// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2015, Daniel Thompson
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/hw_random.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
#define RNG_CR 0x00
#define RNG_CR_RNGEN BIT(2)
#define RNG_CR_CED BIT(5)
#define RNG_CR_CONFIG1 GENMASK(11, 8)
#define RNG_CR_NISTC BIT(12)
#define RNG_CR_CONFIG2 GENMASK(15, 13)
#define RNG_CR_CLKDIV_SHIFT 16
#define RNG_CR_CLKDIV GENMASK(19, 16)
#define RNG_CR_CONFIG3 GENMASK(25, 20)
#define RNG_CR_CONDRST BIT(30)
#define RNG_CR_CONFLOCK BIT(31)
#define RNG_CR_ENTROPY_SRC_MASK (RNG_CR_CONFIG1 | RNG_CR_NISTC | RNG_CR_CONFIG2 | RNG_CR_CONFIG3)
#define RNG_CR_CONFIG_MASK (RNG_CR_ENTROPY_SRC_MASK | RNG_CR_CED | RNG_CR_CLKDIV)
#define RNG_SR 0x04
#define RNG_SR_DRDY BIT(0)
#define RNG_SR_CECS BIT(1)
#define RNG_SR_SECS BIT(2)
#define RNG_SR_CEIS BIT(5)
#define RNG_SR_SEIS BIT(6)
#define RNG_DR 0x08
#define RNG_NSCR 0x0C
#define RNG_NSCR_MASK GENMASK(17, 0)
#define RNG_HTCR 0x10
#define RNG_NB_RECOVER_TRIES 3
struct stm32_rng_data {
uint max_clock_rate;
u32 cr;
u32 nscr;
u32 htcr;
bool has_cond_reset;
};
/**
* struct stm32_rng_config - RNG configuration data
*
* @cr: RNG configuration. 0 means default hardware RNG configuration
* @nscr: Noise sources control configuration.
* @htcr: Health tests configuration.
*/
struct stm32_rng_config {
u32 cr;
u32 nscr;
u32 htcr;
};
struct stm32_rng_private {
struct hwrng rng;
struct device *dev;
void __iomem *base;
struct clk *clk;
struct reset_control *rst;
struct stm32_rng_config pm_conf;
const struct stm32_rng_data *data;
bool ced;
bool lock_conf;
};
/*
* Extracts from the STM32 RNG specification when RNG supports CONDRST.
*
* When a noise source (or seed) error occurs, the RNG stops generating
* random numbers and sets to “1” both SEIS and SECS bits to indicate
* that a seed error occurred. (...)
*
* 1. Software reset by writing CONDRST at 1 and at 0 (see bitfield
* description for details). This step is needed only if SECS is set.
* Indeed, when SEIS is set and SECS is cleared it means RNG performed
* the reset automatically (auto-reset).
* 2. If SECS was set in step 1 (no auto-reset) wait for CONDRST
* to be cleared in the RNG_CR register, then confirm that SEIS is
* cleared in the RNG_SR register. Otherwise just clear SEIS bit in
* the RNG_SR register.
* 3. If SECS was set in step 1 (no auto-reset) wait for SECS to be
* cleared by RNG. The random number generation is now back to normal.
*/
static int stm32_rng_conceal_seed_error_cond_reset(struct stm32_rng_private *priv)
{
struct device *dev = priv->dev;
u32 sr = readl_relaxed(priv->base + RNG_SR);
u32 cr = readl_relaxed(priv->base + RNG_CR);
int err;
if (sr & RNG_SR_SECS) {
/* Conceal by resetting the subsystem (step 1.) */
writel_relaxed(cr | RNG_CR_CONDRST, priv->base + RNG_CR);
writel_relaxed(cr & ~RNG_CR_CONDRST, priv->base + RNG_CR);
} else {
/* RNG auto-reset (step 2.) */
writel_relaxed(sr & ~RNG_SR_SEIS, priv->base + RNG_SR);
goto end;
}
err = readl_relaxed_poll_timeout_atomic(priv->base + RNG_CR, cr, !(cr & RNG_CR_CONDRST), 10,
100000);
if (err) {
dev_err(dev, "%s: timeout %x\n", __func__, sr);
return err;
}
/* Check SEIS is cleared (step 2.) */
if (readl_relaxed(priv->base + RNG_SR) & RNG_SR_SEIS)
return -EINVAL;
err = readl_relaxed_poll_timeout_atomic(priv->base + RNG_SR, sr, !(sr & RNG_SR_SECS), 10,
100000);
if (err) {
dev_err(dev, "%s: timeout %x\n", __func__, sr);
return err;
}
end:
return 0;
}
/*
* Extracts from the STM32 RNG specification, when CONDRST is not supported
*
* When a noise source (or seed) error occurs, the RNG stops generating
* random numbers and sets to “1” both SEIS and SECS bits to indicate
* that a seed error occurred. (...)
