linux/drivers/clk/xilinx/clk-xlnx-clock-wizard.c

// SPDX-License-Identifier: GPL-2.0
/*
 * Xilinx 'Clocking Wizard' driver
 *
 *  Copyright (C) 2013 - 2021 Xilinx
 *
 *  Sören Brinkmann <[email protected]>
 *
 */

#include <linux/bitfield.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/iopoll.h>

#define WZRD_NUM_OUTPUTS	7
#define WZRD_ACLK_MAX_FREQ	250000000UL

#define WZRD_CLK_CFG_REG(v, n)	(0x200 + 0x130 * (v) + 4 * (n))

#define WZRD_CLKOUT0_FRAC_EN	BIT(18)
#define WZRD_CLKFBOUT_1		0
#define WZRD_CLKFBOUT_2		1
#define WZRD_CLKOUT0_1		2
#define WZRD_CLKOUT0_2		3
#define WZRD_DESKEW_2		20
#define WZRD_DIVCLK		21
#define WZRD_CLKFBOUT_4		51
#define WZRD_CLKFBOUT_3		48
#define WZRD_DUTY_CYCLE		2
#define WZRD_O_DIV		4

#define WZRD_CLKFBOUT_FRAC_EN	BIT(1)
#define WZRD_CLKFBOUT_PREDIV2	(BIT(11) | BIT(12) | BIT(9))
#define WZRD_MULT_PREDIV2	(BIT(10) | BIT(9) | BIT(12))
#define WZRD_CLKFBOUT_EDGE	BIT(8)
#define WZRD_P5EN		BIT(13)
#define WZRD_P5EN_SHIFT		13
#define WZRD_P5FEDGE		BIT(15)
#define WZRD_DIVCLK_EDGE	BIT(10)
#define WZRD_P5FEDGE_SHIFT	15
#define WZRD_CLKOUT0_PREDIV2	BIT(11)
#define WZRD_EDGE_SHIFT		8

#define WZRD_CLKFBOUT_MULT_SHIFT	8
#define WZRD_CLKFBOUT_MULT_MASK		(0xff << WZRD_CLKFBOUT_MULT_SHIFT)
#define WZRD_CLKFBOUT_L_SHIFT	0
#define WZRD_CLKFBOUT_H_SHIFT	8
#define WZRD_CLKFBOUT_L_MASK	GENMASK(7, 0)
#define WZRD_CLKFBOUT_H_MASK	GENMASK(15, 8)
#define WZRD_CLKFBOUT_FRAC_SHIFT	16
#define WZRD_CLKFBOUT_FRAC_MASK		(0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT)
#define WZRD_VERSAL_FRAC_MASK		GENMASK(5, 0)
#define WZRD_DIVCLK_DIVIDE_SHIFT	0
#define WZRD_DIVCLK_DIVIDE_MASK		(0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_DIVIDE_SHIFT	0
#define WZRD_CLKOUT_DIVIDE_WIDTH	8
#define WZRD_CLKOUT_DIVIDE_MASK		(0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_FRAC_SHIFT		8
#define WZRD_CLKOUT_FRAC_MASK		0x3ff
#define WZRD_CLKOUT0_FRAC_MASK		GENMASK(17, 8)

#define WZRD_DR_MAX_INT_DIV_VALUE	255
#define WZRD_DR_STATUS_REG_OFFSET	0x04
#define WZRD_DR_LOCK_BIT_MASK		0x00000001
#define WZRD_DR_INIT_REG_OFFSET		0x25C
#define WZRD_DR_INIT_VERSAL_OFFSET	0x14
#define WZRD_DR_DIV_TO_PHASE_OFFSET	4
#define WZRD_DR_BEGIN_DYNA_RECONF	0x03
#define WZRD_DR_BEGIN_DYNA_RECONF_5_2	0x07
#define WZRD_DR_BEGIN_DYNA_RECONF1_5_2	0x02

#define WZRD_USEC_POLL		10
#define WZRD_TIMEOUT_POLL		1000
#define WZRD_FRAC_GRADIENT		64
#define PREDIV2_MULT			2

/* Divider limits, from UG572 Table 3-4 for Ultrascale+ */
#define DIV_O				0x01
#define DIV_ALL				0x03

#define WZRD_M_MIN			2
#define WZRD_M_MAX			128
#define WZRD_D_MIN			1
#define WZRD_D_MAX			106
#define WZRD_VCO_MIN			800000000
#define WZRD_VCO_MAX			1600000000
#define WZRD_O_MIN			1
#define WZRD_O_MAX			128
#define VER_WZRD_M_MIN			4
#define VER_WZRD_M_MAX			432
#define VER_WZRD_D_MIN			1
#define VER_WZRD_D_MAX			123
#define VER_WZRD_VCO_MIN		2160000000ULL
#define VER_WZRD_VCO_MAX		4320000000ULL
#define VER_WZRD_O_MIN			2
#define VER_WZRD_O_MAX			511
#define WZRD_MIN_ERR			20000
#define WZRD_FRAC_POINTS		1000

