/* SPDX-License-Identifier: GPL-2.0 OR MIT */
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#define pr_fmt(fmt) "[TTM] " fmt
#include <drm/ttm/ttm_bo.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/ttm/ttm_tt.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/atomic.h>
#include <linux/dma-resv.h>
#include "ttm_module.h"
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
struct ttm_resource_manager *man;
int i, mem_type;
for (i = 0; i < placement->num_placement; i++) {
mem_type = placement->placement[i].mem_type;
drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
i, placement->placement[i].flags, mem_type);
man = ttm_manager_type(bo->bdev, mem_type);
ttm_resource_manager_debug(man, &p);
}
}
/**
* ttm_bo_move_to_lru_tail
*
* @bo: The buffer object.
*
* Move this BO to the tail of all lru lists used to lookup and reserve an
* object. This function must be called with struct ttm_global::lru_lock
* held, and is used to make a BO less likely to be considered for eviction.
*/
void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
{
dma_resv_assert_held(bo->base.resv);
if (bo->resource)
ttm_resource_move_to_lru_tail(bo->resource);
}
EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
/**
* ttm_bo_set_bulk_move - update BOs bulk move object
*
* @bo: The buffer object.
* @bulk: bulk move structure
*
* Update the BOs bulk move object, making sure that resources are added/removed
* as well. A bulk move allows to move many resource on the LRU at once,
* resulting in much less overhead of maintaining the LRU.
* The only requirement is that the resources stay together on the LRU and are
* never separated. This is enforces by setting the bulk_move structure on a BO.
* ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
* their LRU list.
*/
void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
struct ttm_lru_bulk_move *bulk)
{
dma_resv_assert_held(bo->base.resv);
if (bo->bulk_move == bulk)
return;
spin_lock(&bo->bdev->lru_lock);
if (bo->resource)
ttm_resource_del_bulk_move(bo->resource, bo);
bo->bulk_move = bulk;
if (bo->resource)
ttm_resource_add_bulk_move(bo->resource, bo);
spin_unlock(&bo->bdev->lru_lock);
}
EXPORT_SYMBOL(ttm_bo_set_bulk_move);
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_resource *mem, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_place *hop)
{
struct ttm_device *bdev = bo->bdev;
bool old_use_tt, new_use_tt;
int ret;
old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
ttm_bo_unmap_virtual(bo);
/*
* Create and bind a ttm if required.
*/
if (new_use_tt) {
/* Zero init the new TTM structure if the old location should
* have used one as well.
*/
ret = ttm_tt_create(bo, old_use_tt);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
if (ret)
goto out_err;
}
}
ret = dma_resv_reserve_fences(bo->base.resv, 1);
if (ret)
goto out_err;
ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
if (ret) {
if (ret == -EMULTIHOP)
return ret;
goto out_err;
}
ctx->bytes_moved += bo->base.size;
return 0;
out_err:
if (!old_use_tt)
ttm_bo_tt_destroy(bo);
return ret;
}
/*
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->funcs->delete_mem_notify)
bo->bdev->funcs->delete_mem_notify(bo);
ttm_bo_tt_destroy(bo);
ttm_resource_free(bo, &bo->resource);
}
static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
{
int r;
if (bo->base.resv == &bo->base._resv)
return 0;
BUG_ON(!dma_resv_trylock(&bo->base._resv));
r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
dma_resv_unlock(&bo->base._resv);
if (r)
return r;
if (bo->type != ttm_bo_type_sg) {
/* This works because the BO is about to be destroyed and nobody
* reference it any more. The only tricky case is the trylock on
* the resv object while holding the lru_lock.
*/
spin_lock(&bo->bdev->lru_lock);
bo->base.resv = &bo->base._resv;
spin_unlock(&bo->bdev->lru_lock);
}
return r;
}
static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
{
struct dma_resv *resv = &bo->base._resv;
struct dma_resv_iter cursor;
struct dma_fence *fence;
dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
dma_resv_for_each_fence_unlocked(&cursor, fence) {
if (!fence->ops->signaled)
dma_fence_enable_sw_signaling(fence);
}
dma_resv_iter_end(&cursor);
}
/*
* Block for the dma_resv object to become idle, lock the buffer and clean up
* the resource and tt object.
