// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2006 - 2007 Ivo van Doorn
* Copyright (C) 2007 Dmitry Torokhov
* Copyright 2009 Johannes Berg <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/workqueue.h>
#include <linux/capability.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rfkill.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include "rfkill.h"
#define POLL_INTERVAL (5 * HZ)
#define RFKILL_BLOCK_HW BIT(0)
#define RFKILL_BLOCK_SW BIT(1)
#define RFKILL_BLOCK_SW_PREV BIT(2)
#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
RFKILL_BLOCK_SW |\
RFKILL_BLOCK_SW_PREV)
#define RFKILL_BLOCK_SW_SETCALL BIT(31)
struct rfkill {
spinlock_t lock;
enum rfkill_type type;
unsigned long state;
unsigned long hard_block_reasons;
u32 idx;
bool registered;
bool persistent;
bool polling_paused;
bool suspended;
bool need_sync;
const struct rfkill_ops *ops;
void *data;
#ifdef CONFIG_RFKILL_LEDS
struct led_trigger led_trigger;
const char *ledtrigname;
#endif
struct device dev;
struct list_head node;
struct delayed_work poll_work;
struct work_struct uevent_work;
struct work_struct sync_work;
char name[];
};
#define to_rfkill(d) container_of(d, struct rfkill, dev)
struct rfkill_int_event {
struct list_head list;
struct rfkill_event_ext ev;
};
struct rfkill_data {
struct list_head list;
struct list_head events;
struct mutex mtx;
wait_queue_head_t read_wait;
bool input_handler;
u8 max_size;
};
MODULE_AUTHOR("Ivo van Doorn <[email protected]>");
MODULE_AUTHOR("Johannes Berg <[email protected]>");
MODULE_DESCRIPTION("RF switch support");
MODULE_LICENSE("GPL");
/*
* The locking here should be made much smarter, we currently have
* a bit of a stupid situation because drivers might want to register
* the rfkill struct under their own lock, and take this lock during
* rfkill method calls -- which will cause an AB-BA deadlock situation.
*
* To fix that, we need to rework this code here to be mostly lock-free
* and only use the mutex for list manipulations, not to protect the
* various other global variables. Then we can avoid holding the mutex
* around driver operations, and all is happy.
*/
static LIST_HEAD(rfkill_list); /* list of registered rf switches */
static DEFINE_MUTEX(rfkill_global_mutex);
static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
static unsigned int rfkill_default_state = 1;
module_param_named(default_state, rfkill_default_state, uint, 0444);
MODULE_PARM_DESC(default_state,
"Default initial state for all radio types, 0 = radio off");
static struct {
bool cur, sav;
} rfkill_global_states[NUM_RFKILL_TYPES];
static bool rfkill_epo_lock_active;
#ifdef CONFIG_RFKILL_LEDS
static void rfkill_led_trigger_event(struct rfkill *rfkill)
{
struct led_trigger *trigger;
if (!rfkill->registered)
return;
trigger = &rfkill->led_trigger;
if (rfkill->state & RFKILL_BLOCK_ANY)
led_trigger_event(trigger, LED_OFF);
else
led_trigger_event(trigger, LED_FULL);
}
static int rfkill_led_trigger_activate(struct led_classdev *led)
{
struct rfkill *rfkill;
rfkill = container_of(led->trigger, struct rfkill, led_trigger);
rfkill_led_trigger_event(rfkill);
return 0;
}
const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
{
return rfkill->led_trigger.name;
}
EXPORT_SYMBOL(rfkill_get_led_trigger_name);
void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
{
BUG_ON(!rfkill);
rfkill->ledtrigname = name;
}
EXPORT_SYMBOL(rfkill_set_led_trigger_name);
static int rfkill_led_trigger_register(struct rfkill *rfkill)
{
rfkill->led_trigger.name = rfkill->ledtrigname
? : dev_name(&rfkill->dev);
rfkill->led_trigger.activate = rfkill_led_trigger_activate;
return led_trigger_register(&rfkill->led_trigger);
}
static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
{
led_trigger_unregister(&rfkill->led_trigger);
}
static struct led_trigger rfkill_any_led_trigger;
static struct led_trigger rfkill_none_led_trigger;
static struct work_struct rfkill_global_led_trigger_work;
static void rfkill_global_led_trigger_worker(struct work_struct *work)
{