/* Get the mask from width */
#define div_mask(width)			((1 << (width)) - 1)

/* Extract divider instance from clock hardware instance */
#define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw)

enum clk_wzrd_int_clks {
	wzrd_clk_mul,
	wzrd_clk_mul_div,
	wzrd_clk_mul_frac,
	wzrd_clk_int_max
};

/**
 * struct clk_wzrd - Clock wizard private data structure
 *
 * @clk_data:		Clock data
 * @nb:			Notifier block
 * @base:		Memory base
 * @clk_in1:		Handle to input clock 'clk_in1'
 * @axi_clk:		Handle to input clock 's_axi_aclk'
 * @clks_internal:	Internal clocks
 * @clkout:		Output clocks
 * @speed_grade:	Speed grade of the device
 * @suspended:		Flag indicating power state of the device
 */
struct clk_wzrd {
	struct clk_onecell_data clk_data;
	struct notifier_block nb;
	void __iomem *base;
	struct clk *clk_in1;
	struct clk *axi_clk;
	struct clk *clks_internal[wzrd_clk_int_max];
	struct clk *clkout[WZRD_NUM_OUTPUTS];
	unsigned int speed_grade;
	bool suspended;
};

/**
 * struct clk_wzrd_divider - clock divider specific to clk_wzrd
 *
 * @hw:		handle between common and hardware-specific interfaces
 * @base:	base address of register containing the divider
 * @offset:	offset address of register containing the divider
 * @shift:	shift to the divider bit field
 * @width:	width of the divider bit field
 * @flags:	clk_wzrd divider flags
 * @table:	array of value/divider pairs, last entry should have div = 0
 * @m:	value of the multiplier
 * @d:	value of the common divider
 * @o:	value of the leaf divider
 * @lock:	register lock
 */
struct clk_wzrd_divider {
	struct clk_hw hw;
	void __iomem *base;
	u16 offset;
	u8 shift;
	u8 width;
	u8 flags;
	const struct clk_div_table *table;
	u32 m;
	u32 d;
	u32 o;
	spinlock_t *lock;  /* divider lock */
};

struct versal_clk_data {
	bool is_versal;
};

#define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb)

/* maximum frequencies for input/output clocks per speed grade */
static const unsigned long clk_wzrd_max_freq[] = {
	800000000UL,
	933000000UL,
	1066000000UL
};

/* spin lock variable for clk_wzrd */
static DEFINE_SPINLOCK(clkwzrd_lock);

static unsigned long clk_wzrd_recalc_rate_ver(struct clk_hw *hw,
					      unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;
	u32 div, p5en, edge, prediv2, all;
	unsigned int vall, valh;

	edge = !!(readl(div_addr) & WZRD_CLKFBOUT_EDGE);
	p5en = !!(readl(div_addr) & WZRD_P5EN);
	prediv2 = !!(readl(div_addr) & WZRD_CLKOUT0_PREDIV2);
	vall = readl(div_addr + 4) & WZRD_CLKFBOUT_L_MASK;
	valh = readl(div_addr + 4) >> WZRD_CLKFBOUT_H_SHIFT;
	all = valh + vall + edge;
	if (!all)
		all = 1;

	if (prediv2)
		div = 2 * all + prediv2 * p5en;
	else
		div = all;

	return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}

static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw,
					  unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;
	unsigned int val;

	val = readl(div_addr) >> divider->shift;
	val &= div_mask(divider->width);

	return divider_recalc_rate(hw, parent_rate, val, divider->table,
			divider->flags, divider->width);
}

static int clk_wzrd_ver_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
					 unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;
	u32 value, regh, edged, p5en, p5fedge, regval, regval1;
	unsigned long flags;
	int err;

	spin_lock_irqsave(divider->lock, flags);

	value = DIV_ROUND_CLOSEST(parent_rate, rate);

	regh = (value / 4);
	regval1 = readl(div_addr);
	regval1 |= WZRD_CLKFBOUT_PREDIV2;
	regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
	if (value % 4 > 1) {
		edged = 1;
		regval1 |= (edged << WZRD_EDGE_SHIFT);
	}
	p5fedge = value % 2;
	p5en = value % 2;
	regval1 = regval1 | p5en << WZRD_P5EN_SHIFT | p5fedge << WZRD_P5FEDGE_SHIFT;
	writel(regval1, div_addr);

	regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
	writel(regval, div_addr + 4);
	/* Check status register */
	err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
					value, value & WZRD_DR_LOCK_BIT_MASK,
					WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
	if (err)
		goto err_reconfig;