*
* The following sequence shall be used to fully recover from a seed
* error after the RNG initialization:
* 1. Clear the SEIS bit by writing it to “0”.
* 2. Read out 12 words from the RNG_DR register, and discard each of
* them in order to clean the pipeline.
* 3. Confirm that SEIS is still cleared. Random number generation is
* back to normal.
*/
static int stm32_rng_conceal_seed_error_sw_reset(struct stm32_rng_private *priv)
{
unsigned int i = 0;
u32 sr = readl_relaxed(priv->base + RNG_SR);
writel_relaxed(sr & ~RNG_SR_SEIS, priv->base + RNG_SR);
for (i = 12; i != 0; i--)
(void)readl_relaxed(priv->base + RNG_DR);
if (readl_relaxed(priv->base + RNG_SR) & RNG_SR_SEIS)
return -EINVAL;
return 0;
}
static int stm32_rng_conceal_seed_error(struct hwrng *rng)
{
struct stm32_rng_private *priv = container_of(rng, struct stm32_rng_private, rng);
dev_dbg(priv->dev, "Concealing seed error\n");
if (priv->data->has_cond_reset)
return stm32_rng_conceal_seed_error_cond_reset(priv);
else
return stm32_rng_conceal_seed_error_sw_reset(priv);
};
static int stm32_rng_read(struct hwrng *rng, void *data, size_t max, bool wait)
{
struct stm32_rng_private *priv = container_of(rng, struct stm32_rng_private, rng);
unsigned int i = 0;
int retval = 0, err = 0;
u32 sr;
retval = pm_runtime_resume_and_get(priv->dev);
if (retval)
return retval;
if (readl_relaxed(priv->base + RNG_SR) & RNG_SR_SEIS)
stm32_rng_conceal_seed_error(rng);
while (max >= sizeof(u32)) {
sr = readl_relaxed(priv->base + RNG_SR);
/*
* Manage timeout which is based on timer and take
* care of initial delay time when enabling the RNG.
*/
if (!sr && wait) {
err = readl_relaxed_poll_timeout_atomic(priv->base
+ RNG_SR,
sr, sr,
10, 50000);
if (err) {
dev_err(priv->dev, "%s: timeout %x!\n", __func__, sr);
break;
}
} else if (!sr) {
/* The FIFO is being filled up */
break;
}
if (sr != RNG_SR_DRDY) {
if (sr & RNG_SR_SEIS) {
err = stm32_rng_conceal_seed_error(rng);
i++;
if (err && i > RNG_NB_RECOVER_TRIES) {
dev_err(priv->dev, "Couldn't recover from seed error\n");
retval = -ENOTRECOVERABLE;
goto exit_rpm;
}
continue;
}
if (WARN_ONCE((sr & RNG_SR_CEIS), "RNG clock too slow - %x\n", sr))
writel_relaxed(0, priv->base + RNG_SR);
}
/* Late seed error case: DR being 0 is an error status */
*(u32 *)data = readl_relaxed(priv->base + RNG_DR);
if (!*(u32 *)data) {
err = stm32_rng_conceal_seed_error(rng);
i++;
if (err && i > RNG_NB_RECOVER_TRIES) {
dev_err(priv->dev, "Couldn't recover from seed error");
retval = -ENOTRECOVERABLE;
goto exit_rpm;
}
continue;
}
i = 0;
retval += sizeof(u32);
data += sizeof(u32);
max -= sizeof(u32);
}
exit_rpm:
pm_runtime_mark_last_busy(priv->dev);
pm_runtime_put_sync_autosuspend(priv->dev);
return retval || !wait ? retval : -EIO;
}
static uint stm32_rng_clock_freq_restrain(struct hwrng *rng)
{
struct stm32_rng_private *priv =
container_of(rng, struct stm32_rng_private, rng);
unsigned long clock_rate = 0;
uint clock_div = 0;
clock_rate = clk_get_rate(priv->clk);
/*
* Get the exponent to apply on the CLKDIV field in RNG_CR register
* No need to handle the case when clock-div > 0xF as it is physically
* impossible
*/
while ((clock_rate >> clock_div) > priv->data->max_clock_rate)
clock_div++;
pr_debug("RNG clk rate : %lu\n", clk_get_rate(priv->clk) >> clock_div);
return clock_div;
}
static int stm32_rng_init(struct hwrng *rng)
{
struct stm32_rng_private *priv =
container_of(rng, struct stm32_rng_private, rng);
int err;
u32 reg;
err = clk_prepare_enable(priv->clk);
if (err)
return err;
/* clear error indicators */
writel_relaxed(0, priv->base + RNG_SR);
reg = readl_relaxed(priv->base + RNG_CR);
/*
* Keep default RNG configuration if none was specified.