*/
static void ttm_bo_delayed_delete(struct work_struct *work)
{
struct ttm_buffer_object *bo;
bo = container_of(work, typeof(*bo), delayed_delete);
dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
MAX_SCHEDULE_TIMEOUT);
dma_resv_lock(bo->base.resv, NULL);
ttm_bo_cleanup_memtype_use(bo);
dma_resv_unlock(bo->base.resv);
ttm_bo_put(bo);
}
static void ttm_bo_release(struct kref *kref)
{
struct ttm_buffer_object *bo =
container_of(kref, struct ttm_buffer_object, kref);
struct ttm_device *bdev = bo->bdev;
int ret;
WARN_ON_ONCE(bo->pin_count);
WARN_ON_ONCE(bo->bulk_move);
if (!bo->deleted) {
ret = ttm_bo_individualize_resv(bo);
if (ret) {
/* Last resort, if we fail to allocate memory for the
* fences block for the BO to become idle
*/
dma_resv_wait_timeout(bo->base.resv,
DMA_RESV_USAGE_BOOKKEEP, false,
30 * HZ);
}
if (bo->bdev->funcs->release_notify)
bo->bdev->funcs->release_notify(bo);
drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
ttm_mem_io_free(bdev, bo->resource);
if (!dma_resv_test_signaled(bo->base.resv,
DMA_RESV_USAGE_BOOKKEEP) ||
(want_init_on_free() && (bo->ttm != NULL)) ||
bo->type == ttm_bo_type_sg ||
!dma_resv_trylock(bo->base.resv)) {
/* The BO is not idle, resurrect it for delayed destroy */
ttm_bo_flush_all_fences(bo);
bo->deleted = true;
spin_lock(&bo->bdev->lru_lock);
/*
* Make pinned bos immediately available to
* shrinkers, now that they are queued for
* destruction.
*
* FIXME: QXL is triggering this. Can be removed when the
* driver is fixed.
*/
if (bo->pin_count) {
bo->pin_count = 0;
ttm_resource_move_to_lru_tail(bo->resource);
}
kref_init(&bo->kref);
spin_unlock(&bo->bdev->lru_lock);
INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
/* Schedule the worker on the closest NUMA node. This
* improves performance since system memory might be
* cleared on free and that is best done on a CPU core
* close to it.
*/
queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
return;
}
ttm_bo_cleanup_memtype_use(bo);
dma_resv_unlock(bo->base.resv);
}
atomic_dec(&ttm_glob.bo_count);
bo->destroy(bo);
}
/**
* ttm_bo_put
*
* @bo: The buffer object.
*
* Unreference a buffer object.
*/
void ttm_bo_put(struct ttm_buffer_object *bo)
{
kref_put(&bo->kref, ttm_bo_release);
}
EXPORT_SYMBOL(ttm_bo_put);
static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx,
struct ttm_place *hop)
{
struct ttm_placement hop_placement;
struct ttm_resource *hop_mem;
int ret;
hop_placement.num_placement = 1;
hop_placement.placement = hop;
/* find space in the bounce domain */
ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
if (ret)
return ret;
/* move to the bounce domain */
ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
if (ret) {
ttm_resource_free(bo, &hop_mem);
return ret;
}
return 0;
}
static int ttm_bo_evict(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx)
{
struct ttm_device *bdev = bo->bdev;
struct ttm_resource *evict_mem;
struct ttm_placement placement;
struct ttm_place hop;
int ret = 0;
memset(&hop, 0, sizeof(hop));
dma_resv_assert_held(bo->base.resv);
placement.num_placement = 0;
bdev->funcs->evict_flags(bo, &placement);
if (!placement.num_placement) {
ret = ttm_bo_wait_ctx(bo, ctx);
if (ret)
return ret;
/*
* Since we've already synced, this frees backing store
* immediately.
