 2;
} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
ts += 96;
} else {
ts += 192;
}
}
break;
}
}
rate = cfg80211_calculate_bitrate(&ri);
if (WARN_ONCE(!rate,
"Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
(unsigned long long)status->flag, status->rate_idx,
status->nss))
return 0;
/* rewind from end of MPDU */
if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END)
ts -= mpdu_len * 8 * 10 / rate;
ts += mpdu_offset * 8 * 10 / rate;
return ts;
}
/* Cancel CAC for the interfaces under the specified @local. If @ctx is
* also provided, only the interfaces using that ctx will be canceled.
*/
void ieee80211_dfs_cac_cancel(struct ieee80211_local *local,
struct ieee80211_chanctx *ctx)
{
struct ieee80211_sub_if_data *sdata;
struct cfg80211_chan_def chandef;
struct ieee80211_link_data *link;
struct ieee80211_chanctx_conf *chanctx_conf;
unsigned int link_id;
lockdep_assert_wiphy(local->hw.wiphy);
list_for_each_entry(sdata, &local->interfaces, list) {
for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS;
link_id++) {
link = sdata_dereference(sdata->link[link_id],
sdata);
if (!link)
continue;
chanctx_conf = sdata_dereference(link->conf->chanctx_conf,
sdata);
if (ctx && &ctx->conf != chanctx_conf)
continue;
wiphy_delayed_work_cancel(local->hw.wiphy,
&link->dfs_cac_timer_work);
if (!sdata->wdev.links[link_id].cac_started)
continue;
chandef = link->conf->chanreq.oper;
ieee80211_link_release_channel(link);
cfg80211_cac_event(sdata->dev, &chandef,
NL80211_RADAR_CAC_ABORTED,
GFP_KERNEL, link_id);
}
}
}
void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local, radar_detected_work);
struct cfg80211_chan_def chandef;
struct ieee80211_chanctx *ctx;
lockdep_assert_wiphy(local->hw.wiphy);
list_for_each_entry(ctx, &local->chanctx_list, list) {
if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
continue;
if (!ctx->radar_detected)
continue;
ctx->radar_detected = false;
chandef = ctx->conf.def;
ieee80211_dfs_cac_cancel(local, ctx);
cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
}
}
static void
ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *chanctx_conf,
void *data)
{
struct ieee80211_chanctx *ctx =
container_of(chanctx_conf, struct ieee80211_chanctx,
conf);
if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
return;
if (data && data != chanctx_conf)
return;
ctx->radar_detected = true;
}
void ieee80211_radar_detected(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *chanctx_conf)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_api_radar_detected(local);
ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator,
chanctx_conf);
wiphy_work_queue(hw->wiphy, &local->radar_detected_work);
}
EXPORT_SYMBOL(ieee80211_radar_detected);
void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c,
struct ieee80211_conn_settings *conn)
{
enum nl80211_chan_width new_primary_width;
struct ieee80211_conn_settings _ignored = {};
/* allow passing NULL if caller doesn't care */
if (!conn)
conn = &_ignored;
again:
/* no-HT indicates nothing to do */
new_primary_width = NL80211_CHAN_WIDTH_20_NOHT;
switch (c->width) {
default:
case NL80211_CHAN_WIDTH_20_NOHT:
WARN_ON_ONCE(1);
fallthrough;
case NL80211_CHAN_WIDTH_20:
c->width = NL80211_CHAN_WIDTH_20_NOHT;
conn->mode = IEEE80211_CONN_MODE_LEGACY;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
c->punctured = 0;
break;
case NL80211_CHAN_WIDTH_40:
c->width = NL80211_CHAN_WIDTH_20;
c->center_freq1 = c->chan->center_freq;
if (conn->mode == IEEE80211_CONN_MODE_VHT)
conn->mode = IEEE80211_CONN_MODE_HT;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
c->punctured = 0;
break;
case NL80211_CHAN_WIDTH_80:
new_primary_width = NL80211_CHAN_WIDTH_40;
if (conn->mode == IEEE80211_CONN_MODE_VHT)
conn->mode = IEEE80211_CONN_MODE_HT;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40;
break;
case NL80211_CHAN_WIDTH_80P80:
c->center_freq2 = 0;
c->width = NL80211_CHAN_WIDTH_80;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80;
break;
case NL80211_CHAN_WIDTH_160:
new_primary_width = NL80211_CHAN_WIDTH_80;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80;
break;
case NL80211_CHAN_WIDTH_320:
new_primary_width = NL80211_CHAN_WIDTH_160;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160;
break;
case NL80211_CHAN_WIDTH_1:
case NL80211_CHAN_WIDTH_2:
case NL80211_CHAN_WIDTH_4:
case NL80211_CHAN_WIDTH_8:
case NL80211_CHAN_WIDTH_16:
WARN_ON_ONCE(1);
/* keep c->width */
conn->mode = IEEE80211_CONN_MODE_S1G;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
WARN_ON_ONCE(1);
/* keep c->width */
conn->mode = IEEE80211_CONN_MODE_LEGACY;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
break;
}
if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) {
c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width,
&c->punctured);
c->width = new_primary_width;
}
/*
* With an 80 MHz channel, we might have the puncturing in the primary
* 40 Mhz channel, but that's not valid when downgraded to 40 MHz width.
