// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2018-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <[email protected]>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_buf_mem.h"
#include "xfs_btree_mem.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_ag.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/iscan.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"
/*
* Reverse Mapping Btree Repair
* ============================
*
* This is the most involved of all the AG space btree rebuilds. Everywhere
* else in XFS we lock inodes and then AG data structures, but generating the
* list of rmap records requires that we be able to scan both block mapping
* btrees of every inode in the filesystem to see if it owns any extents in
* this AG. We can't tolerate any inode updates while we do this, so we
* freeze the filesystem to lock everyone else out, and grant ourselves
* special privileges to run transactions with regular background reclamation
* turned off.
*
* We also have to be very careful not to allow inode reclaim to start a
* transaction because all transactions (other than our own) will block.
* Deferred inode inactivation helps us out there.
*
* I) Reverse mappings for all non-space metadata and file data are collected
* according to the following algorithm:
*
* 1. For each fork of each inode:
* 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary.
* 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate
* bmaps into rmap records (see 1.1.4). Set bits in BMBIT for each btree
* block.
* 1.3. If the incore extent map is loaded but the fork is in btree format,
* just visit the bmbt blocks to set the corresponding BMBIT areas.
* 1.4. From the incore extent map, accumulate each bmap that falls into our
* target AG. Remember, multiple bmap records can map to a single rmap
* record, so we cannot simply emit rmap records 1:1.
* 1.5. Emit rmap records for each extent in BMBIT and free it.
* 2. Create bitmaps INOBIT and ICHUNKBIT.
* 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT,
* and set bits in INOBIT for each btree block. If the inobt has no records
* at all, we must be careful to record its root in INOBIT.
* 4. For each block in the finobt, set the corresponding INOBIT area.
* 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them.
* 6. Create bitmaps REFCBIT and COWBIT.
* 7. For each CoW staging extent in the refcountbt, set the corresponding
* areas in COWBIT.
* 8. For each block in the refcountbt, set the corresponding REFCBIT area.
* 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them.
* A. Emit rmap for the AG headers.
* B. Emit rmap for the log, if there is one.
*
* II) The rmapbt shape and space metadata rmaps are computed as follows:
*
* 1. Count the rmaps collected in the previous step. (= NR)
* 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB)
* 3. Reserve RMB blocks through the newbt using the allocator in normap mode.
* 4. Create bitmap AGBIT.
* 5. For each reservation in the newbt, set the corresponding areas in AGBIT.
* 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT.
* 7. Count the extents in AGBIT. (= AGNR)
* 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB')
* 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB',
* and clear AGBIT. Go to step 5.
* A. Emit rmaps for each extent in AGBIT.
*
* III) The rmapbt is constructed and set in place as follows:
*
* 1. Sort the rmap records.
* 2. Bulk load the rmaps.
*
* IV) Reap the old btree blocks.
*
* 1. Create a bitmap OLDRMBIT.
* 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT.
* 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT.
* 4. Reap the extents corresponding to the set areas in OLDRMBIT. These are
* the parts of the AG that the rmap didn't find during its scan of the
* primary metadata and aren't known to be in the free space, which implies
* that they were the old rmapbt blocks.
* 5. Commit.
*
* We use the 'xrep_rmap' prefix for all the rmap functions.
*/
/* Context for collecting rmaps */
struct xrep_rmap {
/* new rmapbt information */
struct xrep_newbt new_btree;
/* lock for the xfbtree and xfile */
struct mutex lock;
/* rmap records generated from primary metadata */
struct xfbtree rmap_btree;
struct xfs_scrub *sc;
/* in-memory btree cursor for the xfs_btree_bload iteration */
struct xfs_btree_cur *mcur;
/* Hooks into rmap update code. */
struct xfs_rmap_hook rhook;
/* inode scan cursor */
struct xchk_iscan iscan;
/* Number of non-freespace records found. */
unsigned long long nr_records;
/* bnobt/cntbt contribution to btreeblks */
xfs_agblock_t freesp_btblocks;
/* old agf_rmap_blocks counter */
unsigned int old_rmapbt_fsbcount;
};
/* Set us up to repair reverse mapping btrees. */
int
xrep_setup_ag_rmapbt(
struct xfs_scrub *sc)
{
struct xrep_rmap *rr;
char *descr;
int error;
xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP);
descr = xchk_xfile_ag_descr(sc, "reverse mapping records");
error = xrep_setup_xfbtree(sc, descr);
kfree(descr);
if (error)
return error;
rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS);
if (!rr)
return -ENOMEM;
rr->sc = sc;
sc->buf = rr;
return 0;
}
/* Make sure there's nothing funny about this mapping. */
STATIC int
xrep_rmap_check_mapping(
struct xfs_scrub *sc,
const struct xfs_rmap_irec *rec)
{
enum xbtree_recpacking outcome;
int error;
if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL)
return -EFSCORRUPTED;
/* Make sure this isn't free space. */
error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock,
rec->rm_blockcount, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
return 0;
}
/* Store a reverse-mapping record. */
static inline int
xrep_rmap_stash(
struct xrep_rmap *rr,
xfs_agblock_t startblock,
xfs_extlen_t blockcount,
uint64_t owner,
uint64_t offset,
unsigned int flags)
{
struct xfs_rmap_irec rmap = {
.rm_startblock = startblock,
.rm_blockcount = blockcount,
.rm_owner = owner,
.rm_offset = offset,
.rm_flags = flags,
};
struct xfs_scrub *sc = rr->sc;
struct xfs_btree_cur *mcur;
int error = 0;
if (xchk_should_terminate(sc, &error))
return error;
if (xchk_iscan_aborted(&rr->iscan))
return -EFSCORRUPTED;
trace_xrep_rmap_found(sc->mp, sc->sa.pag->pag_agno, &rmap);
mutex_lock(&rr->lock);
mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree);
error = xfs_rmap_map_raw(mcur, &rmap);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_cancel;
error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp);
if (error)
goto out_abort;
mutex_unlock(&rr->lock);
return 0;
out_cancel:
xfbtree_trans_cancel(&rr->rmap_btree, sc->tp);
out_abort:
xchk_iscan_abort(&rr->iscan);
mutex_unlock(&rr->lock);
return error;
}
struct xrep_rmap_stash_run {
struct xrep_rmap *rr;
uint64_t owner;
unsigned int rmap_flags;
};
static int
xrep_rmap_stash_run(
uint32_t start,
uint32_t len,
void *priv)
{
struct xrep_rmap_stash_run *rsr = priv;
struct xrep_rmap *rr = rsr->rr;
return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags);
}
/*
* Emit rmaps for every extent of bits set in the bitmap. Caller must ensure
* that the ranges are in units of FS blocks.
