// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/iommu.h>
#include <linux/sched/mm.h>
#include <uapi/linux/idxd.h>
#include "../dmaengine.h"
#include "idxd.h"
#include "registers.h"
enum irq_work_type {
IRQ_WORK_NORMAL = 0,
IRQ_WORK_PROCESS_FAULT,
};
struct idxd_resubmit {
struct work_struct work;
struct idxd_desc *desc;
};
struct idxd_int_handle_revoke {
struct work_struct work;
struct idxd_device *idxd;
};
static void idxd_device_reinit(struct work_struct *work)
{
struct idxd_device *idxd = container_of(work, struct idxd_device, work);
struct device *dev = &idxd->pdev->dev;
int rc, i;
idxd_device_reset(idxd);
rc = idxd_device_config(idxd);
if (rc < 0)
goto out;
rc = idxd_device_enable(idxd);
if (rc < 0)
goto out;
for (i = 0; i < idxd->max_wqs; i++) {
if (test_bit(i, idxd->wq_enable_map)) {
struct idxd_wq *wq = idxd->wqs[i];
rc = idxd_wq_enable(wq);
if (rc < 0) {
clear_bit(i, idxd->wq_enable_map);
dev_warn(dev, "Unable to re-enable wq %s\n",
dev_name(wq_confdev(wq)));
}
}
}
return;
out:
idxd_device_clear_state(idxd);
}
/*
* The function sends a drain descriptor for the interrupt handle. The drain ensures
* all descriptors with this interrupt handle is flushed and the interrupt
* will allow the cleanup of the outstanding descriptors.
*/
static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
{
struct idxd_wq *wq = ie_to_wq(ie);
struct idxd_device *idxd = wq->idxd;
struct device *dev = &idxd->pdev->dev;
struct dsa_hw_desc desc = {};
void __iomem *portal;
int rc;
/* Issue a simple drain operation with interrupt but no completion record */
desc.flags = IDXD_OP_FLAG_RCI;
desc.opcode = DSA_OPCODE_DRAIN;
desc.priv = 1;
if (ie->pasid != IOMMU_PASID_INVALID)
desc.pasid = ie->pasid;
desc.int_handle = ie->int_handle;
portal = idxd_wq_portal_addr(wq);
/*
* The wmb() makes sure that the descriptor is all there before we
* issue.
*/
wmb();
if (wq_dedicated(wq)) {
iosubmit_cmds512(portal, &desc, 1);
} else {
rc = idxd_enqcmds(wq, portal, &desc);
/* This should not fail unless hardware failed. */
if (rc < 0)
dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
}
}
static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
{
LIST_HEAD(flist);
struct idxd_desc *d, *t;
struct llist_node *head;
spin_lock(&ie->list_lock);
head = llist_del_all(&ie->pending_llist);
if (head) {
llist_for_each_entry_safe(d, t, head, llnode)
list_add_tail(&d->list, &ie->work_list);
}
list_for_each_entry_safe(d, t, &ie->work_list, list) {
if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
list_move_tail(&d->list, &flist);
}
spin_unlock(&ie->list_lock);
list_for_each_entry_safe(d, t, &flist, list) {
list_del(&d->list);
idxd_desc_complete(d, IDXD_COMPLETE_ABORT, true);
}
}
static void idxd_int_handle_revoke(struct work_struct *work)
{
struct idxd_int_handle_revoke *revoke =
container_of(work, struct idxd_int_handle_revoke, work);
struct idxd_device *idxd = revoke->idxd;
struct pci_dev *pdev = idxd->pdev;
struct device *dev = &pdev->dev;
int i, new_handle, rc;
if (!idxd->request_int_handles) {
kfree(revoke);
dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
return;
}
/*
* The loop attempts to acquire new interrupt handle for all interrupt
* vectors that supports a handle. If a new interrupt handle is acquired and the
* wq is kernel type, the driver will kill the percpu_ref to pause all
* ongoing descriptor submissions. The interrupt handle is then changed.
* After change, the percpu_ref is revived and all the pending submissions
* are woken to try again. A drain is sent to for the interrupt handle
* at the end to make sure all invalid int handle descriptors are processed.