enum led_brightness brightness = LED_OFF;
struct rfkill *rfkill;
mutex_lock(&rfkill_global_mutex);
list_for_each_entry(rfkill, &rfkill_list, node) {
if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
brightness = LED_FULL;
break;
}
}
mutex_unlock(&rfkill_global_mutex);
led_trigger_event(&rfkill_any_led_trigger, brightness);
led_trigger_event(&rfkill_none_led_trigger,
brightness == LED_OFF ? LED_FULL : LED_OFF);
}
static void rfkill_global_led_trigger_event(void)
{
schedule_work(&rfkill_global_led_trigger_work);
}
static int rfkill_global_led_trigger_register(void)
{
int ret;
INIT_WORK(&rfkill_global_led_trigger_work,
rfkill_global_led_trigger_worker);
rfkill_any_led_trigger.name = "rfkill-any";
ret = led_trigger_register(&rfkill_any_led_trigger);
if (ret)
return ret;
rfkill_none_led_trigger.name = "rfkill-none";
ret = led_trigger_register(&rfkill_none_led_trigger);
if (ret)
led_trigger_unregister(&rfkill_any_led_trigger);
else
/* Delay activation until all global triggers are registered */
rfkill_global_led_trigger_event();
return ret;
}
static void rfkill_global_led_trigger_unregister(void)
{
led_trigger_unregister(&rfkill_none_led_trigger);
led_trigger_unregister(&rfkill_any_led_trigger);
cancel_work_sync(&rfkill_global_led_trigger_work);
}
#else
static void rfkill_led_trigger_event(struct rfkill *rfkill)
{
}
static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
{
return 0;
}
static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
{
}
static void rfkill_global_led_trigger_event(void)
{
}
static int rfkill_global_led_trigger_register(void)
{
return 0;
}
static void rfkill_global_led_trigger_unregister(void)
{
}
#endif /* CONFIG_RFKILL_LEDS */
static void rfkill_fill_event(struct rfkill_event_ext *ev,
struct rfkill *rfkill,
enum rfkill_operation op)
{
unsigned long flags;
ev->idx = rfkill->idx;
ev->type = rfkill->type;
ev->op = op;
spin_lock_irqsave(&rfkill->lock, flags);
ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
RFKILL_BLOCK_SW_PREV));
ev->hard_block_reasons = rfkill->hard_block_reasons;
spin_unlock_irqrestore(&rfkill->lock, flags);
}
static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
{
struct rfkill_data *data;
struct rfkill_int_event *ev;
list_for_each_entry(data, &rfkill_fds, list) {
ev = kzalloc(sizeof(*ev), GFP_KERNEL);
if (!ev)
continue;
rfkill_fill_event(&ev->ev, rfkill, op);
mutex_lock(&data->mtx);
list_add_tail(&ev->list, &data->events);
mutex_unlock(&data->mtx);
wake_up_interruptible(&data->read_wait);
}
}
static void rfkill_event(struct rfkill *rfkill)
{
if (!rfkill->registered)
return;
kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
/* also send event to /dev/rfkill */
rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
}
/**
* rfkill_set_block - wrapper for set_block method
*
* @rfkill: the rfkill struct to use
* @blocked: the new software state
*
* Calls the set_block method (when applicable) and handles notifications
* etc. as well.
*/
static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
{
unsigned long flags;
bool prev, curr;
int err;
if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
return;
/*
* Some platforms (...!) generate input events which affect the
* _hard_ kill state -- whenever something tries to change the
* current software state query the hardware state too.
*/
if (rfkill->ops->query)
rfkill->ops->query(rfkill, rfkill->data);
spin_lock_irqsave(&rfkill->lock, flags);
prev = rfkill->state & RFKILL_BLOCK_SW;
if (prev)
rfkill->state |= RFKILL_BLOCK_SW_PREV;
else
rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
if (blocked)
rfkill->state |= RFKILL_BLOCK_SW;
else
rfkill->state &= ~RFKILL_BLOCK_SW;
rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
spin_unlock_irqrestore(&rfkill->lock, flags);
err = rfkill->ops->set_block(rfkill->data, blocked);
spin_lock_irqsave(&rfkill->lock, flags);
if (err) {
/*
* Failed -- reset status to _PREV, which may be different
* from what we have set _PREV to earlier in this function
* if rfkill_set_sw_state was invoked.