*/
STATIC int
xrep_rmap_stash_bitmap(
struct xrep_rmap *rr,
struct xagb_bitmap *bitmap,
const struct xfs_owner_info *oinfo)
{
struct xrep_rmap_stash_run rsr = {
.rr = rr,
.owner = oinfo->oi_owner,
.rmap_flags = 0,
};
if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
rsr.rmap_flags |= XFS_RMAP_ATTR_FORK;
if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK;
return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr);
}
/* Section (I): Finding all file and bmbt extents. */
/* Context for accumulating rmaps for an inode fork. */
struct xrep_rmap_ifork {
/*
* Accumulate rmap data here to turn multiple adjacent bmaps into a
* single rmap.
*/
struct xfs_rmap_irec accum;
/* Bitmap of bmbt blocks in this AG. */
struct xagb_bitmap bmbt_blocks;
struct xrep_rmap *rr;
/* Which inode fork? */
int whichfork;
};
/* Stash an rmap that we accumulated while walking an inode fork. */
STATIC int
xrep_rmap_stash_accumulated(
struct xrep_rmap_ifork *rf)
{
if (rf->accum.rm_blockcount == 0)
return 0;
return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock,
rf->accum.rm_blockcount, rf->accum.rm_owner,
rf->accum.rm_offset, rf->accum.rm_flags);
}
/* Accumulate a bmbt record. */
STATIC int
xrep_rmap_visit_bmbt(
struct xfs_btree_cur *cur,
struct xfs_bmbt_irec *rec,
void *priv)
{
struct xrep_rmap_ifork *rf = priv;
struct xfs_mount *mp = rf->rr->sc->mp;
struct xfs_rmap_irec *accum = &rf->accum;
xfs_agblock_t agbno;
unsigned int rmap_flags = 0;
int error;
if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) !=
rf->rr->sc->sa.pag->pag_agno)
return 0;
agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock);
if (rf->whichfork == XFS_ATTR_FORK)
rmap_flags |= XFS_RMAP_ATTR_FORK;
if (rec->br_state == XFS_EXT_UNWRITTEN)
rmap_flags |= XFS_RMAP_UNWRITTEN;
/* If this bmap is adjacent to the previous one, just add it. */
if (accum->rm_blockcount > 0 &&
rec->br_startoff == accum->rm_offset + accum->rm_blockcount &&
agbno == accum->rm_startblock + accum->rm_blockcount &&
rmap_flags == accum->rm_flags) {
accum->rm_blockcount += rec->br_blockcount;
return 0;
}
/* Otherwise stash the old rmap and start accumulating a new one. */
error = xrep_rmap_stash_accumulated(rf);
if (error)
return error;
accum->rm_startblock = agbno;
accum->rm_blockcount = rec->br_blockcount;
accum->rm_offset = rec->br_startoff;
accum->rm_flags = rmap_flags;
return 0;
}
/* Add a btree block to the bitmap. */
STATIC int
xrep_rmap_visit_iroot_btree_block(
struct xfs_btree_cur *cur,
int level,
void *priv)
{
struct xrep_rmap_ifork *rf = priv;
struct xfs_buf *bp;
xfs_fsblock_t fsbno;
xfs_agblock_t agbno;
xfs_btree_get_block(cur, level, &bp);
if (!bp)
return 0;
fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != rf->rr->sc->sa.pag->pag_agno)
return 0;
agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1);
}
/*
* Iterate a metadata btree rooted in an inode to collect rmap records for
* anything in this fork that matches the AG.