*/
for (i = 1; i < idxd->irq_cnt; i++) {
struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
struct idxd_wq *wq = ie_to_wq(ie);
if (ie->int_handle == INVALID_INT_HANDLE)
continue;
rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
if (rc < 0) {
dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
/*
* Failed to acquire new interrupt handle. Kill the WQ
* and release all the pending submitters. The submitters will
* get error return code and handle appropriately.
*/
ie->int_handle = INVALID_INT_HANDLE;
idxd_wq_quiesce(wq);
idxd_abort_invalid_int_handle_descs(ie);
continue;
}
/* No change in interrupt handle, nothing needs to be done */
if (ie->int_handle == new_handle)
continue;
if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
/*
* All the MSIX interrupts are allocated at once during probe.
* Therefore we need to update all interrupts even if the WQ
* isn't supporting interrupt operations.
*/
ie->int_handle = new_handle;
continue;
}
mutex_lock(&wq->wq_lock);
reinit_completion(&wq->wq_resurrect);
/* Kill percpu_ref to pause additional descriptor submissions */
percpu_ref_kill(&wq->wq_active);
/* Wait for all submitters quiesce before we change interrupt handle */
wait_for_completion(&wq->wq_dead);
ie->int_handle = new_handle;
/* Revive percpu ref and wake up all the waiting submitters */
percpu_ref_reinit(&wq->wq_active);
complete_all(&wq->wq_resurrect);
mutex_unlock(&wq->wq_lock);
/*
* The delay here is to wait for all possible MOVDIR64B that
* are issued before percpu_ref_kill() has happened to have
* reached the PCIe domain before the drain is issued. The driver
* needs to ensure that the drain descriptor issued does not pass
* all the other issued descriptors that contain the invalid
* interrupt handle in order to ensure that the drain descriptor
* interrupt will allow the cleanup of all the descriptors with
* invalid interrupt handle.
*/
if (wq_dedicated(wq))
udelay(100);
idxd_int_handle_revoke_drain(ie);
}
kfree(revoke);
}
static void idxd_evl_fault_work(struct work_struct *work)
{
struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
struct idxd_wq *wq = fault->wq;
struct idxd_device *idxd = wq->idxd;
struct device *dev = &idxd->pdev->dev;
struct idxd_evl *evl = idxd->evl;
struct __evl_entry *entry_head = fault->entry;
void *cr = (void *)entry_head + idxd->data->evl_cr_off;
int cr_size = idxd->data->compl_size;
u8 *status = (u8 *)cr + idxd->data->cr_status_off;
u8 *result = (u8 *)cr + idxd->data->cr_result_off;
int copied, copy_size;
bool *bf;
switch (fault->status) {
case DSA_COMP_CRA_XLAT:
if (entry_head->batch && entry_head->first_err_in_batch)
evl->batch_fail[entry_head->batch_id] = false;
copy_size = cr_size;
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
break;
case DSA_COMP_BATCH_EVL_ERR:
bf = &evl->batch_fail[entry_head->batch_id];
copy_size = entry_head->rcr || *bf ? cr_size : 0;
if (*bf) {
if (*status == DSA_COMP_SUCCESS)
*status = DSA_COMP_BATCH_FAIL;
*result = 1;
*bf = false;
}
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
break;
case DSA_COMP_DRAIN_EVL:
copy_size = cr_size;
break;
default:
copy_size = 0;
dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
break;
}
if (copy_size == 0)
return;
/*
* Copy completion record to fault_addr in user address space
* that is found by wq and PASID.
*/
copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
cr, copy_size);
/*
* The task that triggered the page fault is unknown currently
* because multiple threads may share the user address
* space or the task exits already before this fault.
* So if the copy fails, SIGSEGV can not be sent to the task.
* Just print an error for the failure. The user application
* waiting for the completion record will time out on this
* failure.