	/* Initiate reconfiguration */
	writel(WZRD_DR_BEGIN_DYNA_RECONF,
	       divider->base + WZRD_DR_INIT_VERSAL_OFFSET);

	/* Check status register */
	err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
					value, value & WZRD_DR_LOCK_BIT_MASK,
					WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
err_reconfig:
	spin_unlock_irqrestore(divider->lock, flags);
	return err;
}

static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
				     unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;
	unsigned long flags;
	u32 value;
	int err;

	spin_lock_irqsave(divider->lock, flags);

	value = DIV_ROUND_CLOSEST(parent_rate, rate);

	/* Cap the value to max */
	min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE);

	/* Set divisor and clear phase offset */
	writel(value, div_addr);
	writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);

	/* Check status register */
	err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
					value, value & WZRD_DR_LOCK_BIT_MASK,
					WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
	if (err)
		goto err_reconfig;

	/* Initiate reconfiguration */
	writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
	       divider->base + WZRD_DR_INIT_REG_OFFSET);
	writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
	       divider->base + WZRD_DR_INIT_REG_OFFSET);

	/* Check status register */
	err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
					value, value & WZRD_DR_LOCK_BIT_MASK,
					WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
err_reconfig:
	spin_unlock_irqrestore(divider->lock, flags);
	return err;
}

static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate,
				unsigned long *prate)
{
	u8 div;

	/*
	 * since we don't change parent rate we just round rate to closest
	 * achievable
	 */
	div = DIV_ROUND_CLOSEST(*prate, rate);

	return *prate / div;
}

static int clk_wzrd_get_divisors_ver(struct clk_hw *hw, unsigned long rate,
				     unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	u64 vco_freq, freq, diff, vcomin, vcomax;
	u32 m, d, o;
	u32 mmin, mmax, dmin, dmax, omin, omax;

	mmin = VER_WZRD_M_MIN;
	mmax = VER_WZRD_M_MAX;
	dmin = VER_WZRD_D_MIN;
	dmax = VER_WZRD_D_MAX;
	omin = VER_WZRD_O_MIN;
	omax = VER_WZRD_O_MAX;
	vcomin = VER_WZRD_VCO_MIN;
	vcomax = VER_WZRD_VCO_MAX;

	for (m = mmin; m <= mmax; m++) {
		for (d = dmin; d <= dmax; d++) {
			vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
			if (vco_freq >= vcomin && vco_freq <= vcomax) {
				for (o = omin; o <= omax; o++) {
					freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
					diff = abs(freq - rate);

					if (diff < WZRD_MIN_ERR) {
						divider->m = m;
						divider->d = d;
						divider->o = o;
						return 0;
					}
				}
			}
		}
	}
	return -EBUSY;
}

static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate,
				 unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	u64 vco_freq, freq, diff, vcomin, vcomax;
	u32 m, d, o;
	u32 mmin, mmax, dmin, dmax, omin, omax;

	mmin = WZRD_M_MIN;
	mmax = WZRD_M_MAX;
	dmin = WZRD_D_MIN;
	dmax = WZRD_D_MAX;
	omin = WZRD_O_MIN;
	omax = WZRD_O_MAX;
	vcomin = WZRD_VCO_MIN;
	vcomax = WZRD_VCO_MAX;

	for (m = mmin; m <= mmax; m++) {
		for (d = dmin; d <= dmax; d++) {
			vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
			if (vco_freq >= vcomin && vco_freq <= vcomax) {
				for (o = omin; o <= omax; o++) {
					freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
					diff = abs(freq - rate);

					if (diff < WZRD_MIN_ERR) {
						divider->m = m;
						divider->d = d;
						divider->o = o;
						return 0;
					}
				}
			}
		}
	}
	return -EBUSY;
}

static int clk_wzrd_reconfig(struct clk_wzrd_divider *divider, void __iomem *div_addr)
{
	u32 value;
	int err;

	/* Check status register */
	err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
					value & WZRD_DR_LOCK_BIT_MASK,
					WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
	if (err)
		return -ETIMEDOUT;