* In that case, downgrade again.
*/
if (!cfg80211_chandef_valid(c) && c->punctured)
goto again;
WARN_ON_ONCE(!cfg80211_chandef_valid(c));
}
/*
* Returns true if smps_mode_new is strictly more restrictive than
* smps_mode_old.
*/
bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
enum ieee80211_smps_mode smps_mode_new)
{
if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
return false;
switch (smps_mode_old) {
case IEEE80211_SMPS_STATIC:
return false;
case IEEE80211_SMPS_DYNAMIC:
return smps_mode_new == IEEE80211_SMPS_STATIC;
case IEEE80211_SMPS_OFF:
return smps_mode_new != IEEE80211_SMPS_OFF;
default:
WARN_ON(1);
}
return false;
}
int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
struct cfg80211_csa_settings *csa_settings)
{
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
struct ieee80211_local *local = sdata->local;
int freq;
int hdr_len = offsetofend(struct ieee80211_mgmt,
u.action.u.chan_switch);
u8 *pos;
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
return -EOPNOTSUPP;
skb = dev_alloc_skb(local->tx_headroom + hdr_len +
5 + /* channel switch announcement element */
3 + /* secondary channel offset element */
5 + /* wide bandwidth channel switch announcement */
8); /* mesh channel switch parameters element */
if (!skb)
return -ENOMEM;
skb_reserve(skb, local->tx_headroom);
mgmt = skb_put_zero(skb, hdr_len);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
eth_broadcast_addr(mgmt->da);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
if (ieee80211_vif_is_mesh(&sdata->vif)) {
memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
} else {
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
}
mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
pos = skb_put(skb, 5);
*pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */
*pos++ = 3; /* IE length */
*pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */
freq = csa_settings->chandef.chan->center_freq;
*pos++ = ieee80211_frequency_to_channel(freq); /* channel */
*pos++ = csa_settings->count; /* count */
if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
enum nl80211_channel_type ch_type;
skb_put(skb, 3);
*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */
*pos++ = 1; /* IE length */
ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
if (ch_type == NL80211_CHAN_HT40PLUS)
*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
else
*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
}
if (ieee80211_vif_is_mesh(&sdata->vif)) {
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
skb_put(skb, 8);
*pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */
*pos++ = 6; /* IE length */
*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */
*pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */
*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
*pos++ |= csa_settings->block_tx ?
WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
pos += 2;
put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
pos += 2;
}
if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
skb_put(skb, 5);
ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
}
ieee80211_tx_skb(sdata, skb);
return 0;
}
static bool
ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
{
s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
int skip;
if (end > 0)
return false;
/* One shot NOA */
if (data->count[i] == 1)
return false;
if (data->desc[i].interval == 0)
return false;
/* End time is in the past, check for repetitions */
skip = DIV_ROUND_UP(-end, data->desc[i].interval);
if (data->count[i] < 255) {
if (data->count[i] <= skip) {
data->count[i] = 0;
return false;
}
data->count[i] -= skip;
}
data->desc[i].start += skip * data->desc[i].interval;
return true;
}
static bool
ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
s32 *offset)
{
bool ret = false;
int i;
for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
s32 cur;
if (!data->count[i])
continue;
if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
ret = true;
cur = data->desc[i].start - tsf;
if (cur > *offset)
continue;
cur = data->desc[i].start + data->desc[i].duration - tsf;
if (cur > *offset)
*offset = cur;
}
return ret;
}
static u32
ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
{
s32 offset = 0;
int tries = 0;
/*
* arbitrary limit, used to avoid infinite loops when combined NoA
* descriptors cover the full time period.