*/
STATIC int
xrep_rmap_scan_iroot_btree(
struct xrep_rmap_ifork *rf,
struct xfs_btree_cur *cur)
{
struct xfs_owner_info oinfo;
struct xrep_rmap *rr = rf->rr;
int error;
xagb_bitmap_init(&rf->bmbt_blocks);
/* Record all the blocks in the btree itself. */
error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block,
XFS_BTREE_VISIT_ALL, rf);
if (error)
goto out;
/* Emit rmaps for the btree blocks. */
xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork);
error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo);
if (error)
goto out;
/* Stash any remaining accumulated rmaps. */
error = xrep_rmap_stash_accumulated(rf);
out:
xagb_bitmap_destroy(&rf->bmbt_blocks);
return error;
}
/*
* Iterate the block mapping btree to collect rmap records for anything in this
* fork that matches the AG. Sets @mappings_done to true if we've scanned the
* block mappings in this fork.
*/
STATIC int
xrep_rmap_scan_bmbt(
struct xrep_rmap_ifork *rf,
struct xfs_inode *ip,
bool *mappings_done)
{
struct xrep_rmap *rr = rf->rr;
struct xfs_btree_cur *cur;
struct xfs_ifork *ifp;
int error;
*mappings_done = false;
ifp = xfs_ifork_ptr(ip, rf->whichfork);
cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork);
if (!xfs_ifork_is_realtime(ip, rf->whichfork) &&
xfs_need_iread_extents(ifp)) {
/*
* If the incore extent cache isn't loaded, scan the bmbt for
* mapping records. This avoids loading the incore extent
* tree, which will increase memory pressure at a time when
* we're trying to run as quickly as we possibly can. Ignore
* realtime extents.
*/
error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf);
if (error)
goto out_cur;
*mappings_done = true;
}
/* Scan for the bmbt blocks, which always live on the data device. */
error = xrep_rmap_scan_iroot_btree(rf, cur);
out_cur:
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Iterate the in-core extent cache to collect rmap records for anything in
* this fork that matches the AG.
*/
STATIC int
xrep_rmap_scan_iext(
struct xrep_rmap_ifork *rf,
struct xfs_ifork *ifp)
{
struct xfs_bmbt_irec rec;
struct xfs_iext_cursor icur;
int error;
for_each_xfs_iext(ifp, &icur, &rec) {
if (isnullstartblock(rec.br_startblock))
continue;
error = xrep_rmap_visit_bmbt(NULL, &rec, rf);
if (error)
return error;
}
return xrep_rmap_stash_accumulated(rf);
}
/* Find all the extents from a given AG in an inode fork. */
STATIC int
xrep_rmap_scan_ifork(
struct xrep_rmap *rr,
struct xfs_inode *ip,
int whichfork)
{
struct xrep_rmap_ifork rf = {
.accum = { .rm_owner = ip->i_ino, },
.rr = rr,
.whichfork = whichfork,
};
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
int error = 0;
if (!ifp)
return 0;
if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
bool mappings_done;
/*
* Scan the bmap btree for data device mappings. This includes
* the btree blocks themselves, even if this is a realtime
* file.
*/
error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done);
if (error || mappings_done)
return error;
} else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) {
return 0;
}
/* Scan incore extent cache if this isn't a realtime file. */
if (xfs_ifork_is_realtime(ip, whichfork))
return 0;
return xrep_rmap_scan_iext(&rf, ifp);
}
/*
* Take ILOCK on a file that we want to scan.
*
* Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded
* attr bmbt. Otherwise, take ILOCK_SHARED.
*/
static inline unsigned int
xrep_rmap_scan_ilock(
struct xfs_inode *ip)
{
uint lock_mode = XFS_ILOCK_SHARED;
if (xfs_need_iread_extents(&ip->i_df)) {
lock_mode = XFS_ILOCK_EXCL;
goto lock;
}
if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
lock_mode = XFS_ILOCK_EXCL;
lock:
xfs_ilock(ip, lock_mode);
return lock_mode;
}
/* Record reverse mappings for a file. */
STATIC int
xrep_rmap_scan_inode(
struct xrep_rmap *rr,
struct xfs_inode *ip)
{
unsigned int lock_mode = xrep_rmap_scan_ilock(ip);
int error;
/* Check the data fork. */
error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK);
if (error)
goto out_unlock;
/* Check the attr fork. */
error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK);
if (error)
goto out_unlock;
/* COW fork extents are "owned" by the refcount btree. */
xchk_iscan_mark_visited(&rr->iscan, ip);
out_unlock:
xfs_iunlock(ip, lock_mode);
return error;
}
/* Section (I): Find all AG metadata extents except for free space metadata. */
struct xrep_rmap_inodes {
struct xrep_rmap *rr;
struct xagb_bitmap inobt_blocks; /* INOBIT */
struct xagb_bitmap ichunk_blocks; /* ICHUNKBIT */
};
/* Record inode btree rmaps. */
STATIC int
xrep_rmap_walk_inobt(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *rec,
void *priv)
{
struct xfs_inobt_rec_incore irec;
struct xrep_rmap_inodes *ri = priv;
struct xfs_mount *mp = cur->bc_mp;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agino_t agino;
xfs_agino_t iperhole;
unsigned int i;
int error;
/* Record the inobt blocks. */
error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur);
if (error)
return error;
xfs_inobt_btrec_to_irec(mp, rec, &irec);
if (xfs_inobt_check_irec(cur->bc_ag.pag, &irec) != NULL)
return -EFSCORRUPTED;
agino = irec.ir_startino;
/* Record a non-sparse inode chunk. */
if (!xfs_inobt_issparse(irec.ir_holemask)) {
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
aglen = max_t(xfs_extlen_t, 1,
XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock);
return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
}
/* Iterate each chunk. */
iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock,
XFS_INODES_PER_HOLEMASK_BIT);
aglen = iperhole / mp->m_sb.sb_inopblock;
for (i = 0, agino = irec.ir_startino;
i < XFS_INOBT_HOLEMASK_BITS;
i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) {
/* Skip holes. */
if (irec.ir_holemask & (1 << i))
continue;
/* Record the inode chunk otherwise. */
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
if (error)
return error;
}
return 0;
}
/* Collect rmaps for the blocks containing inode btrees and the inode chunks. */
STATIC int
xrep_rmap_find_inode_rmaps(
struct xrep_rmap *rr)
{
struct xrep_rmap_inodes ri = {
.rr = rr,
};
struct xfs_scrub *sc = rr->sc;
int error;
xagb_bitmap_init(&ri.inobt_blocks);
xagb_bitmap_init(&ri.ichunk_blocks);
/*
* Iterate every record in the inobt so we can capture all the inode
* chunks and the blocks in the inobt itself.