	/* Initiate reconfiguration */
	writel(WZRD_DR_BEGIN_DYNA_RECONF, div_addr);
	/* Check status register */
	return readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
				 value & WZRD_DR_LOCK_BIT_MASK,
				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
}

static int clk_wzrd_dynamic_ver_all_nolock(struct clk_hw *hw, unsigned long rate,
					   unsigned long parent_rate)
{
	u32 regh, edged, p5en, p5fedge, value2, m, regval, regval1, value;
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr;
	int err;

	err = clk_wzrd_get_divisors_ver(hw, rate, parent_rate);
	if (err)
		return err;

	writel(0, divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4));

	m = divider->m;
	edged = m % WZRD_DUTY_CYCLE;
	regh = m / WZRD_DUTY_CYCLE;
	regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
							 WZRD_CLKFBOUT_1));
	regval1 |= WZRD_MULT_PREDIV2;
	if (edged)
		regval1 = regval1 | WZRD_CLKFBOUT_EDGE;
	else
		regval1 = regval1 & ~WZRD_CLKFBOUT_EDGE;

	writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
							 WZRD_CLKFBOUT_1));
	regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
	writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
							 WZRD_CLKFBOUT_2));

	value2 = divider->d;
	edged = value2 % WZRD_DUTY_CYCLE;
	regh = (value2 / WZRD_DUTY_CYCLE);
	regval1 = FIELD_PREP(WZRD_DIVCLK_EDGE, edged);
	writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
							 WZRD_DESKEW_2));
	regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
	writel(regval1, divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));

	value = divider->o;
	regh = value / WZRD_O_DIV;
	regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
							 WZRD_CLKOUT0_1));
	regval1 |= WZRD_CLKFBOUT_PREDIV2;
	regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);

	if (value % WZRD_O_DIV > 1) {
		edged = 1;
		regval1 |= edged << WZRD_CLKFBOUT_H_SHIFT;
	}

	p5fedge = value % WZRD_DUTY_CYCLE;
	p5en = value % WZRD_DUTY_CYCLE;

	regval1 = regval1 | FIELD_PREP(WZRD_P5EN, p5en) | FIELD_PREP(WZRD_P5FEDGE, p5fedge);
	writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
							 WZRD_CLKOUT0_1));
	regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
	writel(regval, divider->base + WZRD_CLK_CFG_REG(1,
							WZRD_CLKOUT0_2));
	div_addr = divider->base + WZRD_DR_INIT_VERSAL_OFFSET;

	return clk_wzrd_reconfig(divider, div_addr);
}

static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate,
				       unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	unsigned long vco_freq, rate_div, clockout0_div;
	void __iomem *div_addr;
	u32 reg, pre, f;
	int err;

	err = clk_wzrd_get_divisors(hw, rate, parent_rate);
	if (err)
		return err;

	vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d);
	rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate);

	clockout0_div = div_u64(rate_div,  WZRD_FRAC_POINTS);

	pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate);
	f = (pre - (clockout0_div * WZRD_FRAC_POINTS));
	f &= WZRD_CLKOUT_FRAC_MASK;

	reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) |
	      FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f);

	writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 2));
	/* Set divisor and clear phase offset */
	reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) |
	      FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d);
	writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 0));
	writel(divider->o, divider->base + WZRD_CLK_CFG_REG(0, 2));
	writel(0, divider->base + WZRD_CLK_CFG_REG(0, 3));
	div_addr = divider->base + WZRD_DR_INIT_REG_OFFSET;
	return clk_wzrd_reconfig(divider, div_addr);
}

static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate,
				unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(divider->lock, flags);

	ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate);

	spin_unlock_irqrestore(divider->lock, flags);

	return ret;
}

static int clk_wzrd_dynamic_all_ver(struct clk_hw *hw, unsigned long rate,
				    unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(divider->lock, flags);

	ret = clk_wzrd_dynamic_ver_all_nolock(hw, rate, parent_rate);

	spin_unlock_irqrestore(divider->lock, flags);

	return ret;
}

static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw,
					      unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	u32 m, d, o, div, reg, f;

	reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 0));
	d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
	m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg);
	reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 2));
	o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
	f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg);

	div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS);
	return divider_recalc_rate(hw, parent_rate * m, div, divider->table,
		divider->flags, divider->width);
}

static unsigned long clk_wzrd_recalc_rate_all_ver(struct clk_hw *hw,
						  unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	u32 edged, div2, p5en, edge, prediv2, all, regl, regh, mult;
	u32 div, reg;

	edge = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_1)) &
			WZRD_CLKFBOUT_EDGE);

	reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_2));
	regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
	regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);

	mult = regl + regh + edge;
	if (!mult)
		mult = 1;

	regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4)) &
		     WZRD_CLKFBOUT_FRAC_EN;
	if (regl) {
		regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_3))
				& WZRD_VERSAL_FRAC_MASK;
		mult = mult * WZRD_FRAC_GRADIENT + regl;
		parent_rate = DIV_ROUND_CLOSEST((parent_rate * mult), WZRD_FRAC_GRADIENT);
	} else {
		parent_rate = parent_rate * mult;
	}