*/
int max_tries = 5;
ieee80211_extend_absent_time(data, tsf, &offset);
do {
if (!ieee80211_extend_absent_time(data, tsf, &offset))
break;
tries++;
} while (tries < max_tries);
return offset;
}
void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
{
u32 next_offset = BIT(31) - 1;
int i;
data->absent = 0;
data->has_next_tsf = false;
for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
s32 start;
if (!data->count[i])
continue;
ieee80211_extend_noa_desc(data, tsf, i);
start = data->desc[i].start - tsf;
if (start <= 0)
data->absent |= BIT(i);
if (next_offset > start)
next_offset = start;
data->has_next_tsf = true;
}
if (data->absent)
next_offset = ieee80211_get_noa_absent_time(data, tsf);
data->next_tsf = tsf + next_offset;
}
EXPORT_SYMBOL(ieee80211_update_p2p_noa);
int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
struct ieee80211_noa_data *data, u32 tsf)
{
int ret = 0;
int i;
memset(data, 0, sizeof(*data));
for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
if (!desc->count || !desc->duration)
continue;
data->count[i] = desc->count;
data->desc[i].start = le32_to_cpu(desc->start_time);
data->desc[i].duration = le32_to_cpu(desc->duration);
data->desc[i].interval = le32_to_cpu(desc->interval);
if (data->count[i] > 1 &&
data->desc[i].interval < data->desc[i].duration)
continue;
ieee80211_extend_noa_desc(data, tsf, i);
ret++;
}
if (ret)
ieee80211_update_p2p_noa(data, tsf);
return ret;
}
EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
void ieee80211_recalc_dtim(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
u64 tsf = drv_get_tsf(local, sdata);
u64 dtim_count = 0;
u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
u8 dtim_period = sdata->vif.bss_conf.dtim_period;
struct ps_data *ps;
u8 bcns_from_dtim;
if (tsf == -1ULL || !beacon_int || !dtim_period)
return;
if (sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
if (!sdata->bss)
return;
ps = &sdata->bss->ps;
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
ps = &sdata->u.mesh.ps;
} else {
return;
}
/*
* actually finds last dtim_count, mac80211 will update in
* __beacon_add_tim().
* dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
*/
do_div(tsf, beacon_int);
bcns_from_dtim = do_div(tsf, dtim_period);
/* just had a DTIM */
if (!bcns_from_dtim)
dtim_count = 0;
else
dtim_count = dtim_period - bcns_from_dtim;
ps->dtim_count = dtim_count;
}
static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
struct ieee80211_chanctx *ctx)
{
struct ieee80211_link_data *link;
u8 radar_detect = 0;
lockdep_assert_wiphy(local->hw.wiphy);
if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
return 0;
list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list)
if (link->reserved_radar_required)
radar_detect |= BIT(link->reserved.oper.width);
/*
* An in-place reservation context should not have any assigned vifs
* until it replaces the other context.
*/
WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
!list_empty(&ctx->assigned_links));
list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) {
if (!link->radar_required)
continue;
radar_detect |=
BIT(link->conf->chanreq.oper.width);
}
return radar_detect;
}
static u32
__ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_bss_conf *link_conf;
struct ieee80211_chanctx_conf *conf;
unsigned int link_id;
u32 mask = 0;
for_each_vif_active_link(&sdata->vif, link_conf, link_id) {
conf = sdata_dereference(link_conf->chanctx_conf, sdata);
if (!conf || conf->radio_idx < 0)
continue;
mask |= BIT(conf->radio_idx);
}
return mask;
}
u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
return __ieee80211_get_radio_mask(sdata);
}
static bool
ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx)
{
if (radio_idx < 0)
return true;
return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx);
}
static int
ieee80211_fill_ifcomb_params(struct ieee80211_local *local,
struct iface_combination_params *params,
const struct cfg80211_chan_def *chandef,
struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_sub_if_data *sdata_iter;
struct ieee80211_chanctx *ctx;
int total = !!sdata;
list_for_each_entry(ctx, &local->chanctx_list, list) {
if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
continue;
if (params->radio_idx >= 0 &&
ctx->conf.radio_idx != params->radio_idx)
continue;
params->radar_detect |=
ieee80211_chanctx_radar_detect(local, ctx);
if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE &&
cfg80211_chandef_compatible(chandef, &ctx->conf.def))
continue;
params->num_different_channels++;
}
list_for_each_entry(sdata_iter, &local->interfaces, list) {
struct wireless_dev *wdev_iter;
wdev_iter = &sdata_iter->wdev;
if (sdata_iter == sdata ||
!ieee80211_sdata_running(sdata_iter) ||
cfg80211_iftype_allowed(local->hw.wiphy,
wdev_iter->iftype, 0, 1))
continue;
if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx))
continue;
params->iftype_num[wdev_iter->iftype]++;
total++;
}
return total;
}