*/
return ttm_bo_pipeline_gutting(bo);
}
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
if (ret) {
if (ret != -ERESTARTSYS) {
pr_err("Failed to find memory space for buffer 0x%p eviction\n",
bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
do {
ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
if (ret != -EMULTIHOP)
break;
ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
} while (!ret);
if (ret) {
ttm_resource_free(bo, &evict_mem);
if (ret != -ERESTARTSYS && ret != -EINTR)
pr_err("Buffer eviction failed\n");
}
out:
return ret;
}
/**
* ttm_bo_eviction_valuable
*
* @bo: The buffer object to evict
* @place: the placement we need to make room for
*
* Check if it is valuable to evict the BO to make room for the given placement.
*/
bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
struct ttm_resource *res = bo->resource;
struct ttm_device *bdev = bo->bdev;
dma_resv_assert_held(bo->base.resv);
if (bo->resource->mem_type == TTM_PL_SYSTEM)
return true;
/* Don't evict this BO if it's outside of the
* requested placement range
*/
return ttm_resource_intersects(bdev, res, place, bo->base.size);
}
EXPORT_SYMBOL(ttm_bo_eviction_valuable);
/**
* ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
* @bdev: The ttm device.
* @man: The manager whose bo to evict.
* @ctx: The TTM operation ctx governing the eviction.
*
* Return: 0 if successful or the resource disappeared. Negative error code on error.
*/
int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
struct ttm_operation_ctx *ctx)
{
struct ttm_resource_cursor cursor;
struct ttm_buffer_object *bo;
struct ttm_resource *res;
unsigned int mem_type;
int ret = 0;
spin_lock(&bdev->lru_lock);
res = ttm_resource_manager_first(man, &cursor);
ttm_resource_cursor_fini(&cursor);
if (!res) {
ret = -ENOENT;
goto out_no_ref;
}
bo = res->bo;
if (!ttm_bo_get_unless_zero(bo))
goto out_no_ref;
mem_type = res->mem_type;
spin_unlock(&bdev->lru_lock);
ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
if (ret)
goto out_no_lock;
if (!bo->resource || bo->resource->mem_type != mem_type)
goto out_bo_moved;
if (bo->deleted) {
ret = ttm_bo_wait_ctx(bo, ctx);
if (!ret)
ttm_bo_cleanup_memtype_use(bo);
} else {
ret = ttm_bo_evict(bo, ctx);
}
out_bo_moved:
dma_resv_unlock(bo->base.resv);
out_no_lock:
ttm_bo_put(bo);
return ret;
out_no_ref:
spin_unlock(&bdev->lru_lock);
return ret;
}
/**
* struct ttm_bo_evict_walk - Parameters for the evict walk.
*/
struct ttm_bo_evict_walk {
/** @walk: The walk base parameters. */
struct ttm_lru_walk walk;
/** @place: The place passed to the resource allocation. */
const struct ttm_place *place;
/** @evictor: The buffer object we're trying to make room for. */
struct ttm_buffer_object *evictor;
/** @res: The allocated resource if any. */
struct ttm_resource **res;
/** @evicted: Number of successful evictions. */
unsigned long evicted;
};
static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
{
struct ttm_bo_evict_walk *evict_walk =
container_of(walk, typeof(*evict_walk), walk);
s64 lret;
if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
return 0;
if (bo->deleted) {
lret = ttm_bo_wait_ctx(bo, walk->ctx);
if (!lret)
ttm_bo_cleanup_memtype_use(bo);
} else {
lret = ttm_bo_evict(bo, walk->ctx);
}
if (lret)
goto out;
evict_walk->evicted++;
if (evict_walk->res)
lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
evict_walk->res);
if (lret == 0)
return 1;
out:
/* Errors that should terminate the walk. */
if (lret == -ENOSPC)
return -EBUSY;
return lret;
}
static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
.process_bo = ttm_bo_evict_cb,
};
static int ttm_bo_evict_alloc(struct ttm_device *bdev,
struct ttm_resource_manager *man,
const struct ttm_place *place,
struct ttm_buffer_object *evictor,
struct ttm_operation_ctx *ctx,
struct ww_acquire_ctx *ticket,
struct ttm_resource **res)
{
struct ttm_bo_evict_walk evict_walk = {
.walk = {
.ops = &ttm_evict_walk_ops,
.ctx = ctx,
.ticket = ticket,
},
.place = place,
.evictor = evictor,
.res = res,
};
s64 lret;
evict_walk.walk.trylock_only = true;
lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
if (lret || !ticket)
goto out;
/* If ticket-locking, repeat while making progress. */
evict_walk.walk.trylock_only = false;
do {
/* The walk may clear the evict_walk.walk.ticket field */
evict_walk.walk.ticket = ticket;
evict_walk.evicted = 0;
lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
} while (!lret && evict_walk.evicted);
out:
if (lret < 0)
return lret;
if (lret == 0)
return -EBUSY;
return 0;
}
/**
* ttm_bo_pin - Pin the buffer object.
