// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
* Copyright (c) 2014,2015, Linaro Ltd.
*
* SAW power controller driver
*/
#include <linux/bitfield.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/linear_range.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/regulator/driver.h>
#include <soc/qcom/spm.h>
#define FIELD_SET(current, mask, val) \
(((current) & ~(mask)) | FIELD_PREP((mask), (val)))
#define SPM_CTL_INDEX 0x7f
#define SPM_CTL_INDEX_SHIFT 4
#define SPM_CTL_EN BIT(0)
/* These registers might be specific to SPM 1.1 */
#define SPM_VCTL_VLVL GENMASK(7, 0)
#define SPM_PMIC_DATA_0_VLVL GENMASK(7, 0)
#define SPM_PMIC_DATA_1_MIN_VSEL GENMASK(5, 0)
#define SPM_PMIC_DATA_1_MAX_VSEL GENMASK(21, 16)
#define SPM_1_1_AVS_CTL_AVS_ENABLED BIT(27)
#define SPM_AVS_CTL_MAX_VLVL GENMASK(22, 17)
#define SPM_AVS_CTL_MIN_VLVL GENMASK(15, 10)
enum spm_reg {
SPM_REG_CFG,
SPM_REG_SPM_CTL,
SPM_REG_DLY,
SPM_REG_PMIC_DLY,
SPM_REG_PMIC_DATA_0,
SPM_REG_PMIC_DATA_1,
SPM_REG_VCTL,
SPM_REG_SEQ_ENTRY,
SPM_REG_STS0,
SPM_REG_STS1,
SPM_REG_PMIC_STS,
SPM_REG_AVS_CTL,
SPM_REG_AVS_LIMIT,
SPM_REG_RST,
SPM_REG_NR,
};
#define MAX_PMIC_DATA 2
#define MAX_SEQ_DATA 64
struct spm_reg_data {
const u16 *reg_offset;
u32 spm_cfg;
u32 spm_dly;
u32 pmic_dly;
u32 pmic_data[MAX_PMIC_DATA];
u32 avs_ctl;
u32 avs_limit;
u8 seq[MAX_SEQ_DATA];
u8 start_index[PM_SLEEP_MODE_NR];
smp_call_func_t set_vdd;
/* for now we support only a single range */
struct linear_range *range;
unsigned int ramp_delay;
unsigned int init_uV;
};
struct spm_driver_data {
void __iomem *reg_base;
const struct spm_reg_data *reg_data;
struct device *dev;
unsigned int volt_sel;
int reg_cpu;
};
static const u16 spm_reg_offset_v4_1[SPM_REG_NR] = {
[SPM_REG_AVS_CTL] = 0x904,
[SPM_REG_AVS_LIMIT] = 0x908,
};
static const struct spm_reg_data spm_reg_660_gold_l2 = {
.reg_offset = spm_reg_offset_v4_1,
.avs_ctl = 0x1010031,
.avs_limit = 0x4580458,
};
static const struct spm_reg_data spm_reg_660_silver_l2 = {
.reg_offset = spm_reg_offset_v4_1,
.avs_ctl = 0x101c031,
.avs_limit = 0x4580458,
};
static const struct spm_reg_data spm_reg_8998_gold_l2 = {
.reg_offset = spm_reg_offset_v4_1,
.avs_ctl = 0x1010031,
.avs_limit = 0x4700470,
};
static const struct spm_reg_data spm_reg_8998_silver_l2 = {
.reg_offset = spm_reg_offset_v4_1,
.avs_ctl = 0x1010031,
.avs_limit = 0x4200420,
};
static const u16 spm_reg_offset_v3_0[SPM_REG_NR] = {
[SPM_REG_CFG] = 0x08,
[SPM_REG_SPM_CTL] = 0x30,
[SPM_REG_DLY] = 0x34,
[SPM_REG_SEQ_ENTRY] = 0x400,
};
/* SPM register data for 8909 */
static const struct spm_reg_data spm_reg_8909_cpu = {
.reg_offset = spm_reg_offset_v3_0,
.spm_cfg = 0x1,
.spm_dly = 0x3C102800,
.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90,
0x5B, 0x60, 0x03, 0x60, 0x76, 0x76, 0x0B, 0x94, 0x5B, 0x80,