*/
switch (fault->status) {
case DSA_COMP_CRA_XLAT:
if (copied != copy_size) {
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
copy_size, copied);
if (entry_head->batch)
evl->batch_fail[entry_head->batch_id] = true;
}
break;
case DSA_COMP_BATCH_EVL_ERR:
if (copied != copy_size) {
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
copy_size, copied);
}
break;
case DSA_COMP_DRAIN_EVL:
if (copied != copy_size)
dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
copy_size, copied);
break;
}
kmem_cache_free(idxd->evl_cache, fault);
}
static void process_evl_entry(struct idxd_device *idxd,
struct __evl_entry *entry_head, unsigned int index)
{
struct device *dev = &idxd->pdev->dev;
struct idxd_evl *evl = idxd->evl;
u8 status;
if (test_bit(index, evl->bmap)) {
clear_bit(index, evl->bmap);
} else {
status = DSA_COMP_STATUS(entry_head->error);
if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
status == DSA_COMP_BATCH_EVL_ERR) {
struct idxd_evl_fault *fault;
int ent_size = evl_ent_size(idxd);
if (entry_head->rci)
dev_dbg(dev, "Completion Int Req set, ignoring!\n");
if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
return;
fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
if (fault) {
struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
fault->wq = wq;
fault->status = status;
memcpy(&fault->entry, entry_head, ent_size);
INIT_WORK(&fault->work, idxd_evl_fault_work);
queue_work(wq->wq, &fault->work);
} else {
dev_warn(dev, "Failed to service fault work.\n");
}
} else {
dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
status, entry_head->operation,
entry_head->fault_addr);
}
}
}
static void process_evl_entries(struct idxd_device *idxd)
{
union evl_status_reg evl_status;
unsigned int h, t;
struct idxd_evl *evl = idxd->evl;
struct __evl_entry *entry_head;
unsigned int ent_size = evl_ent_size(idxd);
u32 size;
evl_status.bits = 0;
evl_status.int_pending = 1;
mutex_lock(&evl->lock);
/* Clear interrupt pending bit */
iowrite32(evl_status.bits_upper32,
idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
t = evl_status.tail;
h = evl_status.head;
size = idxd->evl->size;
while (h != t) {
entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
process_evl_entry(idxd, entry_head, h);
h = (h + 1) % size;
}
evl_status.head = h;
iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
mutex_unlock(&evl->lock);
}
irqreturn_t idxd_misc_thread(int vec, void *data)
{
struct idxd_irq_entry *irq_entry = data;
struct idxd_device *idxd = ie_to_idxd(irq_entry);
struct device *dev = &idxd->pdev->dev;
union gensts_reg gensts;
u32 val = 0;
int i;
bool err = false;
u32 cause;
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
if (!cause)
return IRQ_NONE;
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
if (cause & IDXD_INTC_HALT_STATE)
goto halt;
if (cause & IDXD_INTC_ERR) {
spin_lock(&idxd->dev_lock);
for (i = 0; i < 4; i++)
idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
IDXD_SWERR_OFFSET + i * sizeof(u64));
iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
idxd->reg_base + IDXD_SWERR_OFFSET);
if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
int id = idxd->sw_err.wq_idx;
struct idxd_wq *wq = idxd->wqs[id];
if (wq->type == IDXD_WQT_USER)
wake_up_interruptible(&wq->err_queue);
} else {
int i;
for (i = 0; i < idxd->max_wqs; i++) {
struct idxd_wq *wq = idxd->wqs[i];
if (wq->type == IDXD_WQT_USER)
wake_up_interruptible(&wq->err_queue);
}
}
spin_unlock(&idxd->dev_lock);
val |= IDXD_INTC_ERR;
for (i = 0; i < 4; i++)
dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
i, idxd->sw_err.bits[i]);
err = true;
}
if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
struct idxd_int_handle_revoke *revoke;
val |= IDXD_INTC_INT_HANDLE_REVOKED;
revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
if (revoke) {
revoke->idxd = idxd;
INIT_WORK(&revoke->work, idxd_int_handle_revoke);
queue_work(idxd->wq, &revoke->work);
} else {
dev_err(dev, "Failed to allocate work for int handle revoke\n");
idxd_wqs_quiesce(idxd);
}
}
if (cause & IDXD_INTC_CMD) {
val |= IDXD_INTC_CMD;
complete(idxd->cmd_done);
}
if (cause & IDXD_INTC_OCCUPY) {
/* Driver does not utilize occupancy interrupt */
val |= IDXD_INTC_OCCUPY;
}
if (cause & IDXD_INTC_PERFMON_OVFL) {
val |= IDXD_INTC_PERFMON_OVFL;
perfmon_counter_overflow(idxd);
}
if (cause & IDXD_INTC_EVL) {
val |= IDXD_INTC_EVL;
process_evl_entries(idxd);
}
val ^= cause;
if (val)
dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
val);
if (!err)
goto out;
halt:
gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
if (gensts.state == IDXD_DEVICE_STATE_HALT) {
idxd->state = IDXD_DEV_HALTED;
if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
/*
* If we need a software reset, we will throw the work
* on a system workqueue in order to allow interrupts
* for the device command completions.