int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
const struct cfg80211_chan_def *chandef,
enum ieee80211_chanctx_mode chanmode,
u8 radar_detect, int radio_idx)
{
bool shared = chanmode == IEEE80211_CHANCTX_SHARED;
struct ieee80211_local *local = sdata->local;
enum nl80211_iftype iftype = sdata->wdev.iftype;
struct iface_combination_params params = {
.radar_detect = radar_detect,
.radio_idx = radio_idx,
};
int total;
lockdep_assert_wiphy(local->hw.wiphy);
if (WARN_ON(hweight32(radar_detect) > 1))
return -EINVAL;
if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
!chandef->chan))
return -EINVAL;
if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
return -EINVAL;
if (sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
/*
* always passing this is harmless, since it'll be the
* same value that cfg80211 finds if it finds the same
* interface ... and that's always allowed
*/
params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
}
/* Always allow software iftypes */
if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
if (radar_detect)
return -EINVAL;
return 0;
}
if (chandef)
params.num_different_channels = 1;
if (iftype != NL80211_IFTYPE_UNSPECIFIED)
params.iftype_num[iftype] = 1;
total = ieee80211_fill_ifcomb_params(local, ¶ms,
shared ? chandef : NULL,
sdata);
if (total == 1 && !params.radar_detect)
return 0;
return cfg80211_check_combinations(local->hw.wiphy, ¶ms);
}
static void
ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
void *data)
{
u32 *max_num_different_channels = data;
*max_num_different_channels = max(*max_num_different_channels,
c->num_different_channels);
}
int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx)
{
u32 max_num_different_channels = 1;
int err;
struct iface_combination_params params = {
.radio_idx = radio_idx,
};
lockdep_assert_wiphy(local->hw.wiphy);
ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL);
err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms,
ieee80211_iter_max_chans,
&max_num_different_channels);
if (err < 0)
return err;
return max_num_different_channels;
}
void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
struct ieee80211_sta_s1g_cap *caps,
struct sk_buff *skb)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_s1g_cap s1g_capab;
u8 *pos;
int i;
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
return;
if (!caps->s1g)
return;
memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap));
memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs));
/* override the capability info */
for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
s1g_capab.capab_info[i] &= ~mask;
s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
}
/* then MCS and NSS set */
for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
s1g_capab.supp_mcs_nss[i] &= ~mask;
s1g_capab.supp_mcs_nss[i] |=
ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
}
pos = skb_put(skb, 2 + sizeof(s1g_capab));
*pos++ = WLAN_EID_S1G_CAPABILITIES;
*pos++ = sizeof(s1g_capab);
memcpy(pos, &s1g_capab, sizeof(s1g_capab));
}
void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb)
{
u8 *pos = skb_put(skb, 3);
*pos++ = WLAN_EID_AID_REQUEST;
*pos++ = 1;
*pos++ = 0;
}
u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
{
*buf++ = WLAN_EID_VENDOR_SPECIFIC;
*buf++ = 7; /* len */
*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
*buf++ = 0x50;
*buf++ = 0xf2;
*buf++ = 2; /* WME */
*buf++ = 0; /* WME info */
*buf++ = 1; /* WME ver */
*buf++ = qosinfo; /* U-APSD no in use */
return buf;
}
void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
unsigned long *frame_cnt,
unsigned long *byte_cnt)
{
struct txq_info *txqi = to_txq_info(txq);
u32 frag_cnt = 0, frag_bytes = 0;
struct sk_buff *skb;
skb_queue_walk(&txqi->frags, skb) {
frag_cnt++;
frag_bytes += skb->len;
}
if (frame_cnt)
*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
if (byte_cnt)
*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
}
EXPORT_SYMBOL(ieee80211_txq_get_depth);
const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
};
u16 ieee80211_encode_usf(int listen_interval)
{
static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
u16 ui, usf = 0;
/* find greatest USF */
while (usf < IEEE80211_MAX_USF) {
if (listen_interval % listen_int_usf[usf + 1])
break;
usf += 1;
}
ui = listen_interval / listen_int_usf[usf];
/* error if there is a remainder. Should've been checked by user */
WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
FIELD_PREP(LISTEN_INT_UI, ui);
return (u16) listen_interval;
}
/* this may return more than ieee80211_put_eht_cap() will need */
u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata)
{
const struct ieee80211_sta_he_cap *he_cap;
const struct ieee80211_sta_eht_cap *eht_cap;
struct ieee80211_supported_band *sband;
bool is_ap;
u8 n;
sband = ieee80211_get_sband(sdata);
if (!sband)
return 0;
he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif);
if (!he_cap || !eht_cap)
return 0;