0x10, 0x26, 0x30, 0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 5,
};
/* SPM register data for 8916 */
static const struct spm_reg_data spm_reg_8916_cpu = {
.reg_offset = spm_reg_offset_v3_0,
.spm_cfg = 0x1,
.spm_dly = 0x3C102800,
.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90,
0x5B, 0x60, 0x03, 0x60, 0x3B, 0x76, 0x76, 0x0B, 0x94, 0x5B,
0x80, 0x10, 0x26, 0x30, 0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 5,
};
static const struct spm_reg_data spm_reg_8939_cpu = {
.reg_offset = spm_reg_offset_v3_0,
.spm_cfg = 0x1,
.spm_dly = 0x3C102800,
.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x50, 0x1B, 0x10, 0x80,
0x30, 0x90, 0x5B, 0x60, 0x50, 0x03, 0x60, 0x76, 0x76, 0x0B,
0x50, 0x1B, 0x94, 0x5B, 0x80, 0x10, 0x26, 0x30, 0x50, 0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 5,
};
static const u16 spm_reg_offset_v2_3[SPM_REG_NR] = {
[SPM_REG_CFG] = 0x08,
[SPM_REG_SPM_CTL] = 0x30,
[SPM_REG_DLY] = 0x34,
[SPM_REG_PMIC_DATA_0] = 0x40,
[SPM_REG_PMIC_DATA_1] = 0x44,
};
/* SPM register data for 8976 */
static const struct spm_reg_data spm_reg_8976_gold_l2 = {
.reg_offset = spm_reg_offset_v2_3,
.spm_cfg = 0x14,
.spm_dly = 0x3c11840a,
.pmic_data[0] = 0x03030080,
.pmic_data[1] = 0x00030000,
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 3,
};
static const struct spm_reg_data spm_reg_8976_silver_l2 = {
.reg_offset = spm_reg_offset_v2_3,
.spm_cfg = 0x14,
.spm_dly = 0x3c102800,
.pmic_data[0] = 0x03030080,
.pmic_data[1] = 0x00030000,
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 2,
};
static const u16 spm_reg_offset_v2_1[SPM_REG_NR] = {
[SPM_REG_CFG] = 0x08,
[SPM_REG_SPM_CTL] = 0x30,
[SPM_REG_DLY] = 0x34,
[SPM_REG_SEQ_ENTRY] = 0x80,
};
/* SPM register data for 8974, 8084 */
static const struct spm_reg_data spm_reg_8974_8084_cpu = {
.reg_offset = spm_reg_offset_v2_1,
.spm_cfg = 0x1,
.spm_dly = 0x3C102800,
.seq = { 0x03, 0x0B, 0x0F, 0x00, 0x20, 0x80, 0x10, 0xE8, 0x5B, 0x03,
0x3B, 0xE8, 0x5B, 0x82, 0x10, 0x0B, 0x30, 0x06, 0x26, 0x30,
0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 3,
};
/* SPM register data for 8226 */
static const struct spm_reg_data spm_reg_8226_cpu = {
.reg_offset = spm_reg_offset_v2_1,
.spm_cfg = 0x0,
.spm_dly = 0x3C102800,
.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90,
0x5B, 0x60, 0x03, 0x60, 0x3B, 0x76, 0x76, 0x0B, 0x94, 0x5B,
0x80, 0x10, 0x26, 0x30, 0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 5,
};
static const u16 spm_reg_offset_v1_1[SPM_REG_NR] = {
[SPM_REG_CFG] = 0x08,
[SPM_REG_STS0] = 0x0c,
[SPM_REG_STS1] = 0x10,
[SPM_REG_VCTL] = 0x14,
[SPM_REG_AVS_CTL] = 0x18,
[SPM_REG_SPM_CTL] = 0x20,
[SPM_REG_PMIC_DLY] = 0x24,
[SPM_REG_PMIC_DATA_0] = 0x28,
[SPM_REG_PMIC_DATA_1] = 0x2C,
[SPM_REG_SEQ_ENTRY] = 0x80,
};
static void smp_set_vdd_v1_1(void *data);
/* SPM register data for 8064 */