* 0 is an invalid value as it disables all entropy sources.
*/
if (priv->data->has_cond_reset && priv->data->cr) {
uint clock_div = stm32_rng_clock_freq_restrain(rng);
reg &= ~RNG_CR_CONFIG_MASK;
reg |= RNG_CR_CONDRST | (priv->data->cr & RNG_CR_ENTROPY_SRC_MASK) |
(clock_div << RNG_CR_CLKDIV_SHIFT);
if (priv->ced)
reg &= ~RNG_CR_CED;
else
reg |= RNG_CR_CED;
writel_relaxed(reg, priv->base + RNG_CR);
/* Health tests and noise control registers */
writel_relaxed(priv->data->htcr, priv->base + RNG_HTCR);
writel_relaxed(priv->data->nscr & RNG_NSCR_MASK, priv->base + RNG_NSCR);
reg &= ~RNG_CR_CONDRST;
reg |= RNG_CR_RNGEN;
if (priv->lock_conf)
reg |= RNG_CR_CONFLOCK;
writel_relaxed(reg, priv->base + RNG_CR);
err = readl_relaxed_poll_timeout_atomic(priv->base + RNG_CR, reg,
(!(reg & RNG_CR_CONDRST)),
10, 50000);
if (err) {
clk_disable_unprepare(priv->clk);
dev_err(priv->dev, "%s: timeout %x!\n", __func__, reg);
return -EINVAL;
}
} else {
/* Handle all RNG versions by checking if conditional reset should be set */
if (priv->data->has_cond_reset)
reg |= RNG_CR_CONDRST;
if (priv->ced)
reg &= ~RNG_CR_CED;
else
reg |= RNG_CR_CED;
writel_relaxed(reg, priv->base + RNG_CR);
if (priv->data->has_cond_reset)
reg &= ~RNG_CR_CONDRST;
reg |= RNG_CR_RNGEN;
writel_relaxed(reg, priv->base + RNG_CR);
}
err = readl_relaxed_poll_timeout_atomic(priv->base + RNG_SR, reg,
reg & RNG_SR_DRDY,
10, 100000);
if (err || (reg & ~RNG_SR_DRDY)) {
clk_disable_unprepare(priv->clk);
dev_err(priv->dev, "%s: timeout:%x SR: %x!\n", __func__, err, reg);
return -EINVAL;
}
clk_disable_unprepare(priv->clk);
return 0;
}
static void stm32_rng_remove(struct platform_device *ofdev)
{
pm_runtime_disable(&ofdev->dev);
}
static int __maybe_unused stm32_rng_runtime_suspend(struct device *dev)
{
struct stm32_rng_private *priv = dev_get_drvdata(dev);
u32 reg;
reg = readl_relaxed(priv->base + RNG_CR);
reg &= ~RNG_CR_RNGEN;
writel_relaxed(reg, priv->base + RNG_CR);
clk_disable_unprepare(priv->clk);
return 0;
}
static int __maybe_unused stm32_rng_suspend(struct device *dev)
{
struct stm32_rng_private *priv = dev_get_drvdata(dev);
int err;
err = clk_prepare_enable(priv->clk);
if (err)
return err;
if (priv->data->has_cond_reset) {
priv->pm_conf.nscr = readl_relaxed(priv->base + RNG_NSCR);
priv->pm_conf.htcr = readl_relaxed(priv->base + RNG_HTCR);
}
/* Do not save that RNG is enabled as it will be handled at resume */
priv->pm_conf.cr = readl_relaxed(priv->base + RNG_CR) & ~RNG_CR_RNGEN;
writel_relaxed(priv->pm_conf.cr, priv->base + RNG_CR);
clk_disable_unprepare(priv->clk);
return 0;
}
static int __maybe_unused stm32_rng_runtime_resume(struct device *dev)
{
struct stm32_rng_private *priv = dev_get_drvdata(dev);
int err;
u32 reg;
err = clk_prepare_enable(priv->clk);
if (err)
return err;
/* Clean error indications */
writel_relaxed(0, priv->base + RNG_SR);
reg = readl_relaxed(priv->base + RNG_CR);
reg |= RNG_CR_RNGEN;
writel_relaxed(reg, priv->base + RNG_CR);
return 0;
}
static int __maybe_unused stm32_rng_resume(struct device *dev)
{
struct stm32_rng_private *priv = dev_get_drvdata(dev);
int err;
u32 reg;
err = clk_prepare_enable(priv->clk);
if (err)
return err;
/* Clean error indications */
writel_relaxed(0, priv->base + RNG_SR);
if (priv->data->has_cond_reset) {
/*
* Correct configuration in bits [29:4] must be set in the same
* access that set RNG_CR_CONDRST bit. Else config setting is
* not taken into account. CONFIGLOCK bit must also be unset but
* it is not handled at the moment.