*/
if (rfkill->state & RFKILL_BLOCK_SW_PREV)
rfkill->state |= RFKILL_BLOCK_SW;
else
rfkill->state &= ~RFKILL_BLOCK_SW;
}
rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
curr = rfkill->state & RFKILL_BLOCK_SW;
spin_unlock_irqrestore(&rfkill->lock, flags);
rfkill_led_trigger_event(rfkill);
rfkill_global_led_trigger_event();
if (prev != curr)
rfkill_event(rfkill);
}
static void rfkill_sync(struct rfkill *rfkill)
{
lockdep_assert_held(&rfkill_global_mutex);
if (!rfkill->need_sync)
return;
rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
rfkill->need_sync = false;
}
static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
{
int i;
if (type != RFKILL_TYPE_ALL) {
rfkill_global_states[type].cur = blocked;
return;
}
for (i = 0; i < NUM_RFKILL_TYPES; i++)
rfkill_global_states[i].cur = blocked;
}
#ifdef CONFIG_RFKILL_INPUT
static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
/**
* __rfkill_switch_all - Toggle state of all switches of given type
* @type: type of interfaces to be affected
* @blocked: the new state
*
* This function sets the state of all switches of given type,
* unless a specific switch is suspended.
*
* Caller must have acquired rfkill_global_mutex.
*/
static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
{
struct rfkill *rfkill;
rfkill_update_global_state(type, blocked);
list_for_each_entry(rfkill, &rfkill_list, node) {
if (rfkill->type != type && type != RFKILL_TYPE_ALL)
continue;
rfkill_set_block(rfkill, blocked);
}
}
/**
* rfkill_switch_all - Toggle state of all switches of given type
* @type: type of interfaces to be affected
* @blocked: the new state
*
* Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
* Please refer to __rfkill_switch_all() for details.
*
* Does nothing if the EPO lock is active.
*/
void rfkill_switch_all(enum rfkill_type type, bool blocked)
{
if (atomic_read(&rfkill_input_disabled))
return;
mutex_lock(&rfkill_global_mutex);
if (!rfkill_epo_lock_active)
__rfkill_switch_all(type, blocked);
mutex_unlock(&rfkill_global_mutex);
}
/**
* rfkill_epo - emergency power off all transmitters
*
* This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
* ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
*
* The global state before the EPO is saved and can be restored later
* using rfkill_restore_states().
*/
void rfkill_epo(void)
{
struct rfkill *rfkill;
int i;
if (atomic_read(&rfkill_input_disabled))
return;
mutex_lock(&rfkill_global_mutex);
rfkill_epo_lock_active = true;
list_for_each_entry(rfkill, &rfkill_list, node)
rfkill_set_block(rfkill, true);
for (i = 0; i < NUM_RFKILL_TYPES; i++) {
rfkill_global_states[i].sav = rfkill_global_states[i].cur;
rfkill_global_states[i].cur = true;
}
mutex_unlock(&rfkill_global_mutex);
}
/**
* rfkill_restore_states - restore global states
*
* Restore (and sync switches to) the global state from the
* states in rfkill_default_states. This can undo the effects of
* a call to rfkill_epo().
*/
void rfkill_restore_states(void)
{
int i;
if (atomic_read(&rfkill_input_disabled))
return;
mutex_lock(&rfkill_global_mutex);
rfkill_epo_lock_active = false;
for (i = 0; i < NUM_RFKILL_TYPES; i++)
__rfkill_switch_all(i, rfkill_global_states[i].sav);
mutex_unlock(&rfkill_global_mutex);
}
/**
* rfkill_remove_epo_lock - unlock state changes
*
* Used by rfkill-input manually unlock state changes, when
* the EPO switch is deactivated.
*/
void rfkill_remove_epo_lock(void)
{
if (atomic_read(&rfkill_input_disabled))
return;
mutex_lock(&rfkill_global_mutex);
rfkill_epo_lock_active = false;
mutex_unlock(&rfkill_global_mutex);
}
/**
* rfkill_is_epo_lock_active - returns true EPO is active
*
* Returns 0 (false) if there is NOT an active EPO condition,
* and 1 (true) if there is an active EPO condition, which
* locks all radios in one of the BLOCKED states.
*
* Can be called in atomic context.
*/
bool rfkill_is_epo_lock_active(void)
{
return rfkill_epo_lock_active;
}
/**
* rfkill_get_global_sw_state - returns global state for a type
* @type: the type to get the global state of
*
* Returns the current global state for a given wireless
* device type.