*/
error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri);
if (error)
goto out_bitmap;
/*
* Note that if there are zero records in the inobt then query_all does
* nothing and we have to account the empty inobt root manually.
*/
if (xagb_bitmap_empty(&ri.ichunk_blocks)) {
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
error = xagb_bitmap_set(&ri.inobt_blocks,
be32_to_cpu(agi->agi_root), 1);
if (error)
goto out_bitmap;
}
/* Scan the finobt too. */
if (xfs_has_finobt(sc->mp)) {
error = xagb_bitmap_set_btblocks(&ri.inobt_blocks,
sc->sa.fino_cur);
if (error)
goto out_bitmap;
}
/* Generate rmaps for everything. */
error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks,
&XFS_RMAP_OINFO_INOBT);
if (error)
goto out_bitmap;
error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks,
&XFS_RMAP_OINFO_INODES);
out_bitmap:
xagb_bitmap_destroy(&ri.inobt_blocks);
xagb_bitmap_destroy(&ri.ichunk_blocks);
return error;
}
/* Record a CoW staging extent. */
STATIC int
xrep_rmap_walk_cowblocks(
struct xfs_btree_cur *cur,
const struct xfs_refcount_irec *irec,
void *priv)
{
struct xagb_bitmap *bitmap = priv;
if (!xfs_refcount_check_domain(irec) ||
irec->rc_domain != XFS_REFC_DOMAIN_COW)
return -EFSCORRUPTED;
return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount);
}
/*
* Collect rmaps for the blocks containing the refcount btree, and all CoW
* staging extents.
*/
STATIC int
xrep_rmap_find_refcount_rmaps(
struct xrep_rmap *rr)
{
struct xagb_bitmap refcountbt_blocks; /* REFCBIT */
struct xagb_bitmap cow_blocks; /* COWBIT */
struct xfs_refcount_irec low = {
.rc_startblock = 0,
.rc_domain = XFS_REFC_DOMAIN_COW,
};
struct xfs_refcount_irec high = {
.rc_startblock = -1U,
.rc_domain = XFS_REFC_DOMAIN_COW,
};
struct xfs_scrub *sc = rr->sc;
int error;
if (!xfs_has_reflink(sc->mp))
return 0;
xagb_bitmap_init(&refcountbt_blocks);
xagb_bitmap_init(&cow_blocks);
/* refcountbt */
error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur);
if (error)
goto out_bitmap;
/* Collect rmaps for CoW staging extents. */
error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high,
xrep_rmap_walk_cowblocks, &cow_blocks);
if (error)
goto out_bitmap;
/* Generate rmaps for everything. */
error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW);
if (error)
goto out_bitmap;
error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks,
&XFS_RMAP_OINFO_REFC);
out_bitmap:
xagb_bitmap_destroy(&cow_blocks);
xagb_bitmap_destroy(&refcountbt_blocks);
return error;
}
/* Generate rmaps for the AG headers (AGI/AGF/AGFL) */
STATIC int
xrep_rmap_find_agheader_rmaps(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
/* Create a record for the AG sb->agfl. */
return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp),
XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1,
XFS_RMAP_OWN_FS, 0, 0);
}
/* Generate rmaps for the log, if it's in this AG. */
STATIC int
xrep_rmap_find_log_rmaps(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
if (!xfs_ag_contains_log(sc->mp, sc->sa.pag->pag_agno))
return 0;
return xrep_rmap_stash(rr,
XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart),
sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0);
}
/* Check and count all the records that we gathered. */
STATIC int
xrep_rmap_check_record(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_rmap *rr = priv;
int error;
error = xrep_rmap_check_mapping(rr->sc, rec);
if (error)
return error;
rr->nr_records++;
return 0;
}
/*
* Generate all the reverse-mappings for this AG, a list of the old rmapbt
* blocks, and the new btreeblks count. Figure out if we have enough free
* space to reconstruct the inode btrees. The caller must clean up the lists
* if anything goes wrong. This implements section (I) above.