static struct linear_range spm_v1_1_regulator_range =
REGULATOR_LINEAR_RANGE(700000, 0, 56, 12500);
static const struct spm_reg_data spm_reg_8064_cpu = {
.reg_offset = spm_reg_offset_v1_1,
.spm_cfg = 0x1F,
.pmic_dly = 0x02020004,
.pmic_data[0] = 0x0084009C,
.pmic_data[1] = 0x00A4001C,
.seq = { 0x03, 0x0F, 0x00, 0x24, 0x54, 0x10, 0x09, 0x03, 0x01,
0x10, 0x54, 0x30, 0x0C, 0x24, 0x30, 0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 2,
.set_vdd = smp_set_vdd_v1_1,
.range = &spm_v1_1_regulator_range,
.init_uV = 1300000,
.ramp_delay = 1250,
};
static inline void spm_register_write(struct spm_driver_data *drv,
enum spm_reg reg, u32 val)
{
if (drv->reg_data->reg_offset[reg])
writel_relaxed(val, drv->reg_base +
drv->reg_data->reg_offset[reg]);
}
/* Ensure a guaranteed write, before return */
static inline void spm_register_write_sync(struct spm_driver_data *drv,
enum spm_reg reg, u32 val)
{
u32 ret;
if (!drv->reg_data->reg_offset[reg])
return;
do {
writel_relaxed(val, drv->reg_base +
drv->reg_data->reg_offset[reg]);
ret = readl_relaxed(drv->reg_base +
drv->reg_data->reg_offset[reg]);
if (ret == val)
break;
cpu_relax();
} while (1);
}
static inline u32 spm_register_read(struct spm_driver_data *drv,
enum spm_reg reg)
{
return readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]);
}
void spm_set_low_power_mode(struct spm_driver_data *drv,
enum pm_sleep_mode mode)
{
u32 start_index;
u32 ctl_val;
start_index = drv->reg_data->start_index[mode];
ctl_val = spm_register_read(drv, SPM_REG_SPM_CTL);
ctl_val &= ~(SPM_CTL_INDEX << SPM_CTL_INDEX_SHIFT);
ctl_val |= start_index << SPM_CTL_INDEX_SHIFT;
ctl_val |= SPM_CTL_EN;
spm_register_write_sync(drv, SPM_REG_SPM_CTL, ctl_val);
}
static int spm_set_voltage_sel(struct regulator_dev *rdev, unsigned int selector)
{
struct spm_driver_data *drv = rdev_get_drvdata(rdev);
drv->volt_sel = selector;
/* Always do the SAW register writes on the corresponding CPU */
return smp_call_function_single(drv->reg_cpu, drv->reg_data->set_vdd, drv, true);
}
static int spm_get_voltage_sel(struct regulator_dev *rdev)
{
struct spm_driver_data *drv = rdev_get_drvdata(rdev);
return drv->volt_sel;
}
static const struct regulator_ops spm_reg_ops = {
.set_voltage_sel = spm_set_voltage_sel,
.get_voltage_sel = spm_get_voltage_sel,
.list_voltage = regulator_list_voltage_linear_range,
.set_voltage_time_sel = regulator_set_voltage_time_sel,
};
static void smp_set_vdd_v1_1(void *data)
{
struct spm_driver_data *drv = data;
unsigned int vctl, data0, data1, avs_ctl, sts;
unsigned int vlevel, volt_sel;
bool avs_enabled;
volt_sel = drv->volt_sel;
vlevel = volt_sel | 0x80; /* band */
avs_ctl = spm_register_read(drv, SPM_REG_AVS_CTL);
vctl = spm_register_read(drv, SPM_REG_VCTL);
data0 = spm_register_read(drv, SPM_REG_PMIC_DATA_0);