*/
INIT_WORK(&idxd->work, idxd_device_reinit);
queue_work(idxd->wq, &idxd->work);
} else {
idxd->state = IDXD_DEV_HALTED;
idxd_wqs_quiesce(idxd);
idxd_wqs_unmap_portal(idxd);
idxd_device_clear_state(idxd);
dev_err(&idxd->pdev->dev,
"idxd halted, need %s.\n",
gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
"FLR" : "system reset");
}
}
out:
return IRQ_HANDLED;
}
static void idxd_int_handle_resubmit_work(struct work_struct *work)
{
struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
struct idxd_desc *desc = irw->desc;
struct idxd_wq *wq = desc->wq;
int rc;
desc->completion->status = 0;
rc = idxd_submit_desc(wq, desc);
if (rc < 0) {
dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
desc->id, wq->id);
/*
* If the error is not -EAGAIN, it means the submission failed due to wq
* has been killed instead of ENQCMDS failure. Here the driver needs to
* notify the submitter of the failure by reporting abort status.
*
* -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
* abort.
*/
if (rc != -EAGAIN) {
desc->completion->status = IDXD_COMP_DESC_ABORT;
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, false);
}
idxd_free_desc(wq, desc);
}
kfree(irw);
}
bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
{
struct idxd_wq *wq = desc->wq;
struct idxd_device *idxd = wq->idxd;
struct idxd_resubmit *irw;
irw = kzalloc(sizeof(*irw), GFP_KERNEL);
if (!irw)
return false;
irw->desc = desc;
INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
queue_work(idxd->wq, &irw->work);
return true;
}
static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
{
struct idxd_desc *desc, *t;
struct llist_node *head;
head = llist_del_all(&irq_entry->pending_llist);
if (!head)
return;
llist_for_each_entry_safe(desc, t, head, llnode) {
u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
if (status) {
/*
* Check against the original status as ABORT is software defined
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
*/
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
continue;
}
idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
} else {
spin_lock(&irq_entry->list_lock);
list_add_tail(&desc->list,
&irq_entry->work_list);
spin_unlock(&irq_entry->list_lock);
}
}
}
static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
{
LIST_HEAD(flist);
struct idxd_desc *desc, *n;
/*
* This lock protects list corruption from access of list outside of the irq handler
* thread.
*/
spin_lock(&irq_entry->list_lock);
if (list_empty(&irq_entry->work_list)) {
spin_unlock(&irq_entry->list_lock);
return;
}
list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
if (desc->completion->status) {
list_move_tail(&desc->list, &flist);
}
}
spin_unlock(&irq_entry->list_lock);
list_for_each_entry_safe(desc, n, &flist, list) {
/*
* Check against the original status as ABORT is software defined
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
*/
list_del(&desc->list);
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
continue;
}
idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
}
}
irqreturn_t idxd_wq_thread(int irq, void *data)
{
struct idxd_irq_entry *irq_entry = data;
/*
* There are two lists we are processing. The pending_llist is where
* submmiter adds all the submitted descriptor after sending it to
* the workqueue. It's a lockless singly linked list. The work_list
* is the common linux double linked list. We are in a scenario of
* multiple producers and a single consumer. The producers are all
* the kernel submitters of descriptors, and the consumer is the
* kernel irq handler thread for the msix vector when using threaded
* irq. To work with the restrictions of llist to remain lockless,
* we are doing the following steps:
* 1. Iterate through the work_list and process any completed
* descriptor. Delete the completed entries during iteration.
* 2. llist_del_all() from the pending list.
* 3. Iterate through the llist that was deleted from the pending list
* and process the completed entries.
* 4. If the entry is still waiting on hardware, list_add_tail() to
* the work_list.
*/
irq_process_work_list(irq_entry);
irq_process_pending_llist(irq_entry);
return IRQ_HANDLED;
}