*/
STATIC int
xrep_rmap_find_rmaps(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xchk_ag *sa = &sc->sa;
struct xfs_inode *ip;
struct xfs_btree_cur *mcur;
int error;
/* Find all the per-AG metadata. */
xrep_ag_btcur_init(sc, &sc->sa);
error = xrep_rmap_find_inode_rmaps(rr);
if (error)
goto end_agscan;
error = xrep_rmap_find_refcount_rmaps(rr);
if (error)
goto end_agscan;
error = xrep_rmap_find_agheader_rmaps(rr);
if (error)
goto end_agscan;
error = xrep_rmap_find_log_rmaps(rr);
end_agscan:
xchk_ag_btcur_free(&sc->sa);
if (error)
return error;
/*
* Set up for a potentially lengthy filesystem scan by reducing our
* transaction resource usage for the duration. Specifically:
*
* Unlock the AG header buffers and cancel the transaction to release
* the log grant space while we scan the filesystem.
*
* Create a new empty transaction to eliminate the possibility of the
* inode scan deadlocking on cyclical metadata.
*
* We pass the empty transaction to the file scanning function to avoid
* repeatedly cycling empty transactions. This can be done even though
* we take the IOLOCK to quiesce the file because empty transactions
* do not take sb_internal.
*/
sa->agf_bp = NULL;
sa->agi_bp = NULL;
xchk_trans_cancel(sc);
error = xchk_trans_alloc_empty(sc);
if (error)
return error;
/* Iterate all AGs for inodes rmaps. */
while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) {
error = xrep_rmap_scan_inode(rr, ip);
xchk_irele(sc, ip);
if (error)
break;
if (xchk_should_terminate(sc, &error))
break;
}
xchk_iscan_iter_finish(&rr->iscan);
if (error)
return error;
/*
* Switch out for a real transaction and lock the AG headers in
* preparation for building a new tree.
*/
xchk_trans_cancel(sc);
error = xchk_setup_fs(sc);
if (error)
return error;
error = xchk_perag_drain_and_lock(sc);
if (error)
return error;
/*
* If a hook failed to update the in-memory btree, we lack the data to
* continue the repair.
*/
if (xchk_iscan_aborted(&rr->iscan))
return -EFSCORRUPTED;
/*
* Now that we have everything locked again, we need to count the
* number of rmap records stashed in the btree. This should reflect
* all actively-owned space in the filesystem. At the same time, check
* all our records before we start building a new btree, which requires
* a bnobt cursor.
*/
mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);
sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
rr->nr_records = 0;
error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr);
xfs_btree_del_cursor(sc->sa.bno_cur, error);
sc->sa.bno_cur = NULL;
xfs_btree_del_cursor(mcur, error);
return error;
}
/* Section (II): Reserving space for new rmapbt and setting free space bitmap */
struct xrep_rmap_agfl {
struct xagb_bitmap *bitmap;
xfs_agnumber_t agno;
};
/* Add an AGFL block to the rmap list. */
STATIC int
xrep_rmap_walk_agfl(
struct xfs_mount *mp,
xfs_agblock_t agbno,
void *priv)
{
struct xrep_rmap_agfl *ra = priv;
return xagb_bitmap_set(ra->bitmap, agbno, 1);
}
/*
* Run one round of reserving space for the new rmapbt and recomputing the
* number of blocks needed to store the previously observed rmapbt records and
* the ones we'll create for the free space metadata. When we don't need more
* blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to
* true.
*/
STATIC int
xrep_rmap_try_reserve(
struct xrep_rmap *rr,
struct xfs_btree_cur *rmap_cur,
struct xagb_bitmap *freesp_blocks,
uint64_t *blocks_reserved,
bool *done)
{
struct xrep_rmap_agfl ra = {
.bitmap = freesp_blocks,
.agno = rr->sc->sa.pag->pag_agno,
};
struct xfs_scrub *sc = rr->sc;
struct xrep_newbt_resv *resv, *n;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_buf *agfl_bp;
uint64_t nr_blocks; /* RMB */
uint64_t freesp_records;
int error;
/*
* We're going to recompute new_btree.bload.nr_blocks at the end of
* this function to reflect however many btree blocks we need to store
* all the rmap records (including the ones that reflect the changes we
* made to support the new rmapbt blocks), so we save the old value
* here so we can decide if we've reserved enough blocks.
*/
nr_blocks = rr->new_btree.bload.nr_blocks;
/*
* Make sure we've reserved enough space for the new btree. This can
* change the shape of the free space btrees, which can cause secondary
* interactions with the rmap records because all three space btrees
* have the same rmap owner. We'll account for all that below.
*/
error = xrep_newbt_alloc_blocks(&rr->new_btree,
nr_blocks - *blocks_reserved);
if (error)
return error;
*blocks_reserved = rr->new_btree.bload.nr_blocks;
/* Clear everything in the bitmap. */
xagb_bitmap_destroy(freesp_blocks);
/* Set all the bnobt blocks in the bitmap. */
sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur);
xfs_btree_del_cursor(sc->sa.bno_cur, error);
sc->sa.bno_cur = NULL;
if (error)
return error;
/* Set all the cntbt blocks in the bitmap. */
sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur);
xfs_btree_del_cursor(sc->sa.cnt_cur, error);
sc->sa.cnt_cur = NULL;
if (error)
return error;
/* Record our new btreeblks value. */
rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2;
/* Set all the new rmapbt blocks in the bitmap. */
list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) {
error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len);
if (error)
return error;
}
/* Set all the AGFL blocks in the bitmap. */
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
if (error)
return error;
error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra);
if (error)
return error;
/* Count the extents in the bitmap. */
freesp_records = xagb_bitmap_count_set_regions(freesp_blocks);
/* Compute how many blocks we'll need for all the rmaps. */
error = xfs_btree_bload_compute_geometry(rmap_cur,
&rr->new_btree.bload, rr->nr_records + freesp_records);
if (error)
return error;
/* We're done when we don't need more blocks. */
*done = nr_blocks >= rr->new_btree.bload.nr_blocks;
return 0;
}
/*
* Iteratively reserve space for rmap btree while recording OWN_AG rmaps for
* the free space metadata. This implements section (II) above.