data1 = spm_register_read(drv, SPM_REG_PMIC_DATA_1);
avs_enabled = avs_ctl & SPM_1_1_AVS_CTL_AVS_ENABLED;
/* If AVS is enabled, switch it off during the voltage change */
if (avs_enabled) {
avs_ctl &= ~SPM_1_1_AVS_CTL_AVS_ENABLED;
spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl);
}
/* Kick the state machine back to idle */
spm_register_write(drv, SPM_REG_RST, 1);
vctl = FIELD_SET(vctl, SPM_VCTL_VLVL, vlevel);
data0 = FIELD_SET(data0, SPM_PMIC_DATA_0_VLVL, vlevel);
data1 = FIELD_SET(data1, SPM_PMIC_DATA_1_MIN_VSEL, volt_sel);
data1 = FIELD_SET(data1, SPM_PMIC_DATA_1_MAX_VSEL, volt_sel);
spm_register_write(drv, SPM_REG_VCTL, vctl);
spm_register_write(drv, SPM_REG_PMIC_DATA_0, data0);
spm_register_write(drv, SPM_REG_PMIC_DATA_1, data1);
if (read_poll_timeout_atomic(spm_register_read,
sts, sts == vlevel,
1, 200, false,
drv, SPM_REG_STS1)) {
dev_err_ratelimited(drv->dev, "timeout setting the voltage (%x %x)!\n", sts, vlevel);
goto enable_avs;
}
if (avs_enabled) {
unsigned int max_avs = volt_sel;
unsigned int min_avs = max(max_avs, 4U) - 4;
avs_ctl = FIELD_SET(avs_ctl, SPM_AVS_CTL_MIN_VLVL, min_avs);
avs_ctl = FIELD_SET(avs_ctl, SPM_AVS_CTL_MAX_VLVL, max_avs);
spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl);
}
enable_avs:
if (avs_enabled) {
avs_ctl |= SPM_1_1_AVS_CTL_AVS_ENABLED;
spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl);
}
}
static int spm_get_cpu(struct device *dev)
{
int cpu;
bool found;
for_each_possible_cpu(cpu) {
struct device_node *cpu_node, *saw_node;
cpu_node = of_cpu_device_node_get(cpu);
if (!cpu_node)
continue;
saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
found = (saw_node == dev->of_node);
of_node_put(saw_node);
of_node_put(cpu_node);
if (found)
return cpu;
}
/* L2 SPM is not bound to any CPU, voltage setting is not supported */
return -EOPNOTSUPP;
}
static int spm_register_regulator(struct device *dev, struct spm_driver_data *drv)
{
struct regulator_config config = {
.dev = dev,
.driver_data = drv,
};
struct regulator_desc *rdesc;
struct regulator_dev *rdev;
int ret;
bool found;
if (!drv->reg_data->set_vdd)
return 0;
rdesc = devm_kzalloc(dev, sizeof(*rdesc), GFP_KERNEL);
if (!rdesc)
return -ENOMEM;
rdesc->name = "spm";
rdesc->of_match = of_match_ptr("regulator");
rdesc->type = REGULATOR_VOLTAGE;
rdesc->owner = THIS_MODULE;
rdesc->ops = &spm_reg_ops;
rdesc->linear_ranges = drv->reg_data->range;
rdesc->n_linear_ranges = 1;
rdesc->n_voltages = rdesc->linear_ranges[rdesc->n_linear_ranges - 1].max_sel + 1;
rdesc->ramp_delay = drv->reg_data->ramp_delay;
ret = spm_get_cpu(dev);
if (ret < 0)
return ret;
drv->reg_cpu = ret;
dev_dbg(dev, "SAW2 bound to CPU %d\n", drv->reg_cpu);
/*
* Program initial voltage, otherwise registration will also try
* setting the voltage, which might result in undervolting the CPU.