*/
bool rfkill_get_global_sw_state(const enum rfkill_type type)
{
return rfkill_global_states[type].cur;
}
#endif
bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
bool blocked,
enum rfkill_hard_block_reasons reason)
{
unsigned long flags;
bool ret, prev;
BUG_ON(!rfkill);
spin_lock_irqsave(&rfkill->lock, flags);
prev = !!(rfkill->hard_block_reasons & reason);
if (blocked) {
rfkill->state |= RFKILL_BLOCK_HW;
rfkill->hard_block_reasons |= reason;
} else {
rfkill->hard_block_reasons &= ~reason;
if (!rfkill->hard_block_reasons)
rfkill->state &= ~RFKILL_BLOCK_HW;
}
ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
spin_unlock_irqrestore(&rfkill->lock, flags);
rfkill_led_trigger_event(rfkill);
rfkill_global_led_trigger_event();
if (rfkill->registered && prev != blocked)
schedule_work(&rfkill->uevent_work);
return ret;
}
EXPORT_SYMBOL(rfkill_set_hw_state_reason);
static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
{
u32 bit = RFKILL_BLOCK_SW;
/* if in a ops->set_block right now, use other bit */
if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
bit = RFKILL_BLOCK_SW_PREV;
if (blocked)
rfkill->state |= bit;
else
rfkill->state &= ~bit;
}
bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
{
unsigned long flags;
bool prev, hwblock;
BUG_ON(!rfkill);
spin_lock_irqsave(&rfkill->lock, flags);
prev = !!(rfkill->state & RFKILL_BLOCK_SW);
__rfkill_set_sw_state(rfkill, blocked);
hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
blocked = blocked || hwblock;
spin_unlock_irqrestore(&rfkill->lock, flags);
if (!rfkill->registered)
return blocked;
if (prev != blocked && !hwblock)
schedule_work(&rfkill->uevent_work);
rfkill_led_trigger_event(rfkill);
rfkill_global_led_trigger_event();
return blocked;
}
EXPORT_SYMBOL(rfkill_set_sw_state);
void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
{
unsigned long flags;
BUG_ON(!rfkill);
BUG_ON(rfkill->registered);
spin_lock_irqsave(&rfkill->lock, flags);
__rfkill_set_sw_state(rfkill, blocked);
rfkill->persistent = true;
spin_unlock_irqrestore(&rfkill->lock, flags);
}
EXPORT_SYMBOL(rfkill_init_sw_state);
void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
{
unsigned long flags;
bool swprev, hwprev;
BUG_ON(!rfkill);
spin_lock_irqsave(&rfkill->lock, flags);
/*
* No need to care about prev/setblock ... this is for uevent only
* and that will get triggered by rfkill_set_block anyway.
*/
swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
__rfkill_set_sw_state(rfkill, sw);
if (hw)
rfkill->state |= RFKILL_BLOCK_HW;
else
rfkill->state &= ~RFKILL_BLOCK_HW;
spin_unlock_irqrestore(&rfkill->lock, flags);
if (!rfkill->registered) {
rfkill->persistent = true;
} else {
if (swprev != sw || hwprev != hw)
schedule_work(&rfkill->uevent_work);
rfkill_led_trigger_event(rfkill);
rfkill_global_led_trigger_event();
}
}
EXPORT_SYMBOL(rfkill_set_states);
static const char * const rfkill_types[] = {
NULL, /* RFKILL_TYPE_ALL */
"wlan",
"bluetooth",
"ultrawideband",
"wimax",
"wwan",
"gps",
"fm",
"nfc",
};
enum rfkill_type rfkill_find_type(const char *name)
{
int i;
BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
if (!name)
return RFKILL_TYPE_ALL;
for (i = 1; i < NUM_RFKILL_TYPES; i++)
if (!strcmp(name, rfkill_types[i]))
return i;
return RFKILL_TYPE_ALL;
}
EXPORT_SYMBOL(rfkill_find_type);
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
return sysfs_emit(buf, "%s\n", rfkill->name);
}
static DEVICE_ATTR_RO(name);
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
}
static DEVICE_ATTR_RO(type);
static ssize_t index_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
return sysfs_emit(buf, "%d\n", rfkill->idx);
}
static DEVICE_ATTR_RO(index);
static ssize_t persistent_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