*/
STATIC int
xrep_rmap_reserve_space(
struct xrep_rmap *rr,
struct xfs_btree_cur *rmap_cur)
{
struct xagb_bitmap freesp_blocks; /* AGBIT */
uint64_t blocks_reserved = 0;
bool done = false;
int error;
/* Compute how many blocks we'll need for the rmaps collected so far. */
error = xfs_btree_bload_compute_geometry(rmap_cur,
&rr->new_btree.bload, rr->nr_records);
if (error)
return error;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(rr->sc, &error))
return error;
xagb_bitmap_init(&freesp_blocks);
/*
* Iteratively reserve space for the new rmapbt and recompute the
* number of blocks needed to store the previously observed rmapbt
* records and the ones we'll create for the free space metadata.
* Finish when we don't need more blocks.
*/
do {
error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks,
&blocks_reserved, &done);
if (error)
goto out_bitmap;
} while (!done);
/* Emit rmaps for everything in the free space bitmap. */
xrep_ag_btcur_init(rr->sc, &rr->sc->sa);
error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG);
xchk_ag_btcur_free(&rr->sc->sa);
out_bitmap:
xagb_bitmap_destroy(&freesp_blocks);
return error;
}
/* Section (III): Building the new rmap btree. */
/* Update the AGF counters. */
STATIC int
xrep_rmap_reset_counters(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
xfs_agblock_t rmap_btblocks;
/*
* The AGF header contains extra information related to the reverse
* mapping btree, so we must update those fields here.
*/
rmap_btblocks = rr->new_btree.afake.af_blocks - 1;
agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks);
xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS);
/*
* After we commit the new btree to disk, it is possible that the
* process to reap the old btree blocks will race with the AIL trying
* to checkpoint the old btree blocks into the filesystem. If the new
* tree is shorter than the old one, the rmapbt write verifier will
* fail and the AIL will shut down the filesystem.
*
* To avoid this, save the old incore btree height values as the alt
* height values before re-initializing the perag info from the updated
* AGF to capture all the new values.
*/
pag->pagf_repair_rmap_level = pag->pagf_rmap_level;
/* Reinitialize with the values we just logged. */
return xrep_reinit_pagf(sc);
}
/* Retrieve rmapbt data for bulk load. */
STATIC int
xrep_rmap_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xrep_rmap *rr = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
int stat = 0;
error = xfs_btree_increment(rr->mcur, 0, &stat);
if (error)
return error;
if (!stat)
return -EFSCORRUPTED;
error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat);
if (error)
return error;
if (!stat)
return -EFSCORRUPTED;
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Feed one of the new btree blocks to the bulk loader. */
STATIC int
xrep_rmap_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_rmap *rr = priv;
return xrep_newbt_claim_block(cur, &rr->new_btree, ptr);
}
/* Custom allocation function for new rmap btrees. */
STATIC int
xrep_rmap_alloc_vextent(
struct xfs_scrub *sc,
struct xfs_alloc_arg *args,
xfs_fsblock_t alloc_hint)
{
int error;
/*
* We don't want an rmap update on the allocation, since we iteratively
* compute the OWN_AG records /after/ allocating blocks for the records
* that we already know we need to store. Therefore, fix the freelist
* with the NORMAP flag set so that we don't also try to create an rmap
* for new AGFL blocks.
*/
error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP);
if (error)
return error;
/*
* If xrep_fix_freelist fixed the freelist by moving blocks from the
* free space btrees or by removing blocks from the AGFL and queueing
* an EFI to free the block, the transaction will be dirty. This
* second case is of interest to us.
*
* Later on, we will need to compare gaps in the new recordset against
* the block usage of all OWN_AG owners in order to free the old
* btree's blocks, which means that we can't have EFIs for former AGFL
* blocks attached to the repair transaction when we commit the new
* btree.
*
* xrep_newbt_alloc_blocks guarantees this for us by calling
* xrep_defer_finish to commit anything that fix_freelist may have
* added to the transaction.
*/
return xfs_alloc_vextent_near_bno(args, alloc_hint);
}
/* Count the records in this btree. */
STATIC int
xrep_rmap_count_records(
struct xfs_btree_cur *cur,
unsigned long long *nr)
{
int running = 1;
int error;
*nr = 0;
error = xfs_btree_goto_left_edge(cur);
if (error)
return error;
while (running && !(error = xfs_btree_increment(cur, 0, &running))) {
if (running)
(*nr)++;
}
return error;
}
/*
* Use the collected rmap information to stage a new rmap btree. If this is
* successful we'll return with the new btree root information logged to the
* repair transaction but not yet committed. This implements section (III)
* above.
*/
STATIC int
xrep_rmap_build_new_tree(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_btree_cur *rmap_cur;
xfs_fsblock_t fsbno;
int error;
/*
* Preserve the old rmapbt block count so that we can adjust the
* per-AG rmapbt reservation after we commit the new btree root and
* want to dispose of the old btree blocks.