	/* O Calculation */
	reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_1));
	edged = FIELD_GET(WZRD_CLKFBOUT_EDGE, reg);
	p5en = FIELD_GET(WZRD_P5EN, reg);
	prediv2 = FIELD_GET(WZRD_CLKOUT0_PREDIV2, reg);

	reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_2));
	/* Low time */
	regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
	/* High time */
	regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
	all = regh + regl + edged;
	if (!all)
		all = 1;

	if (prediv2)
		div2 = PREDIV2_MULT * all + p5en;
	else
		div2 = all;

	/* D calculation */
	edged = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DESKEW_2)) &
		     WZRD_DIVCLK_EDGE);
	reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
	/* Low time */
	regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
	/* High time */
	regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
	div = regl + regh + edged;
	if (!div)
		div = 1;

	div = div * div2;
	return divider_recalc_rate(hw, parent_rate, div, divider->table,
			divider->flags, divider->width);
}

static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate,
				    unsigned long *prate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	unsigned long int_freq;
	u32 m, d, o, div, f;
	int err;

	err = clk_wzrd_get_divisors(hw, rate, *prate);
	if (err)
		return err;

	m = divider->m;
	d = divider->d;
	o = divider->o;

	div = d * o;
	int_freq =  divider_recalc_rate(hw, *prate * m, div, divider->table,
					divider->flags, divider->width);

	if (rate > int_freq) {
		f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq);
		rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS);
	}
	return rate;
}

static const struct clk_ops clk_wzrd_ver_divider_ops = {
	.round_rate = clk_wzrd_round_rate,
	.set_rate = clk_wzrd_ver_dynamic_reconfig,
	.recalc_rate = clk_wzrd_recalc_rate_ver,
};

static const struct clk_ops clk_wzrd_ver_div_all_ops = {
	.round_rate = clk_wzrd_round_rate_all,
	.set_rate = clk_wzrd_dynamic_all_ver,
	.recalc_rate = clk_wzrd_recalc_rate_all_ver,
};

static const struct clk_ops clk_wzrd_clk_divider_ops = {
	.round_rate = clk_wzrd_round_rate,
	.set_rate = clk_wzrd_dynamic_reconfig,
	.recalc_rate = clk_wzrd_recalc_rate,
};

static const struct clk_ops clk_wzrd_clk_div_all_ops = {
	.round_rate = clk_wzrd_round_rate_all,
	.set_rate = clk_wzrd_dynamic_all,
	.recalc_rate = clk_wzrd_recalc_rate_all,
};

static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw,
					   unsigned long parent_rate)
{
	unsigned int val;
	u32 div, frac;
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;

	val = readl(div_addr);
	div = val & div_mask(divider->width);
	frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK;

	return mult_frac(parent_rate, 1000, (div * 1000) + frac);
}

static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate,
				       unsigned long parent_rate)
{
	int err;
	u32 value, pre;
	unsigned long rate_div, f, clockout0_div;
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;

	rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate);
	clockout0_div = rate_div / 1000;

	pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate);
	f = (u32)(pre - (clockout0_div * 1000));
	f = f & WZRD_CLKOUT_FRAC_MASK;
	f = f << WZRD_CLKOUT_DIVIDE_WIDTH;

	value = (f  | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK));

	/* Set divisor and clear phase offset */
	writel(value, div_addr);
	writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);

	/* Check status register */
	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
				 value & WZRD_DR_LOCK_BIT_MASK,
				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
	if (err)
		return err;

	/* Initiate reconfiguration */
	writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
	       divider->base + WZRD_DR_INIT_REG_OFFSET);
	writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
	       divider->base + WZRD_DR_INIT_REG_OFFSET);

	/* Check status register */
	return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
				value & WZRD_DR_LOCK_BIT_MASK,
				WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
}

static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate,
				  unsigned long *prate)
{
	return rate;
}

static const struct clk_ops clk_wzrd_clk_divider_ops_f = {
	.round_rate = clk_wzrd_round_rate_f,
	.set_rate = clk_wzrd_dynamic_reconfig_f,
	.recalc_rate = clk_wzrd_recalc_ratef,
};

static struct clk *clk_wzrd_register_divf(struct device *dev,
					  const char *name,
					  const char *parent_name,
					  unsigned long flags,
					  void __iomem *base, u16 offset,
					  u8 shift, u8 width,
					  u8 clk_divider_flags,
					  u32 div_type,
					  spinlock_t *lock)
{
	struct clk_wzrd_divider *div;
	struct clk_hw *hw;
	struct clk_init_data init;
	int ret;