* @bo: The buffer object to pin
*
* Make sure the buffer is not evicted any more during memory pressure.
* @bo must be unpinned again by calling ttm_bo_unpin().
*/
void ttm_bo_pin(struct ttm_buffer_object *bo)
{
dma_resv_assert_held(bo->base.resv);
WARN_ON_ONCE(!kref_read(&bo->kref));
spin_lock(&bo->bdev->lru_lock);
if (bo->resource)
ttm_resource_del_bulk_move(bo->resource, bo);
++bo->pin_count;
spin_unlock(&bo->bdev->lru_lock);
}
EXPORT_SYMBOL(ttm_bo_pin);
/**
* ttm_bo_unpin - Unpin the buffer object.
* @bo: The buffer object to unpin
*
* Allows the buffer object to be evicted again during memory pressure.
*/
void ttm_bo_unpin(struct ttm_buffer_object *bo)
{
dma_resv_assert_held(bo->base.resv);
WARN_ON_ONCE(!kref_read(&bo->kref));
if (WARN_ON_ONCE(!bo->pin_count))
return;
spin_lock(&bo->bdev->lru_lock);
--bo->pin_count;
if (bo->resource)
ttm_resource_add_bulk_move(bo->resource, bo);
spin_unlock(&bo->bdev->lru_lock);
}
EXPORT_SYMBOL(ttm_bo_unpin);
/*
* Add the last move fence to the BO as kernel dependency and reserve a new
* fence slot.
*/
static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
struct ttm_resource_manager *man,
bool no_wait_gpu)
{
struct dma_fence *fence;
int ret;
spin_lock(&man->move_lock);
fence = dma_fence_get(man->move);
spin_unlock(&man->move_lock);
if (!fence)
return 0;
if (no_wait_gpu) {
ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
dma_fence_put(fence);
return ret;
}
dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
ret = dma_resv_reserve_fences(bo->base.resv, 1);
dma_fence_put(fence);
return ret;
}
/**
* ttm_bo_alloc_resource - Allocate backing store for a BO
*
* @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
* @placement: Proposed new placement for the buffer object
* @ctx: if and how to sleep, lock buffers and alloc memory
* @force_space: If we should evict buffers to force space
* @res: The resulting struct ttm_resource.
*
* Allocates a resource for the buffer object pointed to by @bo, using the
* placement flags in @placement, potentially evicting other buffer objects when
* @force_space is true.
* This function may sleep while waiting for resources to become available.
* Returns:
* -EBUSY: No space available (only if no_wait == true).
* -ENOSPC: Could not allocate space for the buffer object, either due to
* fragmentation or concurrent allocators.