return sysfs_emit(buf, "%d\n", rfkill->persistent);
}
static DEVICE_ATTR_RO(persistent);
static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
}
static DEVICE_ATTR_RO(hard);
static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
mutex_lock(&rfkill_global_mutex);
rfkill_sync(rfkill);
mutex_unlock(&rfkill_global_mutex);
return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
}
static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct rfkill *rfkill = to_rfkill(dev);
unsigned long state;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
err = kstrtoul(buf, 0, &state);
if (err)
return err;
if (state > 1 )
return -EINVAL;
mutex_lock(&rfkill_global_mutex);
rfkill_sync(rfkill);
rfkill_set_block(rfkill, state);
mutex_unlock(&rfkill_global_mutex);
return count;
}
static DEVICE_ATTR_RW(soft);
static ssize_t hard_block_reasons_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
}
static DEVICE_ATTR_RO(hard_block_reasons);
static u8 user_state_from_blocked(unsigned long state)
{
if (state & RFKILL_BLOCK_HW)
return RFKILL_USER_STATE_HARD_BLOCKED;
if (state & RFKILL_BLOCK_SW)
return RFKILL_USER_STATE_SOFT_BLOCKED;
return RFKILL_USER_STATE_UNBLOCKED;
}
static ssize_t state_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct rfkill *rfkill = to_rfkill(dev);
mutex_lock(&rfkill_global_mutex);
rfkill_sync(rfkill);
mutex_unlock(&rfkill_global_mutex);
return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
}
static ssize_t state_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct rfkill *rfkill = to_rfkill(dev);
unsigned long state;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
err = kstrtoul(buf, 0, &state);
if (err)
return err;
if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
state != RFKILL_USER_STATE_UNBLOCKED)
return -EINVAL;
mutex_lock(&rfkill_global_mutex);
rfkill_sync(rfkill);
rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
mutex_unlock(&rfkill_global_mutex);
return count;
}
static DEVICE_ATTR_RW(state);
static struct attribute *rfkill_dev_attrs[] = {
&dev_attr_name.attr,
&dev_attr_type.attr,
&dev_attr_index.attr,
&dev_attr_persistent.attr,
&dev_attr_state.attr,
&dev_attr_soft.attr,
&dev_attr_hard.attr,
&dev_attr_hard_block_reasons.attr,
NULL,
};
ATTRIBUTE_GROUPS(rfkill_dev);
static void rfkill_release(struct device *dev)
{
struct rfkill *rfkill = to_rfkill(dev);
kfree(rfkill);
}
static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
struct rfkill *rfkill = to_rfkill(dev);
unsigned long flags;
unsigned long reasons;
u32 state;
int error;
error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
if (error)
return error;
error = add_uevent_var(env, "RFKILL_TYPE=%s",
rfkill_types[rfkill->type]);
if (error)
return error;
spin_lock_irqsave(&rfkill->lock, flags);
state = rfkill->state;
reasons = rfkill->hard_block_reasons;
spin_unlock_irqrestore(&rfkill->lock, flags);
error = add_uevent_var(env, "RFKILL_STATE=%d",
user_state_from_blocked(state));
if (error)
return error;
return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
}
void rfkill_pause_polling(struct rfkill *rfkill)
{
BUG_ON(!rfkill);
if (!rfkill->ops->poll)
return;
rfkill->polling_paused = true;
cancel_delayed_work_sync(&rfkill->poll_work);
}
EXPORT_SYMBOL(rfkill_pause_polling);
void rfkill_resume_polling(struct rfkill *rfkill)
{
BUG_ON(!rfkill);
if (!rfkill->ops->poll)
return;
rfkill->polling_paused = false;
if (rfkill->suspended)
return;
queue_delayed_work(system_power_efficient_wq,
&rfkill->poll_work, 0);
}
EXPORT_SYMBOL(rfkill_resume_polling);
#ifdef CONFIG_PM_SLEEP
static int rfkill_suspend(struct device *dev)
{
struct rfkill *rfkill = to_rfkill(dev);
rfkill->suspended = true;
cancel_delayed_work_sync(&rfkill->poll_work);
return 0;
}