*/
rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks);
/*
* Prepare to construct the new btree by reserving disk space for the
* new btree and setting up all the accounting information we'll need
* to root the new btree while it's under construction and before we
* attach it to the AG header. The new blocks are accounted to the
* rmapbt per-AG reservation, which we will adjust further after
* committing the new btree.
*/
fsbno = XFS_AGB_TO_FSB(sc->mp, pag->pag_agno, XFS_RMAP_BLOCK(sc->mp));
xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE,
fsbno, XFS_AG_RESV_RMAPBT);
rr->new_btree.bload.get_records = xrep_rmap_get_records;
rr->new_btree.bload.claim_block = xrep_rmap_claim_block;
rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent;
rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag);
xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake);
/*
* Initialize @rr->new_btree, reserve space for the new rmapbt,
* and compute OWN_AG rmaps.
*/
error = xrep_rmap_reserve_space(rr, rmap_cur);
if (error)
goto err_cur;
/*
* Count the rmapbt records again, because the space reservation
* for the rmapbt itself probably added more records to the btree.
*/
rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL,
&rr->rmap_btree);
error = xrep_rmap_count_records(rr->mcur, &rr->nr_records);
if (error)
goto err_mcur;
/*
* Due to btree slack factors, it's possible for a new btree to be one
* level taller than the old btree. Update the incore btree height so
* that we don't trip the verifiers when writing the new btree blocks
* to disk.
*/
pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height;
/*
* Move the cursor to the left edge of the tree so that the first
* increment in ->get_records positions us at the first record.
*/
error = xfs_btree_goto_left_edge(rr->mcur);
if (error)
goto err_level;
/* Add all observed rmap records. */
error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr);
if (error)
goto err_level;
/*
* Install the new btree in the AG header. After this point the old
* btree is no longer accessible and the new tree is live.
*/
xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp);
xfs_btree_del_cursor(rmap_cur, 0);
xfs_btree_del_cursor(rr->mcur, 0);
rr->mcur = NULL;
/*
* Now that we've written the new btree to disk, we don't need to keep
* updating the in-memory btree. Abort the scan to stop live updates.
*/
xchk_iscan_abort(&rr->iscan);
/*
* The newly committed rmap recordset includes mappings for the blocks
* that we reserved to build the new btree. If there is excess space
* reservation to be freed, the corresponding rmap records must also be
* removed.
*/
rr->new_btree.oinfo = XFS_RMAP_OINFO_AG;
/* Reset the AGF counters now that we've changed the btree shape. */
error = xrep_rmap_reset_counters(rr);
if (error)
goto err_newbt;
/* Dispose of any unused blocks and the accounting information. */
error = xrep_newbt_commit(&rr->new_btree);
if (error)
return error;
return xrep_roll_ag_trans(sc);
err_level:
pag->pagf_repair_rmap_level = 0;
err_mcur:
xfs_btree_del_cursor(rr->mcur, error);
err_cur:
xfs_btree_del_cursor(rmap_cur, error);
err_newbt:
xrep_newbt_cancel(&rr->new_btree);
return error;
}
/* Section (IV): Reaping the old btree. */
struct xrep_rmap_find_gaps {
struct xagb_bitmap rmap_gaps;
xfs_agblock_t next_agbno;
};
/* Subtract each free extent in the bnobt from the rmap gaps. */
STATIC int
xrep_rmap_find_freesp(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *rec,
void *priv)
{
struct xrep_rmap_find_gaps *rfg = priv;
return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock,
rec->ar_blockcount);
}
/* Record the free space we find, as part of cleaning out the btree. */
STATIC int
xrep_rmap_find_gaps(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_rmap_find_gaps *rfg = priv;
int error;
if (rec->rm_startblock > rfg->next_agbno) {
error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno,
rec->rm_startblock - rfg->next_agbno);
if (error)
return error;
}
rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno,
rec->rm_startblock + rec->rm_blockcount);
return 0;
}
/*
* Reap the old rmapbt blocks. Now that the rmapbt is fully rebuilt, we make
* a list of gaps in the rmap records and a list of the extents mentioned in
* the bnobt. Any block that's in the new rmapbt gap list but not mentioned
* in the bnobt is a block from the old rmapbt and can be removed.
*/
STATIC int
xrep_rmap_remove_old_tree(
struct xrep_rmap *rr)
{
struct xrep_rmap_find_gaps rfg = {
.next_agbno = 0,
};
struct xfs_scrub *sc = rr->sc;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_btree_cur *mcur;
xfs_agblock_t agend;
int error;
xagb_bitmap_init(&rfg.rmap_gaps);
/* Compute free space from the new rmapbt. */
mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);
error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_bitmap;
/* Insert a record for space between the last rmap and EOAG. */
agend = be32_to_cpu(agf->agf_length);
if (rfg.next_agbno < agend) {
error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno,
agend - rfg.next_agbno);
if (error)
goto out_bitmap;
}
/* Compute free space from the existing bnobt. */
sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp,
&rfg);
xfs_btree_del_cursor(sc->sa.bno_cur, error);
sc->sa.bno_cur = NULL;
if (error)
goto out_bitmap;
/*
* Free the "free" blocks that the new rmapbt knows about but the bnobt
* doesn't--these are the old rmapbt blocks. Credit the old rmapbt
* block usage count back to the per-AG rmapbt reservation (and not
* fdblocks, since the rmap btree lives in free space) to keep the
* reservation and free space accounting correct.