* -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
*/
static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx,
bool force_space,
struct ttm_resource **res)
{
struct ttm_device *bdev = bo->bdev;
struct ww_acquire_ctx *ticket;
int i, ret;
ticket = dma_resv_locking_ctx(bo->base.resv);
ret = dma_resv_reserve_fences(bo->base.resv, 1);
if (unlikely(ret))
return ret;
for (i = 0; i < placement->num_placement; ++i) {
const struct ttm_place *place = &placement->placement[i];
struct ttm_resource_manager *man;
bool may_evict;
man = ttm_manager_type(bdev, place->mem_type);
if (!man || !ttm_resource_manager_used(man))
continue;
if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
TTM_PL_FLAG_FALLBACK))
continue;
may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
ret = ttm_resource_alloc(bo, place, res);
if (ret) {
if (ret != -ENOSPC)
return ret;
if (!may_evict)
continue;
ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
ticket, res);
if (ret == -EBUSY)
continue;
if (ret)
return ret;
}
ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
if (unlikely(ret)) {
ttm_resource_free(bo, res);
if (ret == -EBUSY)
continue;
return ret;
}
return 0;
}
return -ENOSPC;
}
/*
* ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
*
* @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
* @placement: Proposed new placement for the buffer object
* @res: The resulting struct ttm_resource.
* @ctx: if and how to sleep, lock buffers and alloc memory
*
* Tries both idle allocation and forcefully eviction of buffers. See
* ttm_bo_alloc_resource for details.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_resource **res,
struct ttm_operation_ctx *ctx)
{
bool force_space = false;
int ret;
do {
ret = ttm_bo_alloc_resource(bo, placement, ctx,
force_space, res);
force_space = !force_space;
} while (ret == -ENOSPC && force_space);
return ret;
}
EXPORT_SYMBOL(ttm_bo_mem_space);
/**
* ttm_bo_validate
*
* @bo: The buffer object.
* @placement: Proposed placement for the buffer object.
* @ctx: validation parameters.
*
* Changes placement and caching policy of the buffer object
* according proposed placement.
* Returns
* -EINVAL on invalid proposed placement.
* -ENOMEM on out-of-memory condition.
* -EBUSY if no_wait is true and buffer busy.
* -ERESTARTSYS if interrupted by a signal.
*/
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx)
{
struct ttm_resource *res;
struct ttm_place hop;
bool force_space;
int ret;
dma_resv_assert_held(bo->base.resv);
/*
* Remove the backing store if no placement is given.
*/
if (!placement->num_placement)
return ttm_bo_pipeline_gutting(bo);
force_space = false;
do {
/* Check whether we need to move buffer. */
if (bo->resource &&
ttm_resource_compatible(bo->resource, placement,
force_space))
return 0;
/* Moving of pinned BOs is forbidden */
if (bo->pin_count)
return -EINVAL;
/*
* Determine where to move the buffer.
*
* If driver determines move is going to need
* an extra step then it will return -EMULTIHOP
* and the buffer will be moved to the temporary
* stop and the driver will be called to make
* the second hop.
*/
ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
&res);
force_space = !force_space;
if (ret == -ENOSPC)
continue;
if (ret)
return ret;
bounce:
ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
if (ret == -EMULTIHOP) {
ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
/* try and move to final place now. */
if (!ret)
goto bounce;
}
if (ret) {
ttm_resource_free(bo, &res);
return ret;
}
} while (ret && force_space);
/* For backward compatibility with userspace */
if (ret == -ENOSPC)
return -ENOMEM;
/*
* We might need to add a TTM.
*/
if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
ret = ttm_tt_create(bo, true);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_validate);
/**
* ttm_bo_init_reserved
*
* @bdev: Pointer to a ttm_device struct.
* @bo: Pointer to a ttm_buffer_object to be initialized.
* @type: Requested type of buffer object.
* @placement: Initial placement for buffer object.
* @alignment: Data alignment in pages.
* @ctx: TTM operation context for memory allocation.
* @sg: Scatter-gather table.
* @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
* @destroy: Destroy function. Use NULL for kfree().
*
* This function initializes a pre-allocated struct ttm_buffer_object.
* As this object may be part of a larger structure, this function,
* together with the @destroy function, enables driver-specific objects
* derived from a ttm_buffer_object.