static int rfkill_resume(struct device *dev)
{
struct rfkill *rfkill = to_rfkill(dev);
bool cur;
rfkill->suspended = false;
if (!rfkill->registered)
return 0;
if (!rfkill->persistent) {
cur = !!(rfkill->state & RFKILL_BLOCK_SW);
rfkill_set_block(rfkill, cur);
}
if (rfkill->ops->poll && !rfkill->polling_paused)
queue_delayed_work(system_power_efficient_wq,
&rfkill->poll_work, 0);
return 0;
}
static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
#define RFKILL_PM_OPS (&rfkill_pm_ops)
#else
#define RFKILL_PM_OPS NULL
#endif
static struct class rfkill_class = {
.name = "rfkill",
.dev_release = rfkill_release,
.dev_groups = rfkill_dev_groups,
.dev_uevent = rfkill_dev_uevent,
.pm = RFKILL_PM_OPS,
};
bool rfkill_blocked(struct rfkill *rfkill)
{
unsigned long flags;
u32 state;
spin_lock_irqsave(&rfkill->lock, flags);
state = rfkill->state;
spin_unlock_irqrestore(&rfkill->lock, flags);
return !!(state & RFKILL_BLOCK_ANY);
}
EXPORT_SYMBOL(rfkill_blocked);
bool rfkill_soft_blocked(struct rfkill *rfkill)
{
unsigned long flags;
u32 state;
spin_lock_irqsave(&rfkill->lock, flags);
state = rfkill->state;
spin_unlock_irqrestore(&rfkill->lock, flags);
return !!(state & RFKILL_BLOCK_SW);
}
EXPORT_SYMBOL(rfkill_soft_blocked);
struct rfkill * __must_check rfkill_alloc(const char *name,
struct device *parent,
const enum rfkill_type type,
const struct rfkill_ops *ops,
void *ops_data)
{
struct rfkill *rfkill;
struct device *dev;
if (WARN_ON(!ops))
return NULL;
if (WARN_ON(!ops->set_block))
return NULL;
if (WARN_ON(!name))
return NULL;
if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
return NULL;
rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
if (!rfkill)
return NULL;
spin_lock_init(&rfkill->lock);
INIT_LIST_HEAD(&rfkill->node);
rfkill->type = type;
strcpy(rfkill->name, name);
rfkill->ops = ops;
rfkill->data = ops_data;
dev = &rfkill->dev;
dev->class = &rfkill_class;
dev->parent = parent;
device_initialize(dev);
return rfkill;
}
EXPORT_SYMBOL(rfkill_alloc);
static void rfkill_poll(struct work_struct *work)
{
struct rfkill *rfkill;
rfkill = container_of(work, struct rfkill, poll_work.work);
/*
* Poll hardware state -- driver will use one of the
* rfkill_set{,_hw,_sw}_state functions and use its
* return value to update the current status.
*/
rfkill->ops->poll(rfkill, rfkill->data);
queue_delayed_work(system_power_efficient_wq,
&rfkill->poll_work,
round_jiffies_relative(POLL_INTERVAL));
}
static void rfkill_uevent_work(struct work_struct *work)
{
struct rfkill *rfkill;
rfkill = container_of(work, struct rfkill, uevent_work);
mutex_lock(&rfkill_global_mutex);
rfkill_event(rfkill);
mutex_unlock(&rfkill_global_mutex);
}
static void rfkill_sync_work(struct work_struct *work)
{
struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
mutex_lock(&rfkill_global_mutex);
rfkill_sync(rfkill);
mutex_unlock(&rfkill_global_mutex);
}
int __must_check rfkill_register(struct rfkill *rfkill)
{
static unsigned long rfkill_no;
struct device *dev;
int error;
if (!rfkill)
return -EINVAL;
dev = &rfkill->dev;
mutex_lock(&rfkill_global_mutex);
if (rfkill->registered) {
error = -EALREADY;
goto unlock;
}
rfkill->idx = rfkill_no;
dev_set_name(dev, "rfkill%lu", rfkill_no);
rfkill_no++;
list_add_tail(&rfkill->node, &rfkill_list);
error = device_add(dev);
if (error)
goto remove;
error = rfkill_led_trigger_register(rfkill);
if (error)
goto devdel;
rfkill->registered = true;
INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
if (rfkill->ops->poll)
queue_delayed_work(system_power_efficient_wq,
&rfkill->poll_work,
round_jiffies_relative(POLL_INTERVAL));
if (!rfkill->persistent || rfkill_epo_lock_active) {
rfkill->need_sync = true;
schedule_work(&rfkill->sync_work);
} else {
#ifdef CONFIG_RFKILL_INPUT
bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
if (!atomic_read(&rfkill_input_disabled))
__rfkill_switch_all(rfkill->type, soft_blocked);
#endif
}
rfkill_global_led_trigger_event();
rfkill_send_events(rfkill, RFKILL_OP_ADD);
mutex_unlock(&rfkill_global_mutex);
return 0;
devdel:
device_del(&rfkill->dev);
remove:
list_del_init(&rfkill->node);
unlock:
mutex_unlock(&rfkill_global_mutex);
return error;
}
EXPORT_SYMBOL(rfkill_register);
void rfkill_unregister(struct rfkill *rfkill)
{
BUG_ON(!rfkill);
if (rfkill->ops->poll)
cancel_delayed_work_sync(&rfkill->poll_work);
cancel_work_sync(&rfkill->uevent_work);
cancel_work_sync(&rfkill->sync_work);
rfkill->registered = false;
device_del(&rfkill->dev);
mutex_lock(&rfkill_global_mutex);
rfkill_send_events(rfkill, RFKILL_OP_DEL);
list_del_init(&rfkill->node);
rfkill_global_led_trigger_event();
mutex_unlock(&rfkill_global_mutex);
rfkill_led_trigger_unregister(rfkill);
}
EXPORT_SYMBOL(rfkill_unregister);
void rfkill_destroy(struct rfkill *rfkill)
{
if (rfkill)
put_device(&rfkill->dev);
}
EXPORT_SYMBOL(rfkill_destroy);
static int rfkill_fop_open(struct inode *inode, struct file *file)
{
struct rfkill_data *data;
struct rfkill *rfkill;
struct rfkill_int_event *ev, *tmp;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->max_size = RFKILL_EVENT_SIZE_V1;
INIT_LIST_HEAD(&data->events);
mutex_init(&data->mtx);
init_waitqueue_head(&data->read_wait);
mutex_lock(&rfkill_global_mutex);
/*
* start getting events from elsewhere but hold mtx to get
* startup events added first
*/
list_for_each_entry(rfkill, &rfkill_list, node) {
ev = kzalloc(sizeof(*ev), GFP_KERNEL);
if (!ev)
goto free;
rfkill_sync(rfkill);
rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
mutex_lock(&data->mtx);
list_add_tail(&ev->list, &data->events);
mutex_unlock(&data->mtx);
}
list_add(&data->list, &rfkill_fds);
mutex_unlock(&rfkill_global_mutex);
file->private_data = data;
return stream_open(inode, file);
free:
mutex_unlock(&rfkill_global_mutex);
mutex_destroy(&data->mtx);
list_for_each_entry_safe(ev, tmp, &data->events, list)
kfree(ev);
kfree(data);
return -ENOMEM;
}
static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
{
struct rfkill_data *data = file->private_data;
__poll_t res = EPOLLOUT | EPOLLWRNORM;
poll_wait(file, &data->read_wait, wait);
mutex_lock(&data->mtx);
if (!list_empty(&data->events))
res = EPOLLIN | EPOLLRDNORM;
mutex_unlock(&data->mtx);
return res;
}
static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)
{
struct rfkill_data *data = file->private_data;
struct rfkill_int_event *ev;
unsigned long sz;
int ret;
mutex_lock(&data->mtx);
while (list_empty(&data->events)) {
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto out;
}
mutex_unlock(&data->mtx);
/* since we re-check and it just compares pointers,
* using !list_empty() without locking isn't a problem
*/
ret = wait_event_interruptible(data->read_wait,
!list_empty(&data->events));
mutex_lock(&data->mtx);
if (ret)
goto out;
}
ev = list_first_entry(&data->events, struct rfkill_int_event,
list);
sz = min_t(unsigned long, sizeof(ev->ev), count);
sz = min_t(unsigned long, sz, data->max_size);
ret = sz;
if (copy_to_user(buf, &ev->ev, sz))
ret = -EFAULT;
list_del(&ev->list);
kfree(ev);
out:
mutex_unlock(&data->mtx);
return ret;
}
static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct rfkill_data *data = file->private_data;
struct rfkill *rfkill;
struct rfkill_event_ext ev;
int ret;
/* we don't need the 'hard' variable but accept it */
if (count < RFKILL_EVENT_SIZE_V1 - 1)
return -EINVAL;
/*
* Copy as much data as we can accept into our 'ev' buffer,
* but tell userspace how much we've copied so it can determine
* our API version even in a write() call, if it cares.