	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return ERR_PTR(-ENOMEM);

	init.name = name;

	init.ops = &clk_wzrd_clk_divider_ops_f;

	init.flags = flags;
	init.parent_names = &parent_name;
	init.num_parents = 1;

	div->base = base;
	div->offset = offset;
	div->shift = shift;
	div->width = width;
	div->flags = clk_divider_flags;
	div->lock = lock;
	div->hw.init = &init;

	hw = &div->hw;
	ret =  devm_clk_hw_register(dev, hw);
	if (ret)
		return ERR_PTR(ret);

	return hw->clk;
}

static struct clk *clk_wzrd_ver_register_divider(struct device *dev,
						 const char *name,
						 const char *parent_name,
						 unsigned long flags,
						 void __iomem *base,
						 u16 offset,
						 u8 shift, u8 width,
						 u8 clk_divider_flags,
						 u32 div_type,
						 spinlock_t *lock)
{
	struct clk_wzrd_divider *div;
	struct clk_hw *hw;
	struct clk_init_data init;
	int ret;

	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
		init.ops = &clk_divider_ro_ops;
	else if (div_type == DIV_O)
		init.ops = &clk_wzrd_ver_divider_ops;
	else
		init.ops = &clk_wzrd_ver_div_all_ops;
	init.flags = flags;
	init.parent_names =  &parent_name;
	init.num_parents =  1;

	div->base = base;
	div->offset = offset;
	div->shift = shift;
	div->width = width;
	div->flags = clk_divider_flags;
	div->lock = lock;
	div->hw.init = &init;

	hw = &div->hw;
	ret = devm_clk_hw_register(dev, hw);
	if (ret)
		return ERR_PTR(ret);

	return hw->clk;
}

static struct clk *clk_wzrd_register_divider(struct device *dev,
					     const char *name,
					     const char *parent_name,
					     unsigned long flags,
					     void __iomem *base, u16 offset,
					     u8 shift, u8 width,
					     u8 clk_divider_flags,
					     u32 div_type,
					     spinlock_t *lock)
{
	struct clk_wzrd_divider *div;
	struct clk_hw *hw;
	struct clk_init_data init;
	int ret;

	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
		init.ops = &clk_divider_ro_ops;
	else if (div_type == DIV_O)
		init.ops = &clk_wzrd_clk_divider_ops;
	else
		init.ops = &clk_wzrd_clk_div_all_ops;
	init.flags = flags;
	init.parent_names =  &parent_name;
	init.num_parents =  1;

	div->base = base;
	div->offset = offset;
	div->shift = shift;
	div->width = width;
	div->flags = clk_divider_flags;
	div->lock = lock;
	div->hw.init = &init;

	hw = &div->hw;
	ret = devm_clk_hw_register(dev, hw);
	if (ret)
		return ERR_PTR(ret);

	return hw->clk;
}

static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event,
				 void *data)
{
	unsigned long max;
	struct clk_notifier_data *ndata = data;
	struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb);

	if (clk_wzrd->suspended)
		return NOTIFY_OK;

	if (ndata->clk == clk_wzrd->clk_in1)
		max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1];
	else if (ndata->clk == clk_wzrd->axi_clk)
		max = WZRD_ACLK_MAX_FREQ;
	else
		return NOTIFY_DONE;	/* should never happen */

	switch (event) {
	case PRE_RATE_CHANGE:
		if (ndata->new_rate > max)
			return NOTIFY_BAD;
		return NOTIFY_OK;
	case POST_RATE_CHANGE:
	case ABORT_RATE_CHANGE:
	default:
		return NOTIFY_DONE;
	}
}

static int __maybe_unused clk_wzrd_suspend(struct device *dev)
{
	struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);

	clk_disable_unprepare(clk_wzrd->axi_clk);
	clk_wzrd->suspended = true;

	return 0;
}

static int __maybe_unused clk_wzrd_resume(struct device *dev)
{
	int ret;
	struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);

	ret = clk_prepare_enable(clk_wzrd->axi_clk);
	if (ret) {
		dev_err(dev, "unable to enable s_axi_aclk\n");
		return ret;
	}

	clk_wzrd->suspended = false;

	return 0;
}

static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend,
			 clk_wzrd_resume);

static const struct versal_clk_data versal_data = {
	.is_versal	= true,
};

static int clk_wzrd_probe(struct platform_device *pdev)
{
	const char *clkout_name, *clk_name, *clk_mul_name;
	u32 regl, regh, edge, regld, reghd, edged, div;
	struct device_node *np = pdev->dev.of_node;
	const struct versal_clk_data *data;
	struct clk_wzrd *clk_wzrd;
	unsigned long flags = 0;
	void __iomem *ctrl_reg;
	u32 reg, reg_f, mult;
	bool is_versal = false;
	unsigned long rate;
	int nr_outputs;
	int i, ret;

	clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL);
	if (!clk_wzrd)
		return -ENOMEM;
	platform_set_drvdata(pdev, clk_wzrd);

	clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(clk_wzrd->base))
		return PTR_ERR(clk_wzrd->base);

	ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade);
	if (!ret) {
		if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) {
			dev_warn(&pdev->dev, "invalid speed grade '%d'\n",
				 clk_wzrd->speed_grade);
			clk_wzrd->speed_grade = 0;
		}
	}

	clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1");
	if (IS_ERR(clk_wzrd->clk_in1))
		return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1),
				     "clk_in1 not found\n");

	clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
	if (IS_ERR(clk_wzrd->axi_clk))
		return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk),
				     "s_axi_aclk not found\n");
	ret = clk_prepare_enable(clk_wzrd->axi_clk);
	if (ret) {
		dev_err(&pdev->dev, "enabling s_axi_aclk failed\n");
		return ret;
	}
	rate = clk_get_rate(clk_wzrd->axi_clk);
	if (rate > WZRD_ACLK_MAX_FREQ) {
		dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n",
			rate);
		ret = -EINVAL;
		goto err_disable_clk;
	}

	data = device_get_match_data(&pdev->dev);
	if (data)
		is_versal = data->is_versal;

	ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs);
	if (ret || nr_outputs > WZRD_NUM_OUTPUTS) {
		ret = -EINVAL;
		goto err_disable_clk;
	}

	clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out0", dev_name(&pdev->dev));
	if (!clkout_name) {
		ret = -ENOMEM;
		goto err_disable_clk;
	}

	if (is_versal) {
		if (nr_outputs == 1) {
			clk_wzrd->clkout[0] = clk_wzrd_ver_register_divider
				(&pdev->dev, clkout_name,
				__clk_get_name(clk_wzrd->clk_in1), 0,
				clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
				WZRD_CLKOUT_DIVIDE_SHIFT,
				WZRD_CLKOUT_DIVIDE_WIDTH,
				CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
				DIV_ALL, &clkwzrd_lock);

			goto out;
		}
		/* register multiplier */
		edge = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0)) &
				BIT(8));
		regl = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
			     WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
		regh = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
			     WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
		mult = regl + regh + edge;
		if (!mult)
			mult = 1;
		mult = mult * WZRD_FRAC_GRADIENT;

		regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 51)) &
			     WZRD_CLKFBOUT_FRAC_EN;
		if (regl) {
			regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 48)) &
				WZRD_VERSAL_FRAC_MASK;
			mult = mult + regl;
		}
		div = 64;
	} else {
		if (nr_outputs == 1) {
			clk_wzrd->clkout[0] = clk_wzrd_register_divider
				(&pdev->dev, clkout_name,
				__clk_get_name(clk_wzrd->clk_in1), 0,
				clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
				WZRD_CLKOUT_DIVIDE_SHIFT,
				WZRD_CLKOUT_DIVIDE_WIDTH,
				CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
				DIV_ALL, &clkwzrd_lock);

			goto out;
		}
		reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0));
		reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK;
		reg_f =  reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT;

		reg = reg & WZRD_CLKFBOUT_MULT_MASK;
		reg =  reg >> WZRD_CLKFBOUT_MULT_SHIFT;
		mult = (reg * 1000) + reg_f;
		div = 1000;
	}
	clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul", dev_name(&pdev->dev));
	if (!clk_name) {
		ret = -ENOMEM;
		goto err_disable_clk;
	}
	clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor
			(&pdev->dev, clk_name,
			 __clk_get_name(clk_wzrd->clk_in1),
			0, mult, div);
	if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) {
		dev_err(&pdev->dev, "unable to register fixed-factor clock\n");
		ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]);
		goto err_disable_clk;
	}

	clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev));
	if (!clk_name) {
		ret = -ENOMEM;
		goto err_rm_int_clk;
	}

	if (is_versal) {
		edged = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 20)) &
			     BIT(10));
		regld = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
			     WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
		reghd = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
		     WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
		div = (regld  + reghd + edged);
		if (!div)
			div = 1;

		clk_mul_name = __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]);
		clk_wzrd->clks_internal[wzrd_clk_mul_div] =
			clk_register_fixed_factor(&pdev->dev, clk_name,
						  clk_mul_name, 0, 1, div);
	} else {
		ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0);
		clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider
			(&pdev->dev, clk_name,
			 __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]),
			flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED |
			CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock);
	}
	if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) {
		dev_err(&pdev->dev, "unable to register divider clock\n");
		ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]);
		goto err_rm_int_clk;
	}