*/
error = xrep_reap_agblocks(sc, &rfg.rmap_gaps,
&XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT);
if (error)
goto out_bitmap;
/*
* Now that we've zapped all the old rmapbt blocks we can turn off
* the alternate height mechanism and reset the per-AG space
* reservation.
*/
pag->pagf_repair_rmap_level = 0;
sc->flags |= XREP_RESET_PERAG_RESV;
out_bitmap:
xagb_bitmap_destroy(&rfg.rmap_gaps);
return error;
}
static inline bool
xrep_rmapbt_want_live_update(
struct xchk_iscan *iscan,
const struct xfs_owner_info *oi)
{
if (xchk_iscan_aborted(iscan))
return false;
/*
* Before unlocking the AG header to perform the inode scan, we
* recorded reverse mappings for all AG metadata except for the OWN_AG
* metadata. IOWs, the in-memory btree knows about the AG headers, the
* two inode btrees, the CoW staging extents, and the refcount btrees.
* For these types of metadata, we need to record the live updates in
* the in-memory rmap btree.
*
* However, we do not scan the free space btrees or the AGFL until we
* have re-locked the AGF and are ready to reserve space for the new
* rmap btree, so we do not want live updates for OWN_AG metadata.
*/
if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner))
return oi->oi_owner != XFS_RMAP_OWN_AG;
/* Ignore updates to files that the scanner hasn't visited yet. */
return xchk_iscan_want_live_update(iscan, oi->oi_owner);
}
/*
* Apply a rmapbt update from the regular filesystem into our shadow btree.
* We're running from the thread that owns the AGF buffer and is generating
* the update, so we must be careful about which parts of the struct xrep_rmap
* that we change.
*/
static int
xrep_rmapbt_live_update(
struct notifier_block *nb,
unsigned long action,
void *data)
{
struct xfs_rmap_update_params *p = data;
struct xrep_rmap *rr;
struct xfs_mount *mp;
struct xfs_btree_cur *mcur;
struct xfs_trans *tp;
void *txcookie;
int error;
rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb);
mp = rr->sc->mp;
if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo))
goto out_unlock;
trace_xrep_rmap_live_update(mp, rr->sc->sa.pag->pag_agno, action, p);
error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp);
if (error)
goto out_abort;
mutex_lock(&rr->lock);
mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree);
error = __xfs_rmap_finish_intent(mcur, action, p->startblock,
p->blockcount, &p->oinfo, p->unwritten);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_cancel;
error = xfbtree_trans_commit(&rr->rmap_btree, tp);
if (error)
goto out_cancel;
xrep_trans_cancel_hook_dummy(&txcookie, tp);
mutex_unlock(&rr->lock);
return NOTIFY_DONE;
out_cancel:
xfbtree_trans_cancel(&rr->rmap_btree, tp);
xrep_trans_cancel_hook_dummy(&txcookie, tp);
out_abort:
mutex_unlock(&rr->lock);
xchk_iscan_abort(&rr->iscan);
out_unlock:
return NOTIFY_DONE;
}
/* Set up the filesystem scan components. */
STATIC int
xrep_rmap_setup_scan(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
int error;
mutex_init(&rr->lock);
/* Set up in-memory rmap btree */
error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp,
sc->sa.pag->pag_agno);
if (error)
goto out_mutex;
/* Retry iget every tenth of a second for up to 30 seconds. */
xchk_iscan_start(sc, 30000, 100, &rr->iscan);
/*
* Hook into live rmap operations so that we can update our in-memory
* btree to reflect live changes on the filesystem. Since we drop the
* AGF buffer to scan all the inodes, we need this piece to avoid
* installing a stale btree.
*/
ASSERT(sc->flags & XCHK_FSGATES_RMAP);
xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update);
error = xfs_rmap_hook_add(sc->sa.pag, &rr->rhook);
if (error)
goto out_iscan;
return 0;
out_iscan:
xchk_iscan_teardown(&rr->iscan);
xfbtree_destroy(&rr->rmap_btree);
out_mutex:
mutex_destroy(&rr->lock);
return error;
}
/* Tear down scan components. */
STATIC void
xrep_rmap_teardown(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
xchk_iscan_abort(&rr->iscan);
xfs_rmap_hook_del(sc->sa.pag, &rr->rhook);
xchk_iscan_teardown(&rr->iscan);
xfbtree_destroy(&rr->rmap_btree);
mutex_destroy(&rr->lock);
}
/* Repair the rmap btree for some AG. */
int
xrep_rmapbt(
struct xfs_scrub *sc)
{
struct xrep_rmap *rr = sc->buf;
int error;
error = xrep_rmap_setup_scan(rr);
if (error)
return error;
/*
* Collect rmaps for everything in this AG that isn't space metadata.
* These rmaps won't change even as we try to allocate blocks.
*/
error = xrep_rmap_find_rmaps(rr);
if (error)
goto out_records;
/* Rebuild the rmap information. */
error = xrep_rmap_build_new_tree(rr);
if (error)
goto out_records;
/* Kill the old tree. */
error = xrep_rmap_remove_old_tree(rr);
if (error)
goto out_records;
out_records:
xrep_rmap_teardown(rr);
return error;
}