*/
count = min(count, sizeof(ev));
count = min_t(size_t, count, data->max_size);
if (copy_from_user(&ev, buf, count))
return -EFAULT;
if (ev.type >= NUM_RFKILL_TYPES)
return -EINVAL;
mutex_lock(&rfkill_global_mutex);
switch (ev.op) {
case RFKILL_OP_CHANGE_ALL:
rfkill_update_global_state(ev.type, ev.soft);
list_for_each_entry(rfkill, &rfkill_list, node)
if (rfkill->type == ev.type ||
ev.type == RFKILL_TYPE_ALL)
rfkill_set_block(rfkill, ev.soft);
ret = 0;
break;
case RFKILL_OP_CHANGE:
list_for_each_entry(rfkill, &rfkill_list, node)
if (rfkill->idx == ev.idx &&
(rfkill->type == ev.type ||
ev.type == RFKILL_TYPE_ALL))
rfkill_set_block(rfkill, ev.soft);
ret = 0;
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&rfkill_global_mutex);
return ret ?: count;
}
static int rfkill_fop_release(struct inode *inode, struct file *file)
{
struct rfkill_data *data = file->private_data;
struct rfkill_int_event *ev, *tmp;
mutex_lock(&rfkill_global_mutex);
list_del(&data->list);
mutex_unlock(&rfkill_global_mutex);
mutex_destroy(&data->mtx);
list_for_each_entry_safe(ev, tmp, &data->events, list)
kfree(ev);
#ifdef CONFIG_RFKILL_INPUT
if (data->input_handler)
if (atomic_dec_return(&rfkill_input_disabled) == 0)
printk(KERN_DEBUG "rfkill: input handler enabled\n");
#endif
kfree(data);
return 0;
}
static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct rfkill_data *data = file->private_data;
int ret = -ENOTTY;
u32 size;
if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
return -ENOTTY;
mutex_lock(&data->mtx);
switch (_IOC_NR(cmd)) {
#ifdef CONFIG_RFKILL_INPUT
case RFKILL_IOC_NOINPUT:
if (!data->input_handler) {
if (atomic_inc_return(&rfkill_input_disabled) == 1)
printk(KERN_DEBUG "rfkill: input handler disabled\n");
data->input_handler = true;
}
ret = 0;
break;
#endif
case RFKILL_IOC_MAX_SIZE:
if (get_user(size, (__u32 __user *)arg)) {
ret = -EFAULT;
break;
}
if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
ret = -EINVAL;
break;
}
data->max_size = size;
ret = 0;
break;
default:
break;
}
mutex_unlock(&data->mtx);
return ret;
}
static const struct file_operations rfkill_fops = {
.owner = THIS_MODULE,
.open = rfkill_fop_open,
.read = rfkill_fop_read,
.write = rfkill_fop_write,
.poll = rfkill_fop_poll,
.release = rfkill_fop_release,
.unlocked_ioctl = rfkill_fop_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
#define RFKILL_NAME "rfkill"
static struct miscdevice rfkill_miscdev = {
.fops = &rfkill_fops,
.name = RFKILL_NAME,
.minor = RFKILL_MINOR,
};
static int __init rfkill_init(void)
{
int error;
rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
error = class_register(&rfkill_class);
if (error)
goto error_class;
error = misc_register(&rfkill_miscdev);
if (error)
goto error_misc;
error = rfkill_global_led_trigger_register();
if (error)
goto error_led_trigger;
#ifdef CONFIG_RFKILL_INPUT
error = rfkill_handler_init();
if (error)
goto error_input;
#endif
return 0;
#ifdef CONFIG_RFKILL_INPUT
error_input:
rfkill_global_led_trigger_unregister();
#endif
error_led_trigger:
misc_deregister(&rfkill_miscdev);
error_misc:
class_unregister(&rfkill_class);
error_class:
return error;
}
subsys_initcall(rfkill_init);
static void __exit rfkill_exit(void)
{
#ifdef CONFIG_RFKILL_INPUT
rfkill_handler_exit();
#endif
rfkill_global_led_trigger_unregister();
misc_deregister(&rfkill_miscdev);
class_unregister(&rfkill_class);
}
module_exit(rfkill_exit);
MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
MODULE_ALIAS("devname:" RFKILL_NAME);