	/* register div per output */
	for (i = nr_outputs - 1; i >= 0 ; i--) {
		clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
					     "%s_out%d", dev_name(&pdev->dev), i);
		if (!clkout_name) {
			ret = -ENOMEM;
			goto err_rm_int_clk;
		}

		if (is_versal) {
			clk_wzrd->clkout[i] = clk_wzrd_ver_register_divider
						(&pdev->dev,
						 clkout_name, clk_name, 0,
						 clk_wzrd->base,
						 (WZRD_CLK_CFG_REG(is_versal, 3) + i * 8),
						 WZRD_CLKOUT_DIVIDE_SHIFT,
						 WZRD_CLKOUT_DIVIDE_WIDTH,
						 CLK_DIVIDER_ONE_BASED |
						 CLK_DIVIDER_ALLOW_ZERO,
						 DIV_O, &clkwzrd_lock);
		} else {
			if (!i)
				clk_wzrd->clkout[i] = clk_wzrd_register_divf
					(&pdev->dev, clkout_name, clk_name, flags, clk_wzrd->base,
					(WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
					WZRD_CLKOUT_DIVIDE_SHIFT,
					WZRD_CLKOUT_DIVIDE_WIDTH,
					CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
					DIV_O, &clkwzrd_lock);
			else
				clk_wzrd->clkout[i] = clk_wzrd_register_divider
					(&pdev->dev, clkout_name, clk_name, 0, clk_wzrd->base,
					(WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
					WZRD_CLKOUT_DIVIDE_SHIFT,
					WZRD_CLKOUT_DIVIDE_WIDTH,
					CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
					DIV_O, &clkwzrd_lock);
		}
		if (IS_ERR(clk_wzrd->clkout[i])) {
			int j;

			for (j = i + 1; j < nr_outputs; j++)
				clk_unregister(clk_wzrd->clkout[j]);
			dev_err(&pdev->dev,
				"unable to register divider clock\n");
			ret = PTR_ERR(clk_wzrd->clkout[i]);
			goto err_rm_int_clks;
		}
	}

out:
	clk_wzrd->clk_data.clks = clk_wzrd->clkout;
	clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout);
	of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data);

	if (clk_wzrd->speed_grade) {
		clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier;

		ret = clk_notifier_register(clk_wzrd->clk_in1,
					    &clk_wzrd->nb);
		if (ret)
			dev_warn(&pdev->dev,
				 "unable to register clock notifier\n");

		ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb);
		if (ret)
			dev_warn(&pdev->dev,
				 "unable to register clock notifier\n");
	}

	return 0;

err_rm_int_clks:
	clk_unregister(clk_wzrd->clks_internal[1]);
err_rm_int_clk:
	clk_unregister(clk_wzrd->clks_internal[0]);
err_disable_clk:
	clk_disable_unprepare(clk_wzrd->axi_clk);

	return ret;
}

static void clk_wzrd_remove(struct platform_device *pdev)
{
	int i;
	struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev);

	of_clk_del_provider(pdev->dev.of_node);

	for (i = 0; i < WZRD_NUM_OUTPUTS; i++)
		clk_unregister(clk_wzrd->clkout[i]);
	for (i = 0; i < wzrd_clk_int_max; i++)
		clk_unregister(clk_wzrd->clks_internal[i]);

	if (clk_wzrd->speed_grade) {
		clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb);
		clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb);
	}

	clk_disable_unprepare(clk_wzrd->axi_clk);
}

static const struct of_device_id clk_wzrd_ids[] = {
	{ .compatible = "xlnx,versal-clk-wizard", .data = &versal_data },
	{ .compatible = "xlnx,clocking-wizard"   },
	{ .compatible = "xlnx,clocking-wizard-v5.2"   },
	{ .compatible = "xlnx,clocking-wizard-v6.0"  },
	{ },
};
MODULE_DEVICE_TABLE(of, clk_wzrd_ids);

static struct platform_driver clk_wzrd_driver = {
	.driver = {
		.name = "clk-wizard",
		.of_match_table = clk_wzrd_ids,
		.pm = &clk_wzrd_dev_pm_ops,
	},
	.probe = clk_wzrd_probe,
	.remove = clk_wzrd_remove,
};
module_platform_driver(clk_wzrd_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Soeren Brinkmann <[email protected]");
MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");