*
* On successful return, the caller owns an object kref to @bo. The kref and
* list_kref are usually set to 1, but note that in some situations, other
* tasks may already be holding references to @bo as well.
* Furthermore, if resv == NULL, the buffer's reservation lock will be held,
* and it is the caller's responsibility to call ttm_bo_unreserve.
*
* If a failure occurs, the function will call the @destroy function. Thus,
* after a failure, dereferencing @bo is illegal and will likely cause memory
* corruption.
*
* Returns
* -ENOMEM: Out of memory.
* -EINVAL: Invalid placement flags.
* -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
*/
int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
enum ttm_bo_type type, struct ttm_placement *placement,
uint32_t alignment, struct ttm_operation_ctx *ctx,
struct sg_table *sg, struct dma_resv *resv,
void (*destroy) (struct ttm_buffer_object *))
{
int ret;
kref_init(&bo->kref);
bo->bdev = bdev;
bo->type = type;
bo->page_alignment = alignment;
bo->destroy = destroy;
bo->pin_count = 0;
bo->sg = sg;
bo->bulk_move = NULL;
if (resv)
bo->base.resv = resv;
else
bo->base.resv = &bo->base._resv;
atomic_inc(&ttm_glob.bo_count);
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
PFN_UP(bo->base.size));
if (ret)
goto err_put;
}
/* passed reservation objects should already be locked,
* since otherwise lockdep will be angered in radeon.
*/
if (!resv)
WARN_ON(!dma_resv_trylock(bo->base.resv));
else
dma_resv_assert_held(resv);
ret = ttm_bo_validate(bo, placement, ctx);
if (unlikely(ret))
goto err_unlock;
return 0;
err_unlock:
if (!resv)
dma_resv_unlock(bo->base.resv);
err_put:
ttm_bo_put(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_init_reserved);
/**
* ttm_bo_init_validate
*
* @bdev: Pointer to a ttm_device struct.
* @bo: Pointer to a ttm_buffer_object to be initialized.
* @type: Requested type of buffer object.
* @placement: Initial placement for buffer object.
* @alignment: Data alignment in pages.
* @interruptible: If needing to sleep to wait for GPU resources,
* sleep interruptible.
* pinned in physical memory. If this behaviour is not desired, this member
* holds a pointer to a persistent shmem object. Typically, this would
* point to the shmem object backing a GEM object if TTM is used to back a
* GEM user interface.
* @sg: Scatter-gather table.
* @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
* @destroy: Destroy function. Use NULL for kfree().
*
* This function initializes a pre-allocated struct ttm_buffer_object.
* As this object may be part of a larger structure, this function,
* together with the @destroy function,
* enables driver-specific objects derived from a ttm_buffer_object.
*
* On successful return, the caller owns an object kref to @bo. The kref and
* list_kref are usually set to 1, but note that in some situations, other
* tasks may already be holding references to @bo as well.
*
* If a failure occurs, the function will call the @destroy function, Thus,
* after a failure, dereferencing @bo is illegal and will likely cause memory
* corruption.
*
* Returns
* -ENOMEM: Out of memory.
* -EINVAL: Invalid placement flags.
* -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
*/
int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
enum ttm_bo_type type, struct ttm_placement *placement,
uint32_t alignment, bool interruptible,
struct sg_table *sg, struct dma_resv *resv,
void (*destroy) (struct ttm_buffer_object *))
{
struct ttm_operation_ctx ctx = { interruptible, false };
int ret;
ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
sg, resv, destroy);
if (ret)
return ret;
if (!resv)
ttm_bo_unreserve(bo);
return 0;
}
EXPORT_SYMBOL(ttm_bo_init_validate);
/*
* buffer object vm functions.
*/
/**
* ttm_bo_unmap_virtual
*
* @bo: tear down the virtual mappings for this BO
*/
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_device *bdev = bo->bdev;
drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
ttm_mem_io_free(bdev, bo->resource);
}
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
/**
* ttm_bo_wait_ctx - wait for buffer idle.