is_ap = sdata->vif.type == NL80211_IFTYPE_AP;
n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem,
&eht_cap->eht_cap_elem,
is_ap);
return 2 + 1 +
sizeof(eht_cap->eht_cap_elem) + n +
ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0],
eht_cap->eht_cap_elem.phy_cap_info);
return 0;
}
int ieee80211_put_eht_cap(struct sk_buff *skb,
struct ieee80211_sub_if_data *sdata,
const struct ieee80211_supported_band *sband,
const struct ieee80211_conn_settings *conn)
{
const struct ieee80211_sta_he_cap *he_cap =
ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
const struct ieee80211_sta_eht_cap *eht_cap =
ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif);
bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP;
struct ieee80211_eht_cap_elem_fixed fixed;
struct ieee80211_he_cap_elem he;
u8 mcs_nss_len, ppet_len;
u8 orig_mcs_nss_len;
u8 ie_len;
if (!conn)
conn = &ieee80211_conn_settings_unlimited;
/* Make sure we have place for the IE */
if (!he_cap || !eht_cap)
return 0;
orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem,
&eht_cap->eht_cap_elem,
for_ap);
ieee80211_get_adjusted_he_cap(conn, he_cap, &he);
fixed = eht_cap->eht_cap_elem;
if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80)
fixed.phy_cap_info[6] &=
~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ;
if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) {
fixed.phy_cap_info[1] &=
~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK;
fixed.phy_cap_info[2] &=
~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK;
fixed.phy_cap_info[6] &=
~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ;
}
if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) {
fixed.phy_cap_info[0] &=
~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
fixed.phy_cap_info[1] &=
~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
fixed.phy_cap_info[2] &=
~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
fixed.phy_cap_info[6] &=
~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ;
}
if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20)
fixed.phy_cap_info[0] &=
~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ;
mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap);
ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0],
fixed.phy_cap_info);
ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len;
if (skb_tailroom(skb) < ie_len)
return -ENOBUFS;
skb_put_u8(skb, WLAN_EID_EXTENSION);
skb_put_u8(skb, ie_len - 2);
skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY);
skb_put_data(skb, &fixed, sizeof(fixed));
if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) {
/*
* If the (non-AP) STA became 20 MHz only, then convert from
* <=80 to 20-MHz-only format, where MCSes are indicated in
* the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9,
* 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9.
*/
skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss);
skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss);
skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss);
skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss);
} else {
skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len);
}
if (ppet_len)
skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len);
return 0;
}
const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode)
{
static const char * const modes[] = {
[IEEE80211_CONN_MODE_S1G] = "S1G",
[IEEE80211_CONN_MODE_LEGACY] = "legacy",
[IEEE80211_CONN_MODE_HT] = "HT",
[IEEE80211_CONN_MODE_VHT] = "VHT",
[IEEE80211_CONN_MODE_HE] = "HE",
[IEEE80211_CONN_MODE_EHT] = "EHT",
};
if (WARN_ON(mode >= ARRAY_SIZE(modes)))
return "<out of range>";
return modes[mode] ?: "<missing string>";
}
enum ieee80211_conn_bw_limit
ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef)
{
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
return IEEE80211_CONN_BW_LIMIT_20;
case NL80211_CHAN_WIDTH_40:
return IEEE80211_CONN_BW_LIMIT_40;
case NL80211_CHAN_WIDTH_80:
return IEEE80211_CONN_BW_LIMIT_80;
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
return IEEE80211_CONN_BW_LIMIT_160;
case NL80211_CHAN_WIDTH_320:
return IEEE80211_CONN_BW_LIMIT_320;
default:
WARN(1, "unhandled chandef width %d\n", chandef->width);
return IEEE80211_CONN_BW_LIMIT_20;
}
}
void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe)
{
for (int i = 0; i < 2; i++) {
tpe->max_local[i].valid = false;
memset(tpe->max_local[i].power,
IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT,
sizeof(tpe->max_local[i].power));
tpe->max_reg_client[i].valid = false;
memset(tpe->max_reg_client[i].power,
IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT,
sizeof(tpe->max_reg_client[i].power));
tpe->psd_local[i].valid = false;
memset(tpe->psd_local[i].power,
IEEE80211_TPE_PSD_NO_LIMIT,
sizeof(tpe->psd_local[i].power));
tpe->psd_reg_client[i].valid = false;
memset(tpe->psd_reg_client[i].power,
IEEE80211_TPE_PSD_NO_LIMIT,
sizeof(tpe->psd_reg_client[i].power));
}
}