*/
drv->volt_sel = DIV_ROUND_UP(drv->reg_data->init_uV - rdesc->min_uV,
rdesc->uV_step);
ret = linear_range_get_selector_high(drv->reg_data->range,
drv->reg_data->init_uV,
&drv->volt_sel,
&found);
if (ret) {
dev_err(dev, "Initial uV value out of bounds\n");
return ret;
}
/* Always do the SAW register writes on the corresponding CPU */
smp_call_function_single(drv->reg_cpu, drv->reg_data->set_vdd, drv, true);
rdev = devm_regulator_register(dev, rdesc, &config);
if (IS_ERR(rdev)) {
dev_err(dev, "failed to register regulator\n");
return PTR_ERR(rdev);
}
return 0;
}
static const struct of_device_id spm_match_table[] = {
{ .compatible = "qcom,sdm660-gold-saw2-v4.1-l2",
.data = &spm_reg_660_gold_l2 },
{ .compatible = "qcom,sdm660-silver-saw2-v4.1-l2",
.data = &spm_reg_660_silver_l2 },
{ .compatible = "qcom,msm8226-saw2-v2.1-cpu",
.data = &spm_reg_8226_cpu },
{ .compatible = "qcom,msm8909-saw2-v3.0-cpu",
.data = &spm_reg_8909_cpu },
{ .compatible = "qcom,msm8916-saw2-v3.0-cpu",
.data = &spm_reg_8916_cpu },
{ .compatible = "qcom,msm8939-saw2-v3.0-cpu",
.data = &spm_reg_8939_cpu },
{ .compatible = "qcom,msm8974-saw2-v2.1-cpu",
.data = &spm_reg_8974_8084_cpu },
{ .compatible = "qcom,msm8976-gold-saw2-v2.3-l2",
.data = &spm_reg_8976_gold_l2 },
{ .compatible = "qcom,msm8976-silver-saw2-v2.3-l2",
.data = &spm_reg_8976_silver_l2 },
{ .compatible = "qcom,msm8998-gold-saw2-v4.1-l2",
.data = &spm_reg_8998_gold_l2 },
{ .compatible = "qcom,msm8998-silver-saw2-v4.1-l2",
.data = &spm_reg_8998_silver_l2 },
{ .compatible = "qcom,apq8084-saw2-v2.1-cpu",
.data = &spm_reg_8974_8084_cpu },
{ .compatible = "qcom,apq8064-saw2-v1.1-cpu",
.data = &spm_reg_8064_cpu },
{ },
};
MODULE_DEVICE_TABLE(of, spm_match_table);
static int spm_dev_probe(struct platform_device *pdev)
{
const struct of_device_id *match_id;
struct spm_driver_data *drv;
void __iomem *addr;
drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
if (!drv)
return -ENOMEM;
drv->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(drv->reg_base))
return PTR_ERR(drv->reg_base);
match_id = of_match_node(spm_match_table, pdev->dev.of_node);
if (!match_id)
return -ENODEV;
drv->reg_data = match_id->data;
drv->dev = &pdev->dev;
platform_set_drvdata(pdev, drv);
/* Write the SPM sequences first.. */
addr = drv->reg_base + drv->reg_data->reg_offset[SPM_REG_SEQ_ENTRY];
__iowrite32_copy(addr, drv->reg_data->seq,
ARRAY_SIZE(drv->reg_data->seq) / 4);
/*
* ..and then the control registers.
* On some SoC if the control registers are written first and if the
* CPU was held in reset, the reset signal could trigger the SPM state
* machine, before the sequences are completely written.
*/
spm_register_write(drv, SPM_REG_AVS_CTL, drv->reg_data->avs_ctl);
spm_register_write(drv, SPM_REG_AVS_LIMIT, drv->reg_data->avs_limit);
spm_register_write(drv, SPM_REG_CFG, drv->reg_data->spm_cfg);
spm_register_write(drv, SPM_REG_DLY, drv->reg_data->spm_dly);
spm_register_write(drv, SPM_REG_PMIC_DLY, drv->reg_data->pmic_dly);
spm_register_write(drv, SPM_REG_PMIC_DATA_0,
drv->reg_data->pmic_data[0]);
spm_register_write(drv, SPM_REG_PMIC_DATA_1,
drv->reg_data->pmic_data[1]);
/* Set up Standby as the default low power mode */
if (drv->reg_data->reg_offset[SPM_REG_SPM_CTL])
spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
if (IS_ENABLED(CONFIG_REGULATOR))
return spm_register_regulator(&pdev->dev, drv);
return 0;
}
static struct platform_driver spm_driver = {
.probe = spm_dev_probe,
.driver = {
.name = "qcom_spm",
.of_match_table = spm_match_table,
},
};
static int __init qcom_spm_init(void)
{
return platform_driver_register(&spm_driver);
}
arch_initcall(qcom_spm_init);
MODULE_DESCRIPTION("Qualcomm Subsystem Power Manager (SPM)");
MODULE_LICENSE("GPL v2");