*/
writel_relaxed(priv->pm_conf.cr | RNG_CR_CONDRST, priv->base + RNG_CR);
writel_relaxed(priv->pm_conf.nscr, priv->base + RNG_NSCR);
writel_relaxed(priv->pm_conf.htcr, priv->base + RNG_HTCR);
reg = readl_relaxed(priv->base + RNG_CR);
reg |= RNG_CR_RNGEN;
reg &= ~RNG_CR_CONDRST;
writel_relaxed(reg, priv->base + RNG_CR);
err = readl_relaxed_poll_timeout_atomic(priv->base + RNG_CR, reg,
reg & ~RNG_CR_CONDRST, 10, 100000);
if (err) {
clk_disable_unprepare(priv->clk);
dev_err(priv->dev, "%s: timeout:%x CR: %x!\n", __func__, err, reg);
return -EINVAL;
}
} else {
reg = priv->pm_conf.cr;
reg |= RNG_CR_RNGEN;
writel_relaxed(reg, priv->base + RNG_CR);
}
clk_disable_unprepare(priv->clk);
return 0;
}
static const struct dev_pm_ops __maybe_unused stm32_rng_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_rng_runtime_suspend,
stm32_rng_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(stm32_rng_suspend,
stm32_rng_resume)
};
static const struct stm32_rng_data stm32mp13_rng_data = {
.has_cond_reset = true,
.max_clock_rate = 48000000,
.cr = 0x00F00D00,
.nscr = 0x2B5BB,
.htcr = 0x969D,
};
static const struct stm32_rng_data stm32_rng_data = {
.has_cond_reset = false,
.max_clock_rate = 3000000,
};
static const struct of_device_id stm32_rng_match[] = {
{
.compatible = "st,stm32mp13-rng",
.data = &stm32mp13_rng_data,
},
{
.compatible = "st,stm32-rng",
.data = &stm32_rng_data,
},
{},
};
MODULE_DEVICE_TABLE(of, stm32_rng_match);
static int stm32_rng_probe(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct stm32_rng_private *priv;
struct resource *res;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->base = devm_platform_get_and_ioremap_resource(ofdev, 0, &res);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->clk = devm_clk_get(&ofdev->dev, NULL);
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->rst = devm_reset_control_get(&ofdev->dev, NULL);
if (!IS_ERR(priv->rst)) {
reset_control_assert(priv->rst);
udelay(2);
reset_control_deassert(priv->rst);
}
priv->ced = of_property_read_bool(np, "clock-error-detect");
priv->lock_conf = of_property_read_bool(np, "st,rng-lock-conf");
priv->dev = dev;
priv->data = of_device_get_match_data(dev);
if (!priv->data)
return -ENODEV;
dev_set_drvdata(dev, priv);
priv->rng.name = dev_driver_string(dev);
priv->rng.init = stm32_rng_init;
priv->rng.read = stm32_rng_read;
priv->rng.quality = 900;
pm_runtime_set_autosuspend_delay(dev, 100);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
return devm_hwrng_register(dev, &priv->rng);
}
static struct platform_driver stm32_rng_driver = {
.driver = {
.name = "stm32-rng",
.pm = pm_ptr(&stm32_rng_pm_ops),
.of_match_table = stm32_rng_match,
},
.probe = stm32_rng_probe,
.remove_new = stm32_rng_remove,
};
module_platform_driver(stm32_rng_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Daniel Thompson <[email protected]>");
MODULE_DESCRIPTION("STMicroelectronics STM32 RNG device driver");