*
* @bo: The buffer object.
* @ctx: defines how to wait
*
* Waits for the buffer to be idle. Used timeout depends on the context.
* Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
* zero on success.
*/
int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
{
long ret;
if (ctx->no_wait_gpu) {
if (dma_resv_test_signaled(bo->base.resv,
DMA_RESV_USAGE_BOOKKEEP))
return 0;
else
return -EBUSY;
}
ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
ctx->interruptible, 15 * HZ);
if (unlikely(ret < 0))
return ret;
if (unlikely(ret == 0))
return -EBUSY;
return 0;
}
EXPORT_SYMBOL(ttm_bo_wait_ctx);
/**
* struct ttm_bo_swapout_walk - Parameters for the swapout walk
*/
struct ttm_bo_swapout_walk {
/** @walk: The walk base parameters. */
struct ttm_lru_walk walk;
/** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
gfp_t gfp_flags;
};
static s64
ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
{
struct ttm_place place = {.mem_type = bo->resource->mem_type};
struct ttm_bo_swapout_walk *swapout_walk =
container_of(walk, typeof(*swapout_walk), walk);
struct ttm_operation_ctx *ctx = walk->ctx;
s64 ret;
/*
* While the bo may already reside in SYSTEM placement, set
* SYSTEM as new placement to cover also the move further below.
* The driver may use the fact that we're moving from SYSTEM
* as an indication that we're about to swap out.
*/
if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
ret = -EBUSY;
goto out;
}
if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
ret = -EBUSY;
goto out;
}
if (bo->deleted) {
pgoff_t num_pages = bo->ttm->num_pages;
ret = ttm_bo_wait_ctx(bo, ctx);
if (ret)
goto out;
ttm_bo_cleanup_memtype_use(bo);
ret = num_pages;
goto out;
}
/*
* Move to system cached
*/
if (bo->resource->mem_type != TTM_PL_SYSTEM) {
struct ttm_resource *evict_mem;
struct ttm_place hop;
memset(&hop, 0, sizeof(hop));
place.mem_type = TTM_PL_SYSTEM;
ret = ttm_resource_alloc(bo, &place, &evict_mem);
if (ret)
goto out;
ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
if (ret) {
WARN(ret == -EMULTIHOP,
"Unexpected multihop in swapout - likely driver bug.\n");
ttm_resource_free(bo, &evict_mem);
goto out;
}
}
/*
* Make sure BO is idle.
*/
ret = ttm_bo_wait_ctx(bo, ctx);
if (ret)
goto out;
ttm_bo_unmap_virtual(bo);
if (bo->bdev->funcs->swap_notify)
bo->bdev->funcs->swap_notify(bo);
if (ttm_tt_is_populated(bo->ttm))
ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
out:
/* Consider -ENOMEM and -ENOSPC non-fatal. */
if (ret == -ENOMEM || ret == -ENOSPC)
ret = -EBUSY;
return ret;
}
const struct ttm_lru_walk_ops ttm_swap_ops = {
.process_bo = ttm_bo_swapout_cb,
};
/**
* ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
* @bdev: The ttm device.
* @ctx: The ttm_operation_ctx governing the swapout operation.
* @man: The resource manager whose resources / buffer objects are
* goint to be swapped out.
* @gfp_flags: The gfp flags used for shmem page allocations.
* @target: The desired number of bytes to swap out.
*
* Return: The number of bytes actually swapped out, or negative error code
* on error.
*/
s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
struct ttm_resource_manager *man, gfp_t gfp_flags,
s64 target)
{
struct ttm_bo_swapout_walk swapout_walk = {
.walk = {
.ops = &ttm_swap_ops,
.ctx = ctx,
.trylock_only = true,
},
.gfp_flags = gfp_flags,
};
return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
}
void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
{
if (bo->ttm == NULL)
return;
ttm_tt_unpopulate(bo->bdev, bo->ttm);
ttm_tt_destroy(bo->bdev, bo->ttm);
bo->ttm